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Abstract: Lung adenocarcinoma (LUAD) is a leading cause of cancer-related mortality,
with heme metabolism playing a critical role in tumor progression and treatment resistance.
This study investigates the clinical implications of heme metabolism in LUAD, focusing
on its link to ferroptosis and drug sensitivity. Using multi-omics data from TCGA-LUAD,
GEO databases, and a single-cell RNA-seq cohort, we identified two molecular subtypes
based on heme metabolism-related genes. We further developed a prognostic panel, termed
the heme metabolism risk score (HMRS), using LASSO and multivariate Cox regression
analyses. The HMRS panel effectively stratified patients into high- and low-risk groups,
with high-risk patients showing enhanced tumor proliferation, suppressed ferroptosis,
and resistance to chemotherapy. Single-cell analysis revealed elevated heme metabolism
risk in epithelial cells correlated with tumor progression. Drug sensitivity predictions
were validated in platinum-based chemotherapy cohorts, confirming HMRS as a robust
prognostic tool. ABCC2 was identified as a key regulator of ferroptosis and cisplatin
resistance, with in vitro experiments demonstrating that ABCC2 knockdown enhanced
cisplatin-induced ferroptosis. These findings highlight HMRS as a critical tool for patient
stratification and ABCC2 as a promising therapeutic target to overcome cisplatin resistance.

Keywords: heme metabolism; ferroptosis; chemotherapy resistance; lung adenocarcinoma;
precision medicine; prognosis

1. Introduction

Lung adenocarcinoma (LUAD) represents one of the most prevalent and lethal malig-
nancies worldwide, posing a significant public health challenge [1,2]. Emerging evidence
highlights the critical role of tumor cell metabolism in disease progression and treatment
response [3]. Among these metabolic pathways, heme metabolism has been shown to
significantly influence tumor initiation, proliferation, metastasis, and energy metabolism,
as well as modulate therapeutic sensitivity [4-7]. While heme metabolism has begun to
attract interest in non-small-cell lung cancer (NSCLC), most studies have focused on indi-
vidual molecules rather than the coordinated regulation of the entire pathway. Additionally,
although epidemiological data suggest a link between dietary heme intake and lung cancer
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risk [8,9], large-scale population studies for patient stratification are still lacking. These
gaps have hindered the clinical translation of heme metabolism research in prognosis and
treatment decision-making.

Ferroptosis, an iron-dependent cell death process driven by lipid peroxidation, en-
ables tumor cells to develop chemoresistance and survive under stress conditions [10-14].
Emerging evidence highlights a crucial mechanistic link between heme metabolism and
ferroptosis regulation. This occurs through two primary mechanisms: (1) heme synthesis
and degradation regulate the labile iron pool, with heme oxygenase-1 (HO-1)-mediated
degradation releasing free iron that potentiates ferroptosis [15], while synthesis incorpo-
rates iron into protoporphyrin IX [16]; and (2) heme maintains mitochondrial electron
transport chain integrity by promoting the expression [17,18] and proper assembly of pro-
tein complexes [19]. Insufficient heme levels impair these processes, resulting in electron
leakage, elevated ROS, and subsequent lipid peroxidation. These mechanistic insights
underscore the therapeutic potential of targeting heme metabolism in NSCLC. Investigating
heme metabolism across NSCLC subtypes not only uncovers population-specific molecular
differences but also provides novel therapeutic targets, paving the way for personalized
treatment strategies tailored to distinct patient subgroups.

In this study, we systematically investigated heme metabolism-related genes (HMGs)
in LUAD, establishing a heme metabolism risk score (HMRS) as a novel panel for prognosis
and chemotherapy prediction. Using HMGs identified from the molecular signatures
database (MsigDB), we identified prognostic markers through Cox regression and then
developed HMRS using LASSO regression to stratify patients. Random survival forest (RSF)
and deep neural network (DNN) analyses revealed five core HMGs, with high-risk groups
showing enrichment in ferroptosis suppression and platinum-resistance pathways. Multi-
omics analyses demonstrated the following: (1) progressive HMRS elevation in epithelial
cells during disease progression (scRNA-seq); (2) ABCC2’s involvement in ferroptosis
regulation (WGCNA); and (3) increased platinum resistance in high-risk patients (GDSC2).
Functional validation in cisplatin-resistant A549 cells confirmed that ABCC2 knockdown
enhances cisplatin-induced ferroptosis. Collectively, our findings establish HMRS as
a clinically relevant biomarker and reveal ABCC2’s novel role in modulating cisplatin
sensitivity through ferroptosis regulation. The workflow is shown in Figure 1.
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Figure 1. Workflow. Created in BioRender. Zhao, L. (2025) https:/ /app.biorender.com/illustrations/
6788bf4fc833ad2a7efad636 (accessed on 6 May 2025).
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2. Results
2.1. Heme Metabolism-Based Clusters Predict Prognosis in LUAD

