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Abstract: Hand osteoarthritis (OA) is a prevalent and disabling condition, yet its patho-
genesis remains less studied than OA in large weight-bearing joints. Emerging genetic,
epigenetic, and microbiome research suggests that hand OA might be biologically distinct,
involving joint-specific pathways not shared by knee or hip OA. This review integrates
genome-wide association studies specific to hand OA, highlighting key molecular contribu-
tors such as inflammatory cytokines. These genetic insights, together with emerging data on
epigenetic alterations and gut microbial dysbiosis, point to broader systemic and regulatory
influences on hand OA onset and progression. We also assess pharmacologic interven-
tions tested in randomized controlled trials that have attempted to target these pathways.
While agents such as TNF and IL-6 inhibitors, hydroxychloroquine, and corticosteroids
have shown limited success, emerging evidence supports the potential of methotrexate in
synovitis-positive general hand OA, platelet-rich plasma in thumb carpometacarpal (CMC)
OA, and prolotherapy in interphalangeal (IP) OA. These findings illustrate the persistent
gap between mechanistic understanding and therapeutic success. Future work must prior-
itize multifactorial strategies for addressing pain and translational frameworks that link
molecular mechanisms to treatment response. In summary, this review offers an update on
hand OA and identifies key opportunities for more targeted and effective therapy.

Keywords: hand osteoarthritis; thumb CMC osteoarthritis; genetic variants; inflammatory
cytokines; epigenetics; gut–joint axis; DNA methylation; microbiome dysbiosis; adipokines;
randomized controlled trials

1. Introduction
Osteoarthritis (OA) is a globally prevalent, progressive joint disorder characterized by

the deterioration of cartilage and irreversible bone damage, leading to pain, stiffness, and
reduced mobility [1,2]. It impairs patients’ quality of life, causes disability, and imposes
significant healthcare costs [3,4]. The prevalence of hand OA in the general population is es-
timated to be approximately 12%, primarily affecting the interphalangeal (IP) joints—which
include the distal (DIP) and proximal (PIP) joints—as well as the carpometacarpal (CMC)
joint of the thumb [5]. Notably, thumb CMC OA is characterized by a disproportion-
ately higher functional burden, likely due to the central role of the thumb in critical hand
functions such as precision grip, pinching, and object manipulation [6,7].

Although hand OA encompasses a spectrum of phenotypes—including erosive dis-
ease and inflammatory arthritis such as rheumatoid arthritis (RA)—this review focuses
specifically on primary, non-erosive, non-autoimmune hand OA, which remains the most
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prevalent and clinically relevant subtype. Erosive hand OA is associated with more aggres-
sive clinical progression and distinct inflammatory and genetic features, while RA of the
hand reflects a fundamentally different autoimmune pathology. Given these differences in
pathogenesis and management, a dedicated review of those subtypes is beyond the scope
of this article.

1.1. Epidemiology of Hand OA

The global incidence of hand OA increased by more than 80% from 1990 to 2019,
despite a slight decline in the age-standardized incidence rate [8]. Women exhibited a
higher incidence and disability burden across all age groups, with a peak between ages
50 and 54 [8]. Although disease rates varied by region, the overall global rise was largely
driven by aging populations and increased life expectancy [8]. Prevalence estimates vary
depending on the definition used (clinical vs. radiographic) and the population studied.
Radiographic hand OA is present in approximately 40–60% of adults over age 55, while
symptomatic hand OA affects about 13–26% of individuals in the same age group [5,9,10].
The condition disproportionately affects women, particularly postmenopausal women,
who experience higher rates of symptomatic disease, polyarticular involvement, and more
rapid structural progression compared to men [5,11]. Age-adjusted prevalence studies
confirm these trends and highlight sex-specific patterns of joint involvement: women more
frequently exhibit DIP and PIP joint disease, while men show relatively greater involvement
of the metacarpophalangeal (MCP) joints [5].

Risk factors for hand OA include increasing age, female sex, family history of OA,
repetitive hand use, obesity, metabolic syndrome, and systemic low-grade inflammation [5,12].
Ethnic disparities have also been observed, with lower prevalence and incidence reported
among Black populations compared to White populations [5]. Emerging data also point
to links between hand OA and cardiovascular disease, diabetes, and adipokines such as
leptin—further supporting a systemic dimension to the disease’s pathophysiology [6].

1.2. Treatment of Hand OA

The management of hand OA—including both IP and thumb CMC involvement—is
typically multimodal and tailored to disease severity, joint involvement, and patient-specific
goals. Foundational nonpharmacologic strategies such as patient education, joint protection
techniques, hand exercises, and splinting are consistently emphasized across international
guidelines, including those from the American College of Rheumatology, EULAR, and
NICE [12–14]. Among these, splinting plays a particularly central role in thumb CMC OA,
where it can reduce pain and preserve function essential for precision grip and daily hand
use [15–17].

Topical NSAIDs are recommended as first-line pharmacologic therapy due to their
efficacy and safety, especially in older adults [18,19]. Oral NSAIDs, while effective, are
generally reserved for cases refractory to other measures and require careful monitoring
due to systemic toxicity risks [20,21].

Intra-articular corticosteroids may offer short-term pain relief in patients with IP
joint inflammation but appear to be less effective for thumb CMC OA [22,23]. Surgical
options—including trapeziectomy, arthrodesis, or joint arthroplasty—are considered for pa-
tients with persistent symptoms and structural joint damage unresponsive to non-surgical
management [24–27]. Additional topical agents, nutraceuticals, and systemic therapies
such as capsaicin, diacerein, hydroxychloroquine, and methotrexate have been evaluated,
but most lack robust evidence and are not routinely recommended due to modest efficacy
or safety concerns [28–30]. Despite the breadth of available treatment options, no therapy
has yet demonstrated structural disease-modifying effects in hand OA—highlighting the



Int. J. Mol. Sci. 2025, 26, 4537 3 of 36

urgent need to develop treatments that directly target the pathogenic mechanisms reviewed
in the following sections.

1.3. Mechanisms Underlying the Molecular Pathogenesis of Hand OA

Despite the high prevalence of hand OA and its burden, its molecular mechanisms
remain less well understood compared to those of knee and hip OA [6]. Recent genome-
wide association studies (GWASs) have revealed that while OA across different joints shares
several common pathways, there also exist unique joint-specific genetic and molecular
pathways at play as well [31–33]. A comprehensive GWAS meta-analysis involving over
826,000 individuals from nine populations highlighted genetic loci specifically associated
with hand OA and distinct from those linked to weight-bearing joints such as the knee and
hip [31]. The study identified several risk variants unique to non-weight-bearing joints,
including hand and thumb OA, suggesting a distinct genetic architecture underpinning
OA in different joints. Identification of variants uniquely associated with hand OA also
supports the notion that hand OA’s molecular mechanisms may differ from those that drive
OA in other joints [31].

The inflammatory processes involved in hand OA pathogenesis are increasingly char-
acterized and genetic variants in these inflammatory factors have been identified. Inflam-
mation plays a critical role in cartilage degradation, and pro-inflammatory cytokines such
as tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6)
have been implicated in the progression of OA in multiple joints, including the hand [34–37].
These cytokines contribute to the upregulation of matrix metalloproteinases (MMPs), which
accelerate the breakdown of cartilage extracellular matrix components, further exacerbating
joint damage [38,39]. Understanding the molecular interplay between these cytokines and
their impact on chondrocyte function and synovial inflammation in hand OA is crucial for
identifying therapeutic targets. In addition to genetic predisposition and inflammation,
epigenetic regulation has emerged as another major factor in OA pathogenesis [40–44]. This
emerging research into the role of epigenetic modifications, particularly DNA methylation,
in modulating gene expression in OA-affected joints may explain why certain joints, such
as the hand, are more susceptible to OA progression despite shared genetic predispositions.

Given the complexity and joint-specific nature of hand OA, this review aims to serve
as a reference of our current and unfolding understanding of the molecular pathogenesis
specific to hand OA, as well as the pharmacologic therapies that have sought to target these
mechanisms and evaluate their efficacy via randomized controlled trials (RCTs).

In summary, we highlight the genetic factors associated with hand OA with a particular
focus on those involved in inflammatory pathways. In addition, we highlight the emerging
roles of epigenetics and the gut–joint axis in the pathogenesis of hand OA and discuss
how these mechanistic insights have informed, and in some cases diverged from, clinical
outcomes observed in RCTs.

2. Methods
To critically examine and consolidate our current knowledge on the underlying

pathogenesis of hand OA, we conducted a narrative review focused on—but not lim-
ited to—primary, non-erosive, and non-autoimmune forms of the disease. To explore
the molecular and genetic mechanisms of hand OA, we developed a strategy to iden-
tify relevant GWASs, preclinical models, and translational human studies. We searched
PubMed, Embase, and Google Scholar for articles published between January 2000 and
February 2025. Search terms were structured as Boolean intersections between anatomical
descriptors—hand osteoarthritis, thumb carpometacarpal OA, first CMC joint, distal interpha-
langeal (DIP), proximal interphalangeal (PIP), and interphalangeal (IP)—and broad mechanistic
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themes, including genetics, GWAS, cartilage degradation, synovium, inflammation, chondrocyte,
epigenetics, DNA methylation, microRNAs, cytokines, gut microbiome, and adipokines.

This strategy yielded 894 articles, which were screened by title and abstract for rel-
evance. Full-text review was conducted for studies addressing core molecular or joint-
specific mechanisms in hand OA. Although inclusion was not strictly limited to primary
hand OA, we excluded studies focused exclusively on erosive OA or rheumatoid arthritis
due to their distinct autoimmune or inflammatory pathogenesis. Additionally, studies
centered on other OA joints such as knee or hip OA were excluded due to their lack of
joint-specific relevance to the molecular and clinical features unique to hand OA.

Once a genetic variant, transcriptomic signal, or pathway was implicated in hand
OA through GWAS, differential expression, or protein analysis in human hand tissue,
we sought to contextualize these findings using functional studies—including in vitro
systems and animal models—to clarify the biological role of the implicated target. While
many of these mechanistic studies were not specific to hand OA, we incorporated them
where appropriate to hypothesize plausible cellular mechanisms while clearly noting when
extrapolation from other joints or models was required.