Through a comprehensive screening of the molecular signatures database (MSigDB),
we identified 282 heme metabolism-related genes (HMGs) (Table A1). In the TCGA-LUAD
cohort, univariate Cox regression analysis of these 282 genes revealed 49 prognostic genes
strongly associated with overall survival (OS) (Table A2). We present a forest plot of 10 of
these genes. (Figure 2A). Further analysis of these genes demonstrated distinct mutation
rates, with ABCC2 showing the highest mutation frequency, followed by SLCO1B3 and
KAT2B (Figure 2B). Additionally, significant differences in DNA copy number variation
(CNV) were observed among these genes, particularly with ABCC2 and KAT2B exhibiting
higher CNV depletion (Figure 2C). The differential expression analysis of HMGs between
normal and tumor tissues further revealed that the majority of these genes were significantly
dysregulated in LUAD tumor tissues, highlighting their potential roles in tumor progression
(Figure 2D).
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Figure 2. Heme metabolism-based clusters predict prognosis in LUAD. (A) Forest plot of HMGs:
49 prognostic genes were identified as significantly associated with overall survival by univariate

Cox regression analysis; only 10 genes are shown in the figure. The vertical dashed line at HR = 1.0
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indicates the reference line for no effect; values to the right suggest increased risk, while values to
the left indicate protective effects. The position of each colored square represents the mean hazard
ratio (HR) for the corresponding gene, while the horizontal lines denote the 95% confidence intervals;
(B) Distribution of HMGs and mutation frequency in the TCGA-LUAD cohort; (C) CNV alteration
frequency of HMGs in LUAD; (D) Differential expression of 49 HMG in LUAD tumors and normal
tissues. * p < 0.05, ** p < 0.01, *** p < 0.001, ** p < 0.0001; (E) Consensus heatmap matrix of the
TCGA-LUAD cohort; (F) T-SNE analysis showed significant differences between the two subtypes;
(G) Kaplan—-Meier survival analysis distinguished the prognosis of TCGA-LUAD patients based
on cluster classification. The dashed lines indicate the median survival time, defined as the point
where the survival probability is 50%. All dashed lines in the Kaplan—-Meier plots throughout this
study represent the same definition; (H) Time-dependent ROC curve analysis of TCGA-LUAD cohort.
The gray dashed diagonal line represents the reference line for random classification (AUC = 0.5).
All dashed diagonal lines in the time-dependent ROC curves throughout this study carry the same
meaning; (I) Consensus heatmap matrix of the GSE31210 cohort; (J) Kaplan—-Meier survival analysis
distinguished the prognosis of GSE31210 patients based on cluster classification; and (K) Unifactorial
and multifactorial demonstration of clinicopathologic factors and heme metabolism-based clusters.

Using the 49 HMGs, we performed unsupervised consensus clustering of TCGA-
LUAD tumor patients to identify heme metabolism-associated subtypes. Based on the
CDF and delta area plots, both k = 2 and k = 3 were considered appropriate (Figure Ala,b).
While k = 3 demonstrated acceptable clustering stability and showed potential for subtype
stratification (Figure A2), k = 2 provided clearer separation and was ultimately selected
as the optimal choice, dividing the cohort into two clusters: C1 (n = 253) and C2 (n = 152)
(Figure 2E). The rationale for k = 3 selection is discussed in detail in the Discussion Section.
T-distributed stochastic neighbor embedding (t-SNE) confirmed clear separation between
the two clusters (Figure 2F). Kaplan-Meier survival analysis revealed that patients in
the C2 cluster exhibited significantly worse overall survival compared to those in the C1
cluster (p < 0.0001, Figure 2G). This finding was further validated in the GSE31210 dataset
(Figure 21I,J). Time-dependent receiver operating characteristic (ROC) curve analysis further
supported the predictive capability of the consensus clustering, with areas under the curve
(AUCs) of 0.62, 0.62, and 0.68 at 1, 3, and 5 years, respectively, in the TCGA-LUAD training
set (Figure 2H). Finally, univariate and multivariate Cox regression analyses confirmed that
cluster grouping served as an independent prognostic factor for LUAD (Figure 2K).

2.2. HMRS Panel Demonstrates Robust Prognostic Utility in LUAD Risk Stratification

To develop a prognostic signature panel associated with heme metabolism, we utilized
the aforementioned 49 HMGs and refined a panel through LASSO regression combined
with multivariate Cox proportional hazards analysis (Figure 3A). Through 100 iterations of
10-fold cross-validation, the optimal lambda value was identified as 3.73. (Figure 3B). We
found that four genes (ABCC2, AQP3, JCHAIN, and SLC2A1) were consistently selected
(selection frequency = 1.00). All genes with a selection frequency greater than zero and their
corresponding regression coefficients are displayed in Figure 3C, where higher absolute
values indicate a greater contribution of the gene to the model. Additionally, using a scoring
metric (score = frequency x contribution), we identified 16 genes (ABCC2, SLCO1BS3,
SLCO2B1, JCHAIN, AQP3, DMTN, EIF2AK1, FBXO9, HTATIP2, LRP10, MAP2K3, NFE2,
NNT, SLC2A1, SMOX, and TENT5C) with scores ranking in the top 50% for further analysis
(Figure 3D). Among these, LRP10, SLC2A1, and ABCC2 showed the strongest associations
with patient survival events. Based on these findings, we established the heme metabolism
risk score (HMRS) for each LUAD patient as a panel using the following formula: HMRS
= ABCC2 x 0.0738 + SLCO1B3 x 0.0307 + SLCO2B1 x (—0.0524) + JCHAIN x (—0.0341)
+ AQP3 x (—0.0289) + DMTN x (—0.0999) + EIF2AK1 x 0.0880 + FBXO9 x (—0.0941) +
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HTATIP2 x 0.0345 + LRP10 x 0.1718 + MAP2K3 x 0.0365 + NFE2 x (—0.0848) + NNT x
(—0.0567) + SLC2A1 x 0.0764 + SMOX x 0.0530 + TENT5C x (—0.0631).
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Figure 3. HMRS panel demonstrates robust prognostic utility in LUAD risk stratification. (A) Ten-
fold cross-validation of parameter selection adjusted by LASSO regression from the 100th iteration,
only 16 out of the 49 HMGs that were selected for further analysis are displayed in the coefficient
paths plot for clarity and visual appeal; (B) Screening of coefficients under LASSO analysis, the
optimal lambda value determined as 3.73 from the 100th iteration; (C) Frequency and regression
coefficients of genes with a selection frequency greater than zero; (D) Selection of genes based on
scoring metric where 16 genes with scores ranking in the top 50% were selected for further analysis;
(E) Kaplan-Meier survival analysis distinguished the prognosis of TCGA-LUAD patients based on
the HMRS panel; (F) Time-dependent ROC curve analysis of TCGA-LUAD cohort based on the HMRS
panel; (G) Distribution of HMRS, survival time, and expression patterns between low- and high-risk
groups; (H) Assessment of the consistency between cluster-based classification and HMRS risk group
stratification through confusion matrix and Jaccard similarity index; (I) Nomogram combining age,
grade, sex, T-stage, total stage, and HMRS. ns = not significant, ** p < 0.01, **** p < 0.0001; (J) DCA
decision curve.

Patients were then stratified into high-risk and low-risk groups based on the median
HMRS value as the cutoff threshold. Kaplan-Meier survival analysis revealed that patients
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in the high-risk group had significantly shorter OS time compared to those in the low-risk
group (p < 0.0001, Figure 3E). In the TCGA-LUAD training cohort, the panel achieved AUC
values of 0.70, 0.71, and 0.77 for predicting 1-, 3-, and 5-year survival rates, respectively
(Figure 3F). Consistent predictive performance was observed in two independent validation
cohorts, with AUC values of 0.72, 0.70, and 0.78 in the GSE31210 cohort and 0.63, 0.66, and
0.69 in the GSE68465 cohort (Figure A3a—f). Notably, the panel not only demonstrated ro-
bust predictive stability in time-dependent ROC analysis but also outperformed consensus
clustering methods in risk stratification. These findings highlight the effectiveness of the
HMRS panel in distinguishing prognostic risk among LUAD patients, offering a reliable
quantitative tool for precise prognostic evaluation. The heatmap revealed the differential
expression patterns of the 16 heme metabolism risk genes between the high-risk and low-
risk groups (Figure 3G). Prominently, the z-score values of ABCC2, SLCO1B3, SLC2A1, and
SMOX were significantly higher in the high-risk group compared to the low-risk group,
suggesting their potential pivotal roles in determining poor prognosis.