When the specific joint or hand OA subtype (e.g., thumb CMC, DIP, or PIP) was not
explicitly stated in a study, we refer to it as “hand OA” in this review. Where the original
publication identified the precise joint(s) involved, we retained that level of specificity. This
approach allows for consistent interpretation of findings across a heterogeneous body of
literature while preserving alignment with how disease involvement was characterized
in each study. It also reflects a practical necessity, as many large-scale studies and trials
on hand OA often report composite outcomes or aggregate diagnoses without specifying
joint-level detail.

3. Tumor Necrosis Factor Alpha (TNFα) and the Interleukins
3.1. Tumor Necrosis Factor Alpha (TNFα)

TNFα is a pro-inflammatory cytokine that plays a central role in the inflammatory
processes associated with OA [34–36]. Significant associations between two TNFα poly-
morphisms (rs1799964 and rs1800630) and an increased risk of hand OA have been identi-
fied [37]. Additionally, the G-A-G haplotype of TNFα was linked to a higher likelihood of
developing hand OA. Interactions between TNFα polymorphisms and variants in IL-4R
and IL-10 genes have also been observed, suggesting a gene-interaction network effect.
Thus, TNFα polymorphisms may function singularly or together with other cytokines such
as IL-1β, IL-4, IL-6, and IL-10 to initiate and sustain inflammation (Figure 1). Furthermore,
the observed combined effect of TNFα, IL-1β, and IL-6 polymorphisms was larger but
less than additive, indicating a potential synergistic interaction among these cytokines in
promoting inflammation and joint damage in hand OA.

Recent single-cell RNA sequencing (scRNA-seq) studies have found that specific chon-
drocyte subpopulations, such as fibrocartilage chondrocytes (FCs) and inflammatory chon-
drocytes (InflamCs), are enriched in hand OA [45]. These subpopulations were enriched in
pathways related to reactive oxygen species, TNFα signaling via nuclear factor kappa B (NF-
κB), and various interleukin-mediated pathways. These findings suggest that TNFα and
its gene network can modulate the inflammatory milieu of hand OA via these specialized
chondrocyte populations, thereby contributing to the disease’s pathogenesis (Figure 1).
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Figure 1. TNF-α-driven inflammatory pathways in joint degradation. TNF-α activates IL-1β signal-
ing while inhibiting the chondroprotective IL-4 pathway, leading to cartilage degradation (MMPs,
ADAMTS4), chemokine production (CCL2, CCL5), immune cell recruitment, and NF-κB-mediated
transcription of inflammatory genes.

3.2. Interleukin-1 (IL-1)

Multiple studies have implicated IL-1 in the pathogenesis of OA across multiple
joints [39,46,47]. In vitro, IL-1 promotes cartilage degradation via various mechanisms,
including acting synergistically with TNFα, inducing major cartilage degradation enzymes
such as MMPs and ADAMTS4, driving the expression of chemokines such as CCL2 and
CCL5, which recruit inflammatory cells such as macrophages and T cells, thereby amplify-
ing synovial inflammation (Figure 1) [48,49]. IL1B rs1143633 minor allele, when present in
a homozygous state, has been identified to be significantly associated with hand OA (OR
3.4, p = 0.006) [47]. Carriers of the IL1B rs1143634 minor allele have also been found to have
an increased DIP OA risk (OR 1.6; 95% CI 1.08–2.26) compared to noncarriers [50]. The
association was stronger in dentists, a profession characterized by repetitive manual tasks
and high cumulative hand loading, implying an interaction between repetitive occupational
mechanical stress and genetic susceptibility. Additionally, the extended IL1A-IL1B-IL1RN
haplotype containing this allele is also associated with an increased risk of hand OA, al-
though the association is stronger with hip OA. This distinction highlights the complexity
of OA genetics and the joint-specific variability in the disease pathophysiology. Taken
together, these findings suggest that specific IL-1 haplotypes may predispose DIP joints to
OA by modulating inflammatory responses.
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3.3. Interleukin-4 and Its Receptor (IL-4/IL-4R)

The IL-4/IL-4R pathway is chondroprotective, preventing the development of gener-
alized OA [51–53]. IL-4 decreases IL-1β-induced protein expression of MMP-13, a major
degrading enzyme of extracellular matrix (ECM) proteins in cartilage such as collagen and
aggrecan [54–56]. IL-4 also decreases normal T expressed and secreted (RANTES)/CC
ligand 5 (CCL5), a chemokine that induces further MMPs activity and attracts immune cells
into the affected joint (Figure 1) [54,57]. Two SNPs (rs1805013 and rs1805015) in the IL-4R
gene were found to be linked to hand OA in a case–control association study involving
403 patients with hand OA and 322 healthy controls [58]. The significance of these asso-
ciations was more pronounced for non-erosive primary hand OA, suggesting that these
genetic variants may impair IL-4-mediated chondroprotection.

3.4. Interleukin-6 (IL-6)

IL-6 is a pro-inflammatory cytokine known to be involved in the regulation of immune
responses and inflammation. Its role in generalized OA has been highlighted through its
ability to promote cartilage degradation [59,60]. rs1800795 and rs1800797 polymorphisms
in the IL-6 gene, which correlate with higher levels of IL-6, have been associated with an
increased risk and severity of hand OA [61]. IL-6 promoter variants (G-597A and G-174C)
have also been implicated in symptomatic DIP OA [62]. Subjects with symptomatic DIP
OA more commonly possessed G alleles at the G-597A and G-174C locations than those
without the disorder. Having at least one G allele was associated with a higher likelihood
of this disease. Moreover, those with a haplotype that includes the G allele in promoter
SNPs were seen to have a quadrupled risk of developing symptomatic DIP OA. Carrying
the G-G diplotype has been linked to a higher risk of both symmetrical and symptomatic
DIP OA. The study highlighted that the G alleles at these variable regulatory regions for
IL-6 are associated with increased transcription and secretion of IL-6, contributing to the
inflammatory processes underlying OA. IL-6 promoter and gene polymorphisms could
therefore be further investigated as potential biomarkers both for predicting the risk and
progression of DIP hand OA.

4. The Adipokines
Adipocytes secrete several adipokines, including adiponectin, leptin, and resistin,

which have both pro- and anti-inflammatory roles [63,64]. For example, lower adiponectin
levels in serum were found to correlate significantly with the advancement of radiographic
hand OA and lower baseline adiponectin levels were found to inversely correlate with
the worsening of radiographic hand OA [65]. These findings suggest that adiponectin, a
protein hormone involved in regulating glucose levels and fatty acid breakdown, plays a
protective role in hand OA, and its reduced levels may facilitate disease progression. Recent
studies have identified two single-nucleotide polymorphisms (SNPs) in the adipokines
chemerin and resistin—namely, rs4721 in the RARRES2 (chemerin) gene and rs3745368
in the RETN (resistin) gene—that are associated with an increased risk of hand OA [66].
Specifically, the G allele of rs4721 and the A allele of rs3745368 are linked to a higher risk of
hand OA, with odds ratios (ORs) of 1.25 and 1.33, respectively [66]. Furthermore, while
the G allele in rs4721 was associated with higher pain analog scales (PASs) in hand OA
patients, indicating a link between this genetic variant and the severity of pain experienced,
the A allele of rs3745368 was associated with more severe Kellgren–Lawrence (KL) grades
in hand OA patients, suggesting a role in disease progression.

These results are consistent with the prior literature, which has implicated both resistin
and chemerin in the inflammatory response involved in the pathophysiology of various
diseases [67,68]. For example, resistin, which is elevated in hand OA, is known to interact
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with TNF and IL-6, which are key pro-inflammatory cytokines (Figure 2) [69,70]. Similarly,
chemerin has been shown to induce several pro-inflammatory cytokines through the acti-
vation of toll-like receptor 4 (TLR4) and mitogen-activated protein kinase / extracellular
signal-regulated kinase (MAPK/ERK) pathways [71,72]. A study examining adipokine
gene associations with radiographic hand OA in Finnish women found weak associations
between variations in leptin receptor (LEPR), RARRES2, and RETN genes and hand OA [73].
However, the associations were modified by BMI, suggesting that an individual’s adiposity
may influence the impact of these genetic variations. In conclusion, adipokine dysregu-
lation may drive chronic low-grade inflammation and systemic metabolic dysfunction,
contributing to hand OA pathogenesis.
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Figure 2. Adipokine-driven inflammation linking obesity to hand OA. Adipokines such as resistin
and chemerin from adipose tissue trigger systemic inflammation via upregulation of TNF-α, TLR4,
IL-6, and MAPK/ERK pathways, promoting joint inflammation and the development of hand OA.

5. Other Pathways and Genes Implicated in Hand OA
5.1. Transforming Growth Factor Alpha (TGFα)

The variant rs3771501 in TGFA was implicated in hand OA in a recent large-scale
GWAS, suggesting a potential joint-specific role of TGFα in hand OA pathogenesis [31].
TGFα signals through the epidermal growth factor receptor (EGFR) to regulate processes
such as cell proliferation, differentiation, and response to mechanical stress and is known to
play a central role in generalized OA [74–76]. Elevated levels of TGFα have been detected in
the synovial membrane and synovial fluid of patients with knee OA, as well as in surgically
induced OA models (not specific to the hand), with expression increasing fourfold in
chondrocytes after joint injury [77,78]. While these data derive from non-hand OA studies,
they provide insight into possible mechanisms through which TGFα may contribute to
synovial inflammation and cartilage degradation in hand OA.

TGFα’s effect on chondrocytes is highly context-dependent and can be either beneficial
or pathological. In vitro experiments using a cell-stretching system revealed that recombi-
nant TGFα reduced chondrocyte apoptosis and enhanced autophagy when administered
prior to mechanical stress [79]. This effect was accompanied by decreased expression of
MMP-13 and increased levels of anabolic markers, such as aggrecan (ACAN), suggesting
that TGFα can protect chondrocytes under mechanical load. However, the protective effects
of TGFα were reversed in animal models when subjected to increased physical activity,
leading to more pronounced cartilage degeneration in TGFα KO mice. While inhibition of
TGFα or its receptor EGFR shows potential in reducing the catabolic activity of chondro-
cytes and slowing OA progression, the context-specific effects of this pathway—particularly
in relation to mechanical stress—must be carefully considered before any therapeutic strate-
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gies can be considered. Future studies are needed to clarify the mechanisms by which
TGFα contributes to hand OA, particularly under varying mechanical conditions.

5.2. Matrix Gla Protein (MGP)

MGP, a vitamin K-dependent ECM protein, plays a critical role in preventing ectopic
calcification in cartilage and bone [80]. Genetic variation in MGP has been implicated
in hand OA; a recent GWAS identified that the hand OA risk allele was associated with
lower MGP RNA expression in cartilage, suggesting reduced function of this mineralization
inhibitor [80]. Given that the carboxylation and activation of MGP require adequate vitamin
K, this raises the possibility that vitamin K insufficiency may heighten susceptibility to
cartilage degeneration and joint damage in hand OA [81].

Observational and interventional studies have explored this hypothesis more directly.
In the Framingham Offspring Study, lower plasma phylloquinone levels—a marker of
vitamin K status—were significantly associated with increased prevalence of radiographic
hand OA, large osteophytes, and joint space narrowing [82]. A follow-up randomized
controlled trial of vitamin K supplementation in older adults found no overall effect on
hand OA outcomes. However, a subgroup analysis revealed that participants with low
baseline vitamin K levels who achieved sufficient levels post-treatment had a 47% lower
prevalence of joint space narrowing at follow-up, suggesting that vitamin K insufficiency
may contribute to OA progression in susceptible individuals [83].

Together, these findings suggest that both genetic and nutritional modulation of MGP
activity may influence the structural integrity of hand joints. Further targeted studies
are warranted to clarify whether restoring vitamin K sufficiency can modify hand OA
progression in high-risk subgroups.

5.3. Nuclear Receptor Subfamily 3 Group C Member 1 (NR3C1)

Another variant associated with hand OA is rs10062749 in the NR3C1 gene, which en-
codes the glucocorticoid receptor, a key mediator of the body’s response to glucocorticoids
in inflammatory reactions, cell growth, and tissue differentiation [31]. In hand OA, this
variant may influence disease progression by modulating sensitivity to glucocorticoids,
which have well-established anti-inflammatory properties. For example, polymorphisms
such as ER22/23EK and 9β are associated with increased risk of RA, while other variants,
like Asn363Ser and BclI, enhance glucocorticoid sensitivity, leading to a range of effects
from metabolic disturbances to altered immune responses [84,85].

The critical role of NR3C1 in hand OA is further supported by its influence on other
glucocorticoid-responsive genes, such as DUSP1, ANXA1, and GILZ. These genes mediate
anti-inflammatory effects, with DUSP1 inhibiting MAP kinase signaling and ANXA1
suppressing leukocyte migration [86]. However, the role of GILZ may be more complex, as
it has been implicated in both anti-inflammatory processes and OA pathogenesis through
its regulation of leptin expression in synovial fibroblasts, which has been linked to cartilage
degeneration [86]. Although these findings are derived from models not exclusive to hand
OA, they suggest potential relevance to cartilage degeneration in hand joints. Nevertheless,
the effects of glucocorticoids on cartilage homeostasis appear to be dose-dependent and
context-specific. While low-dose glucocorticoids have protective effects, high-dose or long-
term administration can lead to cartilage damage and osteonecrosis [87]. In hand OA, this
suggests that careful modulation of glucocorticoid signaling, potentially through targeting
NR3C1 variants, may represent a therapeutic strategy that balances inflammation control
with cartilage preservation.
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5.4. TEA Domain Transcription Factor 1 (TEAD1)

While there have not been any mechanistic studies linking TEAD1 to hand OA, a
GWAS study identified the TEAD variant, rs3993110, as being significantly associated with
hand OA, suggesting a potential role in disease susceptibility [31]. TEAD1 is primarily
known for its interaction with YAP (Yes-associated protein) and TAZ (Transcriptional
coactivator with PDZ-binding motif), two critical effectors of the Hippo signaling path-
way involved in cartilage homeostasis and mechanotransduction [88–90]. Through its
interaction with YAP/TAZ, TEAD1 may act as a mediator of hand OA pathogenesis.

In cartilage biology, YAP/TAZ activity has been shown to exert dual effects, pro-
moting either chondrocyte survival and repair or contributing to catabolic degradation,
depending on cellular context and upstream stimuli [91,92]. In fibroblast-like synoviocytes
(FLSs) derived from osteoarthritic joints not specific to hand OA, nuclear accumulation of
YAP—especially when stimulated by TNF-α and IL-1β—leads to increased expression of
matrix MMP-1 and MMP-13, thereby promoting extracellular matrix (ECM) breakdown
(Figure 3) [91]. Conversely, in mesenchymal stem cells (MSCs), YAP/TAZ signaling through
TEAD supports chondrogenic differentiation and represses NF-κB-mediated inflamma-
tion, thereby preserving ECM integrity and reducing MMP and ADAMTS expression
(Figure 3) [91].
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Figure 3. Dual roles of YAP/TAZ in fibroblast-like synoviocytes (FLSs) and mesenchymal stem
cells (MSCs) in cartilage regulation. In FLSs, YAP/TAZ activation promotes MMP-1 and MMP-
13 expression in response to TNF-α and IL-1β, driving ECM degradation. Conversely, in MSCs,
YAP/TAZ–TEAD signaling enhances chondrogenesis by counteracting NF-κB signaling, thereby
supporting cartilage repair and regeneration.

Beyond biochemical signaling, recent advances in mechanotransduction—the process
by which cells sense and respond to mechanical cues—have demonstrated that YAP/TAZ
activation is critically modulated by extracellular matrix stiffness, topographic fiber align-
ment, and cytoskeletal tension [90,93,94]. In engineered fibrous microenvironments, ma-
trix stiffness and fiber orientation synergistically regulate YAP nuclear localization and
transcriptional output, influencing both stem cell fate and inflammatory signaling [94].
This mechanosensitive behavior may be particularly relevant in hand OA, where altered
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joint loading and ECM disorganization could aberrantly activate YAP/TAZ, contributing
to pathological tissue remodeling and impaired repair capacity [93]. Studies using hu-
man cartilage models have further shown that mechanical context alone—independent
of biochemical signals—can reprogram chondrocyte behavior toward either a catabolic or
reparative phenotype [95–98]. Together, these insights suggest that dysregulated mechan-
otransduction may be an underrecognized driver of hand OA pathogenesis and that the
YAP/TAZ–TEAD1 axis warrants further investigation as a potential therapeutic target.

6. Thumb CMC OA: A Unique Subset of Hand OA
Thumb CMC OA is a prominent subtype of hand OA [99,100]. Its prevalence increases

significantly with age, rising to 85% among individuals between 71 and 80 years of age [101].
As individuals increase in age, the prevalence becomes nearly universal, affecting 100% of
women over 90 and 93% of men over 80 [101]. Furthermore, post-menopausal women
with thumb CMC OA have greater odds of disease progression compared to their male
counterparts, likely due to the impact of hormonal changes and biomechanical stressors
unique to women [102]. One suspected reason for the high prevalence of thumb CMC
OA is the unique mechanical demands of the thumb, which requires movements across
multiple planes—such as flexion, extension, abduction, and opposition—making the CMC
joint more susceptible to OA than other hand joints [103,104].

While thumb CMC OA shares common inflammatory and molecular pathways with
generalized hand OA, additional and unique factors are involved in the pathogenesis of
thumb CMC OA. These distinct mechanistic pathways merit specific attention, as they
provide critical insights into why the thumb CMC joint is particularly vulnerable to OA
compared to other hand joints. Thus, the following section will explore factors that are
specific to thumb CMC OA, expanding upon the broader inflammatory mechanisms
discussed earlier in the context of generalized hand OA.

The following sections will discuss the current understanding of the mechanistic
pathways implicated in the pathogenesis and progression of thumb CMC OA, which may
also help explain the observed sex differences in the disease.

6.1. Interleukin-7 (IL-7)

IL-7 is known to induce MMP13 expression and promote inflammatory T-cell activa-
tion, leading to increased secretion of pro-inflammatory cytokines that contribute to bone
and cartilage degradation [105–108]. A recent study identified IL-7 as a potential biomarker
for stratifying disease severity in thumb CMC OA, with higher circulating levels associated
with a reduced likelihood of requiring surgical intervention [109]. These findings suggest a
possible protective role for IL-7 in thumb CMC OA progression. However, elevated IL-7
levels have also been observed in older patients with OA compared to younger individu-
als [110–112], raising the possibility that age-related immunological changes—rather than
disease activity alone—may contribute to these findings. Thus, further studies are needed
to disentangle the IL-7-specific effects from age-related immune remodeling and to clarify
whether IL-7 serves as a true disease-modifying factor or an age-associated phenomenon.

6.2. WNT9A (Wnt Family Member 9A)

WNT9A plays a role in chondrogenesis and maintaining joint integrity via SOX9,
a transcription factor in chondrocyte differentiation and cartilage formation [113,114].
rs1158850, a variant within the regulatory region of the WNT9A gene, increases or decreases
WNT9A expression via interactions between RAD21 cohesin complex and CTCF, forming
a chromatin loop that regulates WNT9A gene expression levels [113]. The dysregulation
of WNT9A expression leads to a decrease in SOX9 levels, subsequently impairing the



Int. J. Mol. Sci. 2025, 26, 4537 11 of 36

synthesis of essential cartilage components like collagen type II. This, in turn, contributes
to the pathogenesis and severity of thumb CMC OA by disrupting the balance of cartilage
matrix production and degradation [114].