To assess the consistency between consensus clustering and LASSO-based risk stratifi-
cation, we employed the Jaccard similarity measure. The analysis revealed a high degree of
similarity between the two classification methods, with a Jaccard index of 0.96 between
the high-risk group and Cluster 2 and 0.85 between the low-risk group and Cluster 1
(Figure 3H). These results indicate strong concordance between consensus clustering and
LASSO-based clustering, particularly in the high-risk prognosis group, which exhibited
nearly identical patient distributions. This high consistency suggests that patients in the
high-risk group and Cluster 2 may share similar biological characteristics, potentially lead-
ing to comparable disease progression patterns, treatment responses, and clinical outcomes.

To enhance the clinical utility of the heme metabolism risk score (HMRS) panel, we
constructed a nomogram integrating HMRS panel with other clinical characteristics, pro-
viding a comprehensive and intuitive risk assessment tool for LUAD patients (Figure 3I).
Comparative analysis demonstrated that HMRS panel exhibited superior predictive per-
formance over other clinical factors. Decision curve analysis (DCA) further confirmed
that the nomogram, combining the HMRS panel with clinical features, significantly out-
performed models based solely on clinical characteristics in terms of clinical predictive
utility (Figure 3]). These findings suggest that the HMRS panel may have robust prognostic
predictive potential in assessing LUAD patient risk.

2.3. Metabolic Reprogramming and Ferroptosis Regulation Are Key Differences in
HMRS-Based Groups

To explore the expression characteristics of HMGs across high- and low-risk groups, we
conducted a comparative analysis (Figure 4A). The results revealed significantly elevated
expression levels of genes such as SLC2A1, SLC7A11, SMOX, and ABCC2 in the high-risk
group. Differential gene expression analysis by the limma R package, visualized through a
volcano plot (Figure 4B), further highlighted the distinct transcriptional profiles between the
two groups. The top 20 most significantly differentially expressed genes are prominently
displayed, underscoring the marked transcriptional divergence between the high- and
low-risk cohorts. We observed that the high-risk group exhibited an elevated expression of
genes related to cell cycle regulation and cell division, such as GTSE1, CCNA2, and CDC20,
as well as genes involved in glucose metabolism, such as SLC2A1 and GAPDH. In contrast,
the low-risk group showed a higher expression of genes associated with lung and airway
epithelial cell function, such as SCGB3A2 and SFTPB, suggesting that lung function may be
better preserved, potentially contributing to a lower degree of malignancy. Additionally,
the upregulation of genes involved in redox metabolism, such as ADH1B and GGTLC1, in
the low-risk group indicates that these cells may undergo appropriate redox regulation,
thereby maintaining normal cellular function.
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Figure 4. Metabolic reprogramming and ferroptosis regulation are key differences in HMRS-based

groups. (A) Expression characteristics of 49 HMGs across HMRS-based groups; (B) Volcano plot of

differential gene expression analysis between high- and low-risk groups, with the corresponding

heatmap displaying the expression patterns of these top 20 genes across samples in each risk group.

Dashed horizontal and vertical lines indicate the thresholds for statistical significance (p < 0.05) and
fold change (I10g2FC | > 1), respectively; (C) Heatmap of GSVA; (D) GSEA plot. The gene sets were
derived from the hallmark collection in the MsigDB database. The vertical dashed line at 0 indicates
the point of zero enrichment score in the ranked gene list; (E) Bar plot of GO analysis for differentially
expressed genes. BP, biological process; CC, cellular component; MF, molecular function; (F) Bar
plot of KEGG analysis for differentially expressed genes; (G) GSEA plots of cell death mechanisms
(p < 0.05). The vertical dashed line at 0 indicates the point of zero enrichment score in the ranked

gene list.