Supporting evidence from a study within the Chinese population further solidifies
WNT9A’s association with thumb CMC OA, suggesting that the risk allele of rs11588850
may not only elevate OA susceptibility through WNT9A upregulation but may also increase
disease severity in patients with these variants [115]. However, the precise mechanism
by which WNT signaling exacerbates thumb CMC OA, particularly in light of paradox-
ical findings that WNT pathway inhibition also aggravates disease phenotype, remains
unresolved and requires further investigation [116,117].

6.3. ALDH1A2 (Aldehyde Dehydrogenase 1 Family, Member A2) and Retinoic Acid Metabolism

A population study from Iceland identified the ALDH1A2 gene, which encodes reti-
naldehyde dehydrogenase 2 (RALDH2) as a potential molecular marker of thumb CMC
OA [118]. RALDH2 is a key enzyme in the biosynthesis of all-trans retinoic acid (atRA)
from retinaldehyde, an active metabolite of vitamin A known to play a critical role in
the maintenance of cartilage and bone health [119–121]. Risk alleles in ALDH1A2 that
reduce atRA levels have been associated with increased cartilage inflammation, thus po-
tentially influencing the initiation and progression of thumb CMC OA [118]. In addition,
decreased retinoic acid production also likely compromises cartilage repair, contributing to
the degenerative process characteristic of thumb CMC OA [118].

A recent study in the United Kingdom (UK) has further supported this association
between the ALDH1A2 gene and thumb CMC OA. In this study, variants of ALDH1A2,
linked to the decreased synthesis of atRA, were identified in patients with severe hand
OA [122]. These risk alleles were correlated with cartilage damage and inflammation,
reinforcing the findings from the Icelandic population and extending them into a UK
cohort. In addition, the UK study advanced our understanding of atRA’s anti-inflammatory
properties in thumb CMC OA by demonstrating that the administration of a retinoic acid
metabolism blocking agent (RAMBA), specifically talarozole, mitigated cartilage injury
and inflammation by preserving atRA levels. This study corroborated the prior findings
about ALDH1A2 and further highlighted the potential of RAMBAs as a new class of
disease-modifying drugs for thumb CMC OA treatment.

6.4. MATN3 (Matrilin-3)

Matrilin-3, an extracellular matrix protein encoded by the MATN3 gene, plays a vital
role in maintaining the structural and functional integrity of cartilage. MATN3 polymor-
phisms, such as p.T303M, have been correlated with an increased risk of developing thumb
CMC OA [123–125]. This association has been independently replicated in Icelandic and
German population studies [123,125]. However, the role of MATN3 polymorphisms in
heterogeneous populations outside of these European groups remains unclear.

As an adaptor protein, matrilin-3 facilitates the interaction between collagen fibrils and
aggrecan, among other cartilage constituents [126,127]. While these interactions have not
been evaluated specifically in hand OA tissue, broader studies suggest that matrilin-3 also
modulates chondrocyte metabolism and regulates the synthesis of ECM proteins [128].
The p.T303M polymorphism may alter the structure or function of matrilin-3, disrupting
its role in ECM integration—an effect supported by in vivo findings in matrilin-deficient
mouse models, which exhibit compromised cartilage architecture and heightened OA
susceptibility with age [127,129,130]. Additionally, matrilin-3 contributes to the hydrophilic
and viscoelastic properties of cartilage through its ability to bind and induce aggrecan—a
critical proteoglycan responsible for shock absorption and tensile resilience in joint tis-
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sue [131,132]. While this function has not been directly studied in hand OA, these findings
offer plausible mechanisms by which MATN3 variants may contribute to localized cartilage
weakening and joint degeneration in the thumb CMC joint.

7. Beyond the Influence of Genetic and Inflammatory Factors in Hand OA
7.1. Epigenetic Regulation of Hand OA Pathophysiology

Epigenetic changes, such as DNA methylation and histone modifications, have been
shown to play a crucial role in the development of OA across various joints [40,42–44].
While some epigenetic changes are shared across multiple joint sites, recent studies have
emphasized the importance of joint-specific epigenetic mechanisms, particularly in hand
OA [133–135]. A genome-wide DNA methylation study analyzed over 1000 individuals
with hand OA from the Framingham Offspring Cohort, revealing differentially methy-
lated CpG sites (FDR < 0.05) associated with the disease [41]. One of the top CpG sites,
cg12762517, was located in the PARP3 gene, which encodes a poly-ADP-ribosyl transferase
involved in DNA repair, regulation of apoptosis, and stress response [136–138]. This sug-
gests that DNA damage and repair mechanisms may be involved in hand OA pathogenesis,
with PARP3 playing a central role. No prior studies had associated this region with OA,
making this a novel discovery in the epigenetic landscape of hand OA. Mechanistic studies
into the role of PARPs in other diseases have shown PARPs as coactivators of the NF-κB
signaling cascade [139–141]. Therefore, PARP3 could mediate its impact on hand OA by
activating the NF-κB-induced inflammatory pathway.

The study also identified cg20312179, a CpG site associated with the expression of the
EPS15 gene, which was in turn linked to the expression of 40 other genes. These genes
were enriched in pathways related to bone mineralization, osteoblast differentiation, and
innate immunity, highlighting a potential connection between altered methylation patterns,
bone metabolism, and immune responses in hand OA. For instance, EPS15 is known to
mediate EGFR endocytosis, which, as previously discussed, is the receptor for TGFα [142].
TGFα has been implicated in both protective and destructive roles in chondrocytes.

Taken together, these findings suggest that differential methylation of CpG sites
influences gene expression in hand OA, potentially altering key processes involved in
cartilage homeostasis, immune response, and bone remodeling.

Another study evaluated the methylation status of several regulatory sites within
genes linked to hand OA predisposition in a cohort of Finnish women, revealing significant
epigenetic modifications associated with hand OA severity [73]. The COL2A1 gene, which
encodes type II collagen, an essential component of cartilage, was found to be epigeneti-
cally regulated through DNA methylation at specific CpG sites. Methylation at this site
was significantly associated with radiographic hand OA affecting three or more joints
(p = 0.04). This suggests that epigenetic modifications in COL2A1 may influence the struc-
tural integrity of cartilage in hand OA by modulating collagen synthesis, a key determinant
of cartilage homeostasis and degeneration. Additionally, methylation of the ALDH1A2
gene—which plays a role in retinoic acid biosynthesis and has been linked to cartilage
differentiation—was associated with the summary score of radiographic findings (p = 0.02).
Stratification by occupation revealed that these associations were stronger in teachers than
in dentists, suggesting possible occupational influences on methylation patterns. This
highlights the complexity of gene–environment interactions in hand OA, with epigenetic
regulation mediating genetic susceptibility and environmental factors, such as occupational
hand use.

A more recent study identified elevated methylation levels in the BMP7 gene, a
key regulator of cartilage repair and chondrocyte differentiation, in patients with hand
OA [135]. This epigenetic modification may impair the anabolic functions of BMP7, leading
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to accelerated cartilage degradation. Further studies are required to determine the utility of
BMP7 methylation in peripheral leukocytes as a minimally invasive systemic biomarker
for the early diagnosis and progression of hand OA.

7.2. Emerging Gut Connection

Dysbiosis, or an imbalance in the gut microbiome, has been implicated in various
inflammatory conditions, and emerging evidence suggests a similar connection in hand
OA [143–145]. The Xiangya Osteoarthritis Study, a large population-based cohort study
involving 1388 participants, investigated the relationship between the gut microbiome and
symptomatic hand OA. The study found that beta-diversity, which measures the difference
in microbial community composition between individuals, was significantly associated
with symptomatic hand OA [146]. However, alpha diversity, which indicates the variety
of species within an individual, was not significantly different between those with and
without hand OA, suggesting that while the overall richness of the microbiome may not
differ, the specific microbial compositions are distinct in those with symptomatic hand OA.

Further analysis showed that individuals with symptomatic hand OA had an increased
relative abundance of the genera Bilophila and Desulfovibrio, both sulfate-reducing bacteria,
and a lower relative abundance of Roseburia. Bilophila and Desulfovibrio have been implicated
in other inflammatory diseases including inflammatory bowel disease, irritable bowel
syndrome, and colorectal cancer [147–151].

Studies in animal models of obesity and metabolic dysregulation have shown that
Bilophila induces the expression of inflammatory cytokines, IFN-γ and IL-6, in various
tissues as well as LBP (lipopolysaccharide binding protein), A-SAA (SAA acute-phase
reactant serum amyloid A), TNF-α, and IL-6 in serum (Figure 4) [148,149]. These findings
suggest that Bilophila drives both local and systemic inflammation. Similarly, Desulfovibrio
has been shown to induce the transcription of inflammatory genes and activate the NF-κB
pathway via LRRC19 [150]. Desulfovibrio also stimulates the production of IL-6 and IL-8 in
human oral epithelial and gingival fibroblast cells in response to its bacterial products,
such as lipopolysaccharides [152–154]. In summary, these studies provide initial insights
into the mechanisms by which Bilophila and Desulfovibrio may contribute to symptomatic
hand OA, possibly through promoting inflammation (Figure 4). Roseburia, in contrast,
is typically associated with anti-inflammatory effects [155,156]. Studies examining the
role of Roseburia in other diseases demonstrate that it mitigates inflammation through
various pathways (Figure 4). These include the inhibition of lipopolysaccharide (LPS)-
induced IL-17 secretion and the promotion of regulatory T cells (Treg) cell differentiation
and expression (Figure 4). Treg cells are known to suppress inflammation by producing
anti-inflammatory cytokines such as IL-10 [157–159]. These pro-and anti-inflammatory
effects demonstrate that the complex gut microbiome likely has a significant effect on fine-
tuning the initiation and propagation of inflammation, thereby contributing to hand OA
pathophysiology. Further research is necessary to clarify the precise role of these organisms
in hand OA-specific models.