To further characterize the biological features of these metabolic risk subtypes, gene

set variation analysis (GSVA) revealed the significant enrichment of pathways related to
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carcinogenesis and metabolism in the high-risk group (Figure 4C). Key metabolic pathways,
including the pentose phosphate pathway, glycolysis, and amino acid metabolism, were
prominently activated, reflecting metabolic reprogramming essential for tumor cell energy
production and biosynthesis. Additionally, pathways driving cell proliferation—such as
MYC targets, the cell cycle, mnTORC1 signaling, and DNA repair mechanisms—were sig-
nificantly upregulated, supporting rapid tumor growth and genomic stability. Pathways
related to protein degradation, the unfolded protein response, and RNA splicing further
highlighted the high-risk group’s adaptability to cellular stress. Gene set enrichment analy-
sis (GSEA) further corroborated these findings, with the top five pathways exhibiting the
highest normalized enrichment scores (NESs) being E2F targets, epithelial-mesenchymal
transition (EMT), G2M checkpoint, glycolysis, and MYC targets (Figure 4D). These results
indicate that the high-risk group is characterized by features associated with increased
proliferative activity, metabolic adaptation, and a potential for tumor progression. From the
Gene Ontology (GO) enrichment analysis, we observed that the downregulated genes in the
high-risk group were significantly enriched in the lipopeptide binding pathway, while iron
ion binding and pathways related to cell growth, such as chromosome segregation, were
upregulated (Figure 4E). Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis confirmed the upregulation of pathways linked to cell proliferation (Figure 4F),
metabolic reprogramming, and tumor progression, indicating heightened cell division and
DNA synthesis activity. Notably, the enrichment of the platinum drug resistance pathway
in the high-risk group may indicate a trend toward increased chemoresistance, suggest-
ing potential clinical relevance. In contrast, the low-risk group demonstrated significant
enrichment of pathways associated with lipid metabolism and cellular function mainte-
nance. Notably, pathways such as arachidonic acid metabolism, linoleic acid metabolism,
and «-linolenic acid metabolism were prominently activated, a potential role for lipid
metabolism in modulating inflammation and supporting cellular homeostasis in this group.
Additionally, the enrichment of the tight junction pathway, which plays a critical role in
maintaining cell barrier function, may reflect a tendency toward more stable physiological
regulation in the low-risk group, potentially contributing to the preservation of normal
tissue integrity and function. To further investigate the differences in cell death mechanisms
between the high- and low-risk groups, we performed GSEA on 18 cell death pathways.
Notably, the high-risk group showed a significant enrichment of ferroptosis suppression
pathways (Figure 4G), suggesting a potential association between ferroptosis resistance
and enhanced tumor cell survival and progression. Consistent with our earlier findings, the
low-risk group likely enhances lipid peroxidation and induces ferroptosis, which may be
linked to reduced tumor viability. Together, these results highlight a possible role of lipid
metabolism in influencing ferroptosis-related processes, which could contribute to the more
favorable prognosis observed in the low-risk group. While other cell death pathways, such
as anoikis, were also enriched in the high-risk group, our analysis focused on ferroptosis
due to its emerging role in tumor progression and therapeutic potential.