Functional pathway analysis in the Xiangya Osteoarthritis Study also indicated signif-
icant alterations in amino acid, carbohydrate, and lipid metabolic pathways in individuals
with symptomatic hand OA suggesting that the gut microbiome could also significantly
influence systemic metabolic states, contributing to the pathogenesis of hand OA. More
recent evidence has also identified significant alterations in the tryptophan metabolism
of the gut microbiota in patients with hand OA [146]. Participants in the discovery co-
hort with symptomatic hand OA had higher levels of plasma 5-hydroxyindoleacetic acid
(5-HIAA) and 5-hydroxytryptophol (5-HTOL). The elevated levels of 5-HIAA and 5-HTOL
metabolites in the serotonin pathway have been implicated in erosion and pain in hand
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OA [160]. Conversely, these participants had reduced levels of indole-3-lactic acid (ILA),
skatole, and 3-hydroxyanthranilic acid (3-HAA), which are anti-inflammatory metabolites
in the indole and kynurenine pathways. ILA, skatole, and 3-HA have all been implicated in
quelling inflammation in various diseases [161–164]. In addition, ILA plays a critical role in
maintaining gut barrier integrity and modulating systemic inflammation [165], suggesting
that gut microbiome dysbiosis in hand OA patients skews tryptophan metabolism towards
pro-inflammatory pathways and disrupts anti-inflammatory processes, consequently ex-
acerbating hand OA symptoms and progression. Taken together, multiple studies have
highlighted the intricate link between gut microbiota, metabolism, and host physiological
processes in the hand OA joint.
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This emerging gut–joint axis provides a novel perspective on the pathophysiology of
hand OA and suggests potential therapeutic avenues to target the gut microbiome with the
goal of mitigating inflammation and slowing hand OA progression. While modulating the
gut microbiome could alleviate inflammation and improve joint health in OA patients, the
largely important question of how we modulate the gut microbiome specifically to target a
particular disease, hand OA in focus here, remains to be answered.

8. Randomized Controlled Trials (RCTs) in Hand OA
Given the vast number of therapeutic research studies in hand OA, this review focuses

on randomized controlled trials (RCTs) published within the past 15 years that directly tar-
get the molecular and cellular pathways we have discussed in prior sections as implicated
in hand OA pathogenesis. Specifically, we examined the existing literature for interven-
tions modulating inflammatory cytokines (e.g., IL-1β, TNFα, IL-6), epigenetic regulation,
cartilage metabolism, and other key signaling pathways discussed in the prior sections. By
anchoring our analysis to these targets, this review critically evaluates whether insights
derived from in vitro and in vivo studies translate into clinically meaningful symptom
relief and functional improvement in patients with symptomatic hand OA.
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8.1. Methods

To identify relevant studies, a comprehensive literature search was conducted across
PubMed, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) us-
ing a combination of MeSH terms and keywords related to hand osteoarthritis (“hand
OA”, “carpometacarpal OA”, “interphalangeal OA”), targeted molecular pathways
(“inflammatory cytokines”, “IL-1β”, “TNFα”, “IL-6”, “WNT signaling”, “retinoic acid
metabolism”, “adipokines”, “gut microbiome”, “Bilophila”, “Desulfovibrio”, “Roseburia”,
“pro-inflammation”, “anti-inflammation”, “TEAD1”, “NR3C1”, “MGP”, “vitamin K”,
“TGFα”), and intervention types (“intra-articular injections”, “biologics”, “prolother-
apy”, “platelet-rich plasma”, “hyaluronic acid”, “corticosteroids”, “targeted therapies”,
“microbiome-modulating interventions”, “adipokine-targeting therapies”). The search was
limited to randomized controlled trials published in the past 15 years, from 2010 to 2025,
and studies had to be available in English.

Studies were included if they met the following criteria: (1) randomized controlled tri-
als evaluating pharmacological or biologic interventions that explicitly target molecular and
cellular mechanisms implicated in primary hand OA—the non-erosive, non-autoimmune
form of the disease; (2) studies assessing clinically meaningful outcomes such as pain relief,
functional improvement, inflammatory biomarker modulation, or structural joint changes;
and (3) trials that enrolled participants with confirmed radiographic or clinical diagno-
sis of hand OA, whether involving the carpometacarpal (CMC) joint or interphalangeal
(IP) joints.

Exclusion criteria included (1) observational studies, case series, and non-randomized
trials; (2) studies that focused on hand OA treatments without a clear mechanistic link to
pathways discussed in this review; (3) trials assessing multimodal interventions where
the effect of the pharmacologic agent could not be isolated; and (4) studies investigating
systemic therapies without direct relevance to joint-specific inflammatory or cartilage-
regenerative mechanisms in hand OA. Additionally, studies explicitly evaluating erosive
hand OA or rheumatoid arthritis were excluded due to their distinct pathophysiology,
which falls outside the scope of this review. The selection process followed PRISMA
guidelines, with titles and abstracts screened for relevance before full-text review.

8.2. Methotrexate (MTX)

Methotrexate (MTX) is a disease-modifying antirheumatic drug (DMARD) widely
used in rheumatoid arthritis (RA) and other autoimmune arthritides due to its potent
immunosuppressive and anti-inflammatory effects [166,167]. Until recently, its interest in
hand OA had been limited to erosive hand OA, where inflammatory mechanisms overlap
with those seen in inflammatory arthritis [168]. MTX is known to increase extracellular
adenosine levels, which downregulate key pro-inflammatory cytokines, including TNFα,
IL-1β, and IL-6—all of which have been implicated in hand OA pathogenesis [169,170].

The METHODS trial was the first RCT to evaluate MTX in non-erosive hand OA
with synovitis [171]. A total of 97 patients with symptomatic IP or thumb CMC OA
(KL grade ≥ 2) and MRI-confirmed synovitis were randomized to receive oral MTX
(15 mg/week) or placebo for six months, with assessments at 6 and 12 months. Patients
in the MTX group experienced a significantly greater reduction in pain compared to
placebo at 6 months, supporting a potential role for inflammation modulation in pain relief.
While pain and stiffness improved, no significant differences were observed in functional
measures such as grip strength, Functional Index for Hand Osteoarthritis (FIHOA), or Aus-
tralian/Canadian Osteoarthritis Hand Index (AUSCAN) function scores. Pain reduction
was not immediate, aligning with MTX’s known delayed onset, with notable improvements
emerging after three months.
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While the METHODS trial provides the first high-quality evidence evaluating MTX
in non-erosive hand OA, future studies may benefit from larger patient populations and
longer treatment durations to observe the long-term structural modification of the affected
joint and the prolonged effects of MTX.

8.3. Botulinum Toxin A (BoNT-A)

Botulinum toxin A (BoNT-A) is a neurotoxin that inhibits acetylcholine release at
the presynaptic terminal of the neuromuscular junction, resulting in temporary localized
muscle paralysis [172]. Beyond its established use in movement disorders and spasticity,
BoNT-A also exerts antinociceptive effects through inhibition of peripheral neuropep-
tides such as substance P, calcitonin gene-related peptide (CGRP), and glutamate [173].
These neuropeptides contribute to neurogenic inflammation, which plays a key role in
synovitis and pain sensitization in OA [174,175]. In preclinical generalized OA models,
intra-articular BoNT-A has been shown to reduce levels of pro-inflammatory cytokines
including IL-1β and TNF-α in synovial tissues, alongside attenuated cartilage degradation
and inflammatory cell infiltration [176].

A phase 3 study investigated the efficacy of intra-articular BoNT-A in patients with
painful thumb CMC OA [177]. A total of 60 participants were randomized to receive a
single intra-articular injection of BoNT-A (50 Allergan units in 1 mL saline) or a placebo
injection of saline alone. At 3 months, BoNT-A recipients experienced significantly greater
pain reduction compared to placebo, with improvements evident as early as 1 month
and persisting through the 3-month mark. However, this benefit was not sustained at
6 months, suggesting a time-limited therapeutic effect. Functional outcomes, including
grip strength and hand-specific functional assessments did not significantly differ between
groups. Notably, BoNT-A was well tolerated, although 47% of patients reported mild and
transient motor weakness in the thenar region, likely reflecting diffusion of the neurotoxin
to adjacent motor units.

The RHIBOT trial provides the first high-quality evidence supporting BoNT-A as a
short-term intra-articular analgesic in thumb CMC OA. Nonetheless, further research is
needed to explore optimal dosing regimens, the potential utility of repeat injections, and
whether BoNT-A can provide meaningful symptom relief in IP OA.

8.4. Topical Cetylated Fatty Acids (CFAs)

Cetylated fatty acids (CFAs) are a group of naturally occurring fats with reported
anti-inflammatory and lubricating properties that have been investigated in various muscu-
loskeletal conditions, including OA [178–180]. In vitro studies suggest that CFAs stimulate
chondrogenesis while downregulating pro-inflammatory cytokines such as TNF-α and
IL-6 [181]. While their efficacy has been explored in knee, elbow, and wrist OA, data on
their effects in hand OA remain sparse [179,180].

The only randomized controlled trial to evaluate topical CFA therapy in hand OA was
conducted in 72 patients with symptomatic CMC or IP involvement [178]. Participants
were randomized to apply either CFA cream or placebo twice daily for 6 weeks. The
primary outcome measure, the FIHOA, did not show a significant difference between the
CFA and placebo groups. However, secondary outcomes revealed significant symptom
relief in the CFA-treated group compared to placebo. At 6 weeks, patients receiving CFA
cream reported significantly lower pain scores and better overall symptom improvement
on the Patient Global Assessment (PGA).

These findings suggest that while CFA application did not enhance functional capacity,
it provided modest pain relief and improved patients’ perceived disease burden. Although
these results highlight CFAs as a potential symptom-relieving therapy for hand OA, future
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studies should explore longer treatment durations, head-to-head comparisons with estab-
lished topical agents (e.g., NSAIDs, capsaicin), and potential synergistic effects with other
therapies to better define the clinical utility of CFAs in hand OA management.

8.5. Tocilizumab: IL-6 Receptor (IL-6R) Blockade

Tocilizumab, a monoclonal antibody targeting the IL-6 receptor (IL-6R), has been ex-
plored as a treatment for hand OA based on mechanistic data implicating IL-6 in hand OA
pathogenesis as previously discussed [182]. Preclinical studies in animal OA models show
that IL-6 blockade reduces cartilage damage and alleviates mechanical allodynia, while ob-
servational data associated high IL-6 levels with increased OA severity and pain [183,184].

In a 12-week study, 91 patients with symptomatic hand OA involving DIP or PIP
joints were randomized to receive intravenous tocilizumab (8 mg/kg, given twice four
weeks apart) or placebo [182]. Change in hand pain at week 6 did not differ between the
tocilizumab and placebo groups. Similarly, no significant differences were observed in
any secondary outcomes, including swollen joint count, stiffness, FIHOA scores, or PGA.
Subgroup analysis of patients with clinically swollen joints at baseline also showed no
treatment effect.

These findings were unexpected given the established role of IL-6 in hand OA-related
inflammation and joint degradation. Several factors may explain the negative results. First,
while IL-6 contributes to structural progression in OA, its role in mediating pain may be
more limited or indirect. Pain in hand OA is increasingly understood as multifactorial,
involving not only synovitis but also bone marrow lesions, subchondral remodeling, and
central sensitization, which may not be adequately modulated by IL-6 blockade [185–187].
Second, the level of inflammation in enrolled patients may have been insufficient to benefit
from immunomodulatory therapy, particularly as synovitis was assessed clinically rather
than through imaging. Third, the extent to which systemically administered tocilizumab
reached therapeutic concentrations in the affected joints remains uncertain, potentially
limiting its efficacy in localized disease. Finally, nociceptive drivers such as nerve growth
factor (NGF), Toll-like receptor signaling, and chemokine pathways may predominate
in advanced disease, rendering IL-6 inhibition inadequate. Although the results do not
support the use of IL-6 inhibitors for pain relief in hand OA, they raise important questions
about the disconnect between molecular inflammation and clinical symptoms in hand OA.
Further studies are needed to assess whether IL-6 blockade may slow structural progression
or better benefit other subtypes of hand OA with more overt inflammatory features.

8.6. Adalimumab: TNF-α Blockade

Adalimumab is a monoclonal antibody targeting TNF-α, a central inflammatory media-
tor implicated in cartilage degradation, synovial inflammation, and nociceptor sensitization
in hand OA, as previously discussed in the pathogenesis section [34–36]. Despite strong
biologic plausibility, most clinical trials of TNF-α inhibitors have focused on erosive and au-
toimmune hand OA subtypes, with only one RCT specifically evaluating TNF-α blockade
in primary hand OA [188].

In this double-blind trial, 85 patients with symptomatic hand OA were random-
ized to receive either adalimumab 40 mg subcutaneously (administered twice, 15 days
apart) or placebo, with follow-up over 26 weeks. The primary outcome—achievement of
≥50% reduction in hand pain on the visual analog scale (VAS) at week 6—did not differ
significantly between groups. Secondary endpoints, including changes in joint counts, func-
tion, stiffness, and global assessments, also showed no treatment effect, with the exception
of a modest but statistically significant reduction in swollen joint count in the adalimumab
group at week 26. Biomarker analyses revealed no significant changes in serum cytokines or
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cartilage turnover markers (TNF-α, IL-6, CTX-II, COMP). Subgroup analysis of participants
with ≥3 swollen joints at baseline also failed to demonstrate a differential response.

Several factors may account for the lack of efficacy: (1) the limited dosing regimen (only
two injections), which may have been insufficient to achieve sustained TNF-α suppression;
and (2) the possibility that TNF-α, while mechanistically implicated in OA pathogenesis,
may not be the dominant driver of pain in established hand OA. Similarly to findings from
the tocilizumab trial, these results raise important questions about the extent to which
suppressing molecular inflammation translates into meaningful pain relief in symptomatic
hand OA.

8.7. Colchicine

Colchicine, a microtubule polymerization inhibitor with anti-inflammatory properties,
has been hypothesized to reduce symptoms in OA by attenuating inflammasome activation
and lowering cytokine levels such as IL-1β and IL-6 [189]. While it is effective in treating
crystal-induced arthritis and has shown potential in select knee OA studies, its utility in
hand OA remains unclear [190–192].

Two RCTs have now evaluated colchicine in patients with symptomatic primary hand
OA. The first trial, COLAH, enrolled 64 participants with symptomatic and painful hand
OA, including both thumb CMC and IP OA [193]. From the cohort, 40% of patients were
deemed via X-ray to have non-erosive primary OA. Patients received either 0.5 mg of
colchicine twice daily or placebo for 12 weeks. Pain measures did not differ significantly
between groups at week 12. No secondary outcomes, including grip strength, joint ten-
derness or swelling, C-reactive protein, or Michigan Hand Questionnaire scores, showed
meaningful differences.

A second trial, COLOR, similarly failed to demonstrate efficacy [194]. A total of
100 participants with symptomatic hand OA and finger pain ≥40 mm were randomized
to receive colchicine at a dose of 0.5 mg twice daily or placebo for 12 weeks. The primary
outcome—change in target hand finger pain on a 100 mm VAS—was identical between
groups. No significant between-group differences were observed in global assessments,
AUSCAN pain and function scores, grip strength, or tender joint counts.

The negative findings in both trials do not support colchicine as an effective symp-
tomatic therapy for hand OA. Despite biologic plausibility and prior encouraging data
from knee OA studies, colchicine appears to be ineffective in hand OA.

8.8. Corticosteroids

Corticosteroids are anti-inflammatory drugs commonly used in the management of
symptomatic OA [195–197]. Their appeal in hand OA stems from their ability to suppress
key inflammatory mediators implicated in OA pathogenesis—such as IL-1β, IL-6, and TNF-
α—which contribute to pain sensitization, synovitis, and cartilage degradation [198–201].

Oral corticosteroids have been evaluated in two RCTs with contrasting results. The
HOPE study assessed oral prednisolone (10 mg/day for 6 weeks followed by a 2-week taper)
in 92 patients with symptomatic hand OA and clinical signs of synovitis [202]. Compared
to placebo, the prednisolone group experienced significantly greater reductions in finger
joint pain, as well as improvements in hand function and ultrasound-detected synovial
inflammation. In contrast, another trial evaluating low-dose prednisolone (5 mg/day for 4
weeks) in 70 patients with hand OA found no significant difference from placebo in pain
scores, hand function, or joint counts, highlighting a potential dose–response relationship
or need for greater baseline inflammation to observe benefit [203].

Intra-articular corticosteroids have also produced variable outcomes depending on the
target joint. One trial evaluated intra-articular triamcinolone hexacetonide (5 mg) versus
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saline in 40 patients with thumb CMC OA [204]. At 24 weeks, there was no significant
difference between groups in pain reduction, stiffness, or global assessments. The lack of
benefit in this study may reflect limited intra-articular space in the CMC joint or resistance
of more advanced disease to anti-inflammatory effects. Conversely, another trial examined
intra-articular triamcinolone hexacetonide (20 mg/mL) with 2% lidocaine versus lidocaine
alone in 60 patients with IP OA and found significantly greater improvements in pain on
movement and joint swelling through week 12 in the corticosteroid group [23]. However,
no differences were observed in grip strength, pinch strength, or pain at rest, suggesting
that functional gains remain limited even when symptomatic improvement occurs.

Topical corticosteroids have also been tested. One RCT evaluated topical betametha-
sone dipropionate (0.5 mg/g ointment) applied three times daily for six weeks in
106 patients with symptomatic hand OA [205]. No significant differences were observed
between corticosteroid and placebo groups in pain reduction, function, or stiffness, though
the treatment was safe and well tolerated. The lack of efficacy may be attributable to
inadequate transdermal penetration and limited joint-specific drug delivery.

Together, these studies reveal a nuanced and context-dependent picture of corticos-
teroid efficacy in hand OA. Oral corticosteroids may offer short-term relief in patients with
clinically evident synovitis, but lower doses and non-targeted patient populations yield
mixed results. Intra-articular injections appear more effective for IP joints than for the
thumb CMC joint, while topical applications have not shown meaningful benefit. These
findings highlight the importance of tailoring corticosteroid treatment to joint type, disease
activity, and delivery route in hand OA management.

8.9. Platelet-Rich Plasma (PRP)

Platelet-rich plasma (PRP) is an autologous blood-derived preparation enriched with
platelets, growth factors, and bioactive molecules known to support tissue healing, modu-
lation of inflammation, and regeneration [206,207]. PRP has garnered substantial interest
in the management of OA, including hand OA, due to its potential for regenerative effects
and its capacity to modulate key inflammatory pathways involved in OA pathogenesis via
the receptor antagonist for interleukin-1 (IL-1ra) and other soluble receptors targeting TNF
(sTNF-R), IL-4, and IL-10 receptors [208]. Despite this biological rationale, clinical evidence
specifically evaluating PRP in hand OA remains sparse. To date, only two RCTs have
evaluated PRP efficacy, all exclusively in thumb CMC OA, leaving significant uncertainty
regarding its efficacy in IP OA.

In a blinded trial, intra-articular injections of autologous fat, PRP, the combination of
autologous fat and PRP, or placebo (0.9% saline) were evaluated in 95 patients with thumb
CMC OA [209]. At a mean follow-up of two years, only the combination of fat and PRP
resulted in significant and sustained pain reduction compared with placebo. Additionally,
this combination demonstrated clinically relevant improvements in hand function and
overall quality of life. In contrast, injections of PRP alone showed inferior pain reduction
compared to placebo, highlighting the importance of combining autologous substances to
achieve clinically relevant long-term benefits.

Another trial examined the use of autologous conditioned plasma combined with
stromal vascular fraction (SVF) and adipose-derived stem cells in 30 hands with thumb
CMC OA [210]. Patients received intra-articular injections of this composite biologic, with
outcomes assessed at 6 and 24 months. The treatment resulted in statistically significant
reductions in pain and improved functional outcomes, especially in stages 2 and 3 of the
disease. The composite biologic technique showed promise in potentially delaying the
need for resection arthroplasty.
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The only other RCT evaluating PRP in hand OA compared intra-articular PRP with
corticosteroids (methylprednisolone with lidocaine) in 33 patients with symptomatic thumb
CMC OA [211]. This trial demonstrated superior pain relief and improved functionality
with PRP compared to corticosteroids at the 12-month follow-up, suggesting PRP may offer
sustained clinical advantages.

Although these studies indicate strong clinical evidence for PRP in managing thumb
CMC OA, the absence of RCTs addressing IP joint OA significantly limits the generalizabil-
ity of these findings across the diverse spectrum of hand OA presentations.

8.10. Hypertonic Dextrose Therapy (Prolotherapy)

Hypertonic dextrose therapy (prolotherapy) is an injection-based therapy involving the
administration of hypertonic dextrose solution into or around joints and soft tissues, with
the goal of stimulating a localized inflammatory response that induces tissue repair through
the upregulation of growth factors such as transforming growth factor-beta (TGF-β), insulin-
like growth factor-1 (IGF-1), and platelet-derived growth factor (PDGF) [212–214]. These
growth factors are hypothesized to enhance cartilage regeneration and provide structural
joint support, directly addressing key pathological mechanisms previously discussed in
hand OA, such as chronic inflammation and impaired cartilage repair [215].

An RCT compared prolotherapy with paraffin wax therapy in 42 patients with bilateral
hand OA, including symptomatic CMC, DIP, and PIP joints. Both treatments significantly
reduced pain and improved grip strength at 3 months; however, prolotherapy resulted
in significantly greater improvements in overall hand function [216]. While these results
suggest potential clinical benefits of prolotherapy, the absence of subgroup analyses by
specific joint type limits the ability to discern differential efficacy across distinct joints
involved in hand OA.

Despite encouraging initial results from this study, significant limitations remain,
including small sample size, limited follow-up duration, and lack of subgroup character-
ization of joint involvement. Future studies should emphasize standardized treatment
protocols, precise joint characterization, and robust long-term outcomes to fully determine
the clinical utility and therapeutic potential of prolotherapy in managing hand OA.

8.11. Estrogen Replacement Therapy

Estradiol (E2) at physiologic levels has been shown to downregulate pro-inflammatory
cytokines such as IL-6 and TNF-α while promoting anti-inflammatory mediators like
IL-10 and TGF-β [217]. The postmenopausal decline in E2 levels is associated with a
shift toward a more pro-inflammatory immune environment and enhanced nociceptive
sensitization, raising the possibility that estrogen therapy may offer therapeutic benefit in
postmenopausal hand OA [217,218].

The HOPE-e trial was a feasibility RCT designed to assess the acceptability and safety
of conjugated estrogens plus bazedoxifene (a selective estrogen receptor modulator) in
postmenopausal women with symptomatic hand OA [219]. A total of 73 participants were
randomized to receive either hormone therapy or placebo for 24 weeks. While both groups
experienced reductions in hand pain over the treatment period, there was no statistically
significant difference between groups in either daily or recalled pain measures. No effects
were observed on grip strength or hand function.

Interestingly, following tapering and discontinuation of the drug, nearly half (46%)
of participants in the hormone therapy group reported worsening hand pain, compared
to only 17% in the placebo group—suggesting a possible withdrawal effect or delayed
symptom recurrence. Additionally, quality of life and menopause-related symptoms
improved in the treatment group, consistent with established hormone therapy benefits.
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Although not designed to determine treatment efficacy, the HOPE-e trial provides
preliminary support for the feasibility of larger trials. Future studies with longer treat-
ment durations, adequately powered sample sizes, and enrichment for hormone-sensitive
OA phenotypes (e.g., abrupt estrogen withdrawal) are warranted to determine whether
estrogen-based therapy can modify symptoms or disease trajectory in postmenopausal
hand OA.

8.12. Hydroxychloroquine (HCQ)

Hydroxychloroquine (HCQ), a disease-modifying antirheumatic drug commonly used
in inflammatory arthritides such as rheumatoid arthritis, has been investigated in hand
OA due to its immunomodulatory properties, including inhibition of Toll-like receptor
signaling and downregulation of IL-1β, IL-6, and TNFα production [220,221]. However,
results from two randomized controlled trials do not support its use for symptomatic relief
in primary hand OA.

A 24-week study was conducted with 196 patients with primary hand OA who
were randomized to receive either HCQ 400 mg daily or placebo [222]. The primary
outcome—change in hand pain—showed no significant difference between groups. Sec-
ondary outcomes, including stiffness, function, and quality of life across physical, emo-
tional, and social domains, were also unchanged. No significant subgroup effects were
seen, including among patients with higher baseline pain levels or radiographic severity.

A second larger trial further reinforced these findings. The HERO RCT was a 12-month
study involving 248 patients with symptomatic hand OA who received either HCQ
(200–400 mg/day) or placebo [223]. The primary endpoint—hand pain—showed no sig-
nificant difference. Secondary endpoints, including AUSCAN pain and function, grip
strength, radiographic progression, and ultrasound synovitis scores, also revealed no
treatment effect.

Together, these two high-quality studies demonstrate that HCQ does not offer
symptom-modifying benefit for hand OA and should not be routinely prescribed for
this indication.

8.13. Hyaluronic Acid (HA)

Hyaluronic acid (HA), also known as hyaluronan, is a naturally occurring glycosamino-
glycan abundantly present in synovial fluid, where it plays crucial roles in joint lubrication,
shock absorption, and maintaining cartilage integrity [224,225]. In OA, the concentration
and molecular weight of HA in synovial fluid are often reduced, leading to decreased
viscosity and elasticity, which impairs joint function and contributes to cartilage degrada-
tion [226,227]. Therapeutically, intra-articular injections of HA aim to restore the viscoelastic
properties of synovial fluid, thereby improving joint lubrication and cushioning [228]. Ad-
ditionally, HA has been shown to exhibit anti-inflammatory and chondroprotective effects
by inhibiting pro-inflammatory cytokines such as IL-1β and TNFα [229,230].

A double-blind, multicenter trial evaluated Hylan G-F 20 compared to triamcinolone
acetonide and bupivacaine injections in 200 patients with thumb CMC OA [231]. At
26 weeks, all treatment arms showed significant pain improvement, but no significant
differences were observed between groups, indicating that Hylan G-F 20 was not superior
to corticosteroids or local anesthetic injections.

Another study compared intra-articular HA to extracorporeal shock wave therapy
(ESWT) in 58 patients with thumb CMC OA [232]. Both groups demonstrated significant
improvements in pain and hand function at 6 months; however, patients receiving ESWT
experienced greater pain relief and improved pinch strength than those treated with
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HA injections. These findings suggest that while HA injections offer meaningful clinical
improvement, their effect may be less pronounced than other non-invasive modalities.

8.14. Efficacy of Corticosteroids vs. Other Intra-Articular Therapies

Interest has grown in exploring alternatives to corticosteroids such as HA, PRP, and
prolotherapy that may offer regenerative potential or more durable pain relief with fewer
safety concerns than those associated with repeated corticosteroid use. Multiple random-
ized trials have compared these alternatives head to head with corticosteroids, particularly
in thumb CMC OA.

In a three-arm study involving 45 patients, intra-articular PRP, HA, and corticosteroids
were evaluated for efficacy [233]. All groups experienced improvement in pain and func-
tion at 4 weeks, but by 12 weeks, only the HA group maintained its benefits, while the
corticosteroid and PRP groups showed clinical deterioration. These findings suggested that
although corticosteroids provide rapid relief, HA may sustain improvements for longer.

Another trial evaluated HA versus betamethasone in 88 patients with KL grade II–III
thumb CMC OA [234]. While overall group comparisons showed no significant differences
in outcomes, subgroup analyses revealed that HA provided greater functional gains in
patients with more severe baseline pain and disability at 3- and 6-month follow-ups.

A third study involving 33 patients with Eaton–Littler grade I–III thumb CMC OA
demonstrated that both PRP and corticosteroids improved symptoms at 3 months [211].
However, at 12 months, patients treated with PRP had significantly better outcomes in pain
reduction, hand function, and satisfaction, underscoring PRP’s potential as a longer-lasting
therapeutic option.

Prolotherapy has also emerged as a potential corticosteroid alternative. In a study of
60 patients with symptomatic thumb CMC OA, corticosteroid injections produced superior
pain relief at 1 month, but by 6 months, the prolotherapy group demonstrated significantly
greater pain reduction and functional improvement [235].

These trial-level insights are further contextualized by a recent network meta-analysis
study comparing the efficacy of intra-articular corticosteroids, HA, PRP, and placebo
in thumb CMC OA [236]. While no injection was superior to placebo in short-term
analyses, PRP outperformed corticosteroids and placebo at medium-term follow-up in
sensitivity analyses.

Taken together, these findings suggest that while corticosteroids remain effective for
rapid symptom relief in thumb base OA, their benefit is often transient and less durable
than emerging biologic and regenerative therapies. Intra-articular HA and PRP, though
variable in efficacy, show promise for longer-term symptom control, particularly in selected
patient subgroups. Prolotherapy may also represent a viable alternative with delayed but
sustained benefits. However, the lack of consistent superiority, small sample sizes, and
predominant focus on thumb CMC OA (with limited comparative data in IP joints) limit
generalizability. Head-to-head trials with standardized endpoints and longer follow-up
are needed to clarify whether these alternatives can truly surpass corticosteroids as the
cornerstone of intra-articular therapy in hand OA.

8.15. Why Have Pharmacological Targeted Therapies Largely Failed to Deliver?

Despite considerable progress in understanding the molecular pathogenesis of hand
OA—including the roles of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6—no
targeted therapy has yet demonstrated robust and sustained clinical benefit across broad
patient populations. Several factors likely contribute to this translational gap. First, hand
OA is a clinically and biologically heterogeneous disease, with significant variation in joint
involvement, inflammatory burden, and patient-reported symptoms. This heterogeneity
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complicates trial design and dilutes therapeutic signal in unstratified populations. Second,
while cytokines are mechanistically implicated in joint tissue remodeling and inflammation,
their role as primary drivers of pain may be limited or context-dependent. Pain in hand
OA is multifactorial, involving structural pathology, synovitis, subchondral bone changes,
and neurogenic sensitization—all of which may not be modulated effectively by single-
pathway interventions. Third, systemic delivery of cytokine-targeting biologics may not
achieve adequate drug concentrations in small hand joints, particularly in the absence of
florid synovitis.

It is important to note that some interventions—such as corticosteroids in IP OA,
PRP in thumb OA, and methotrexate in patients with MRI-confirmed synovitis—have
shown modest efficacy. However, these findings have not been sufficiently reproducible
or generalizable to establish new standards of care. Furthermore, promising agents often
demonstrate only short-lived benefit or are limited by logistical, safety, or regulatory
barriers. Finally, therapeutic development in hand OA has been constrained by limited
funding and underrepresentation in broader OA pipelines. Together, these challenges
demonstrate the need for better disease phenotyping, multimodal interventions that target
more than one mechanistic pathway in treating pain and locally delivered interventions
that can be sure to achieve the necessary therapeutic concentrations in hand joints.

9. Conclusions
In summary, this review has examined recent advances in the molecular and genetic

underpinnings of hand OA. Table 1 summarizes the key molecular mechanisms currently
implicated in the pathogenesis of hand OA. While an interplay between genetic predis-
position and inflammatory pathways is evident across multiple OA joints, hand OA is
increasingly recognized as biologically distinct from large-joint OA, such as that of the hip
and knee. In addition to classic inflammatory cytokines, key signaling cascades, such as
TGFa and WNT, are also influenced by genetic predisposition. GWASs have identified
hand-specific loci implicating inflammatory cytokines, chondrogenic pathways, and hor-
monal regulators, while emerging data on epigenetic modifications and gut microbiome
interactions point to a broader systemic network of disease contributors. Whether this
novel “gut–joint axis” operates differently in weight-bearing versus non-weight-bearing
joints remains an open question.

In parallel, this review has also evaluated pharmacologic therapies tested in RCTs that
have sought to target these molecular mechanisms. However, as reviewed in detail, many
biologically plausible interventions—such as TNF and IL-6 inhibitors, hydroxychloroquine,
colchicine, and corticosteroids—have shown limited or inconsistent efficacy in patient
populations. These trial-level outcomes—mapped against their mechanistic targets—are
summarized in Table 2. Emerging therapies such as MTX in synovitis-positive OA, PRP
in thumb CMC OA, and prolotherapy in IP OA have shown early promise but require
further validation in adequately powered, phenotypically enriched trials. Additionally,
agents such as estrogen therapy and cetylated fatty acid creams highlight the importance
of identifying patient subgroups (e.g., postmenopausal women) who may uniquely benefit
from targeted interventions. The disconnect between molecular pathogenesis and treatment
efficacy in hand OA punctuate the need for a new paradigm in hand OA therapeutic
development—one that prioritizes longitudinal, biomarker-driven studies along with
combination therapies that better address the multifactorial nature of pain and structural
progression in hand OA. Only through this integrative approach can we hope to translate
our understanding of hand OA pathogenesis into effective clinical therapies.
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Table 1. Summary of molecular mechanisms implicated in hand OA. This table summarizes key molecular pathways, mechanisms, and associated gene variants
implicated in the pathogenesis of hand osteoarthritis (OA). References reflect genetic, preclinical, and translational human studies. Joint involvement is noted as
thumb carpometacarpal (CMC), interphalangeal (IP), distal interphalangeal (DIP), proximal interphalangeal (PIP), or generalized hand OA when specific joints are
not explicitly defined.

Mechanism Category Molecular Factor Role in Hand OA Joint Involvement Key References

Cytokines TNFα Pro-inflammatory; linked with cartilage breakdown and synovial inflammation Hand OA [37,45]
IL-1β Induces cartilage degradation; enhances inflammation via MMPs and ADAMTS DIP OA, Hand OA [47,50]
IL-4 Inhibits IL-1β-induced protein expression of MMP-13; prevents ECM breakdown Hand OA [58]
IL-6 Synovial inflammation; cartilage damage Hand OA [61,62]
IL-7 Activates inflammatory T-cell responses; biomarker potential Thumb CMC OA [109]

Other Signalling Pathways WNT9A Regulates chondrogenesis; influences thumb CMC OA severity Thumb CMC OA [115]
TGFα Responds to mechanical stress; dual roles in cartilage catabolism/anabolism Hand OA [31]

YAP/TAZ-TEAD Mediates cartilage homeostasis; cellular response to mechanical cues Hand OA [31]
ALDH1A2 Retinoic acid metabolism; impacts cartilage repair and homeostasis Hand OA [118,122]

Epigenetic Factors DNA methylation of PARP3 DNA methylation affects DNA repair; modulates NF-κB signaling; influences
inflammation and cartilage homeostasis Hand OA [41]

DNA methylation of EPS15 Affects EGFR endocytosis and bone mineralization pathways; influences
inflammation, immune response, and cartilage metabolism Hand OA [41]

DNA methylation of COL2A1 Alters collagen type II synthesis, cartilage structural integrity; methylation
associated with radiographic severity Hand OA [73]

DNA methylation of BMP7 Impairs cartilage repair; elevated methylation linked to OA severity; potential
systemic biomarker for hand OA diagnosis and monitoring Hand OA [135]

Adiponectin Lower levels linked with radiographic hand OA progression; potential protective
role in OA through anti-inflammatory effects Hand OA [65]

Resistin SNPs associated with OA risk and severity; interacts with TNFα and IL-6 to
exacerbate inflammation and OA progression Hand OA [66]

Chemerin SNPs associated with OA risk and pain severity; promotes inflammation via TLR4
and MAPK/ERK pathways Hand OA [66]

Gut-Joint Axis Bilophila
Elevated in symptomatic hand OA; induces pro-inflammatory cytokines IFN-γ,

IL-6, TNF-α, and systemic inflammatory markers; linked to inflammation in other
inflammatory diseases

Hand OA [146]

Desulfovibrio Elevated in symptomatic hand OA; stimulates inflammatory genes, activates
NF-κB pathway, and produces IL-6 and IL-8; contributes to inflammation Hand OA [146]

Roseburia Reduced abundance in hand OA; typically anti-inflammatory; inhibits IL-17
secretion; promotes Treg cells and IL-10 production Hand OA [146]

Extracellular Matrix Proteins MATN3 Chondrocyte metabolism; regulates the synthesis of ECM proteins Thumb CMC OA [123–125]
MGP Vitamin K-dependent; prevents cartilage calcification Hand OA [80,82,83]

Glucocorticoid Receptor NR3C1 Modulates inflammation; regulates glucocorticoid response; influences cartilage
and synovial homeostasis Hand OA [31]
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Table 2. Summary of randomized controlled trials (RCTs) evaluating pharmacologic therapies in hand OA. This table summarizes randomized controlled trials
investigating pharmacologic treatments for hand osteoarthritis (OA), including therapeutic mechanisms, joint-specific involvement, key clinical outcomes, and
supporting references. Joint classification includes thumb carpometacarpal (CMC), interphalangeal (IP), distal interphalangeal (DIP), proximal interphalangeal (PIP),
or generalized hand OA, as specified in each study.

Therapy Mechanistic Target/Action Joints Studied Key Outcomes References

Methotrexate Reduction of inflammatory cytokines (TNFα, IL-1β, IL-6) Thumb CMC, IP OA Reduced pain at 6 months; no significant
functional improvement [171]

Botulinum Toxin A Inhibition of neurogenic inflammation via neuropeptides;
reduction of inflammatory cytokines (TNFα, IL-1β) Thumb CMC OA Short-term pain relief (3 months); transient

motor weakness [177]

Topical Cetylated Fatty Acids (CFAs) Reduction of inflammatory cytokines (TNFα, IL-6) Thumb CMC, IP OA Modest pain relief; improved patient
symptom perception [178]

Tocilizumab (IL-6 blockade) IL-6 receptor blockade; inflammation modulation DIP, PIP OA No significant clinical benefit compared to placebo [182]

Adalimumab (TNF-α blockade) TNF-α inhibition; inflammation modulation Hand OA No significant clinical benefit compared to placebo [188]

Colchicine Inflammasome inhibition; reduction of inflammatory
cytokines (IL-1β, IL-6) Thumb CMC, IP OA No significant improvement over placebo [193,194]

Oral Corticosteroids Anti-inflammatory effects (IL-1β, IL-6, TNF-α inhibition) Thumb CMC, IP OA Short-term pain relief; mixed evidence on hand function [202,203]

Intra-articular Corticosteroids Anti-inflammatory effects (IL-1β, IL-6, TNF-α inhibition) Thumb CMC, IP OA Effective in pain relief for IP OA; limited effectiveness in
thumb CMC OA [23,204]

Topical Corticosteroids Anti-inflammatory effects (IL-1β, IL-6, TNF-α inhibition) Hand OA No significant pain reduction compared to placebo [205]

Platelet-rich Plasma (PRP)
Regenerative; reduction of inflammatory cytokines

(IL-1β, TNFα); promotion of anti-inflammatory cytokines
(IL-4, IL-10)

Thumb CMC OA Improved pain and function, sustained in most trials [209–211]

Hypertonic Dextrose (Prolotherapy) Tissue regeneration via induced growth factors (TGF-β,
IGF-1, PDGF) Thumb CMC, IP, DIP, PIP OA Improved function and pain vs. placebo [216]

Estrogen Replacement Therapy Anti-inflammatory effects (IL-6, TNF-α inhibition);
promotion of anti-inflammatory cytokines (TGF-β, IL-10) Hand OA No significant improvement in hand pain vs. placebo [219]

Hydroxychloroquine (HCQ) Anti-inflammatory effects (TLR, IL-1β, IL-6,
TNF-α inhibition) Hand OA No clinical benefit compared to placebo [222,223]

Hyaluronic Acid (HA) Joint lubrication; anti-inflammatory effects (IL-1β,
TNF-α inhibition) Thumb CMC OA Comparable effectiveness to corticosteroids; moderate

effects in hand pain and function [231,232]
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