2.4. Core Heme Metabolism Genes Validation by a Deep Learning Model

In order to further elucidate the characteristics of heme metabolism associated with
LUAD prognosis, we utilized random survival forest (RSF) analysis to identify core heme
metabolism genes closely linked to patient outcomes (Figure 5A). By calculating the cu-
mulative average importance value of each gene and selecting those with a cumulative
proportion of <0.5, we identified the subset of genes that contribute the most to the model’s
predictive ability (Figures 4B and A4a). Integrating the screening results from the RSF and
LASSO algorithms, we identified SLC2A1, SMOX, ABCC2, SLCO1B3, and FBXO9 as the
core genes of heme metabolism risk (Figure 5C).
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Figure 5. Core heme metabolism genes validation and single-cell level analysis. (A) RSF analysis of
to identify core heme metabolism genes; (B) RSF analysis identified the top 50% of genes contributing
most to the model’s predictive ability; (C) Venn diagram of gene overlap selected by RSF and LASSO
algorithms. The left and right circles represent genes selected by the LASSO and RSF methods,
respectively. The overlapping region indicates genes identified by both methods; (D) Training
and validation performance of the DNN model; (E) The ROC curve demonstrates the predictive
performance of the model, with an AUC value of 0.9, indicating the strong predictive power of the
five gene signature for the distinction of patients into HMRS-based risk groups. The diagonal dashed
line represents the performance of a random classifier (AUC = 0.5), serving as a reference baseline;
(F) Multivariate Cox regression analysis of five core HMGs; (G) T-SNE visualization of cell types
identified by marker genes; (H) Violin plot of heme metabolism risk module score distribution across
cell type; (I) Line plot illustrating changes in heme metabolism risk module score across cell types
during tumor progression; (J) Violin plot of heme metabolism risk module score across tumor stages.
Overall group differences were assessed using the Kruskal-Wallis test, while pairwise comparisons
between individual stages were conducted using the Wilcoxon rank-sum test. ** p < 0.01, *** p < 0.001,
*#** p < 0.0001; (K) Pseudotime trajectory of epithelial cells colored by pseudotime and clinical tumor
stage; (L) Generalized additive model (GAM) fitting of gene expression dynamics along pseudotime.
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To validate the predictive capability of the five heme metabolism genes, we developed
a deep neural network (DNN) classification model incorporating an attention mecha-
nism. The model was trained using the TCGA-LUAD cohort, with the expression levels
of the five heme metabolism genes as the input and the HMRS risk group as the classifi-
cation label (Figure 5D). During validation, the model demonstrated robust performance,
achieving an accuracy of 0.79, a sensitivity of 0.82, a specificity of 0.77, and an AUC of 0.90
(Figures 5E and A4b,c). This result further underscores the critical role of core genes related
to heme metabolism risk in the classification of populations based on heme metabolism
risk and the prognostic assessment of LUAD. Multivariate Cox regression analysis demon-
strated that the predictive model constructed from these genes was significantly associated
with an increased risk of patient mortality, highlighting the clinical relevance and utility of
the model (Figure 5F).

2.5. Single-Cell Level Reveals Elevated Risk of Heme Metabolism in Epithelial Cells Driving
Tumor Progression

We used GSE131907 single-cell RNA sequencing data and annotated it with marker
genes of different cell types to classify cells into seven major clusters, including T/NK cells,
namely, myeloid cells, epithelial cells, B cells, fibroblasts, mast cells, and endothelial cells
(Figures 5G and Ab5a). To quantify the heme metabolism risk in different cell types, we
used the “AddModuleScore” function in the Seurat package to calculate the expression
levels of five core genes of heme metabolism risk in all cell types (Figure 5H). Among
the seven distinct cell types, the risk score of epithelial cells was found to be significantly
higher than that of the other types. Further analysis of all cells grouped according to heme
metabolism score demonstrated that the proportion of cells with a high heme metabolism
score in epithelial cells gradually increased with tumor progression (Figure 5I). Based on
CNV profiles, epithelial cells were further stratified into tumor and normal subgroups
(Figures 5] and A5b—d). A stage-dependent rise in the proportion of tumor epithelial cells
with high heme metabolism scores was evident from normal tissue through to stage IV
(Figures 5] and Abe), suggesting a potential association between heme metabolic activity
and tumor advancement. To capture the dynamic nature of this process, we applied a
generalized additive model (GAM) to examine the relationship between pseudotime and
heme metabolism risk module scores (Figure 5L). Pseudotime was used as a proxy for
tumor progression (Figure 5K). The GAM curve (EDF = 8.47) revealed a complex, non-
linear pattern. Overall, heme metabolism risk module scores increased with pseudotime,
but sharp local declines were also observed. These fluctuations may reflect intratumoral
heterogeneity and differences in epithelial cell states.

2.6. HMRS Panel as a Predictive Biomarker for Chemotherapy Sensitivity

To investigate the differences in sensitivity to conventional chemotherapeutic drugs
between the two risk groups, we analyzed data from the GDSC2 database. In the TCGA-
LUAD cohort, drug sensitivity analysis revealed distinct patterns between the HMRS
groups (Figures 6A and A6a,b). Patients in the high-risk group showed increased sensitivity
to paclitaxel but significantly reduced sensitivity to oxaliplatin compared to the low-risk
group. Additionally, the high-risk group exhibited lower sensitivity to drugs targeting
key signaling pathways (e.g., PI3K and JAK/STAT inhibitors), cell cycle regulation (e.g.,
CDK4/6 inhibitors), DNA damage repair (e.g., PARP inhibitors), and the restoration of
mutant p53 function (e.g., Nutlin-3a). These findings suggest that the high-risk group may
develop resistance to multiple therapeutic agents, emphasizing the challenges in treating
these patients and highlighting the importance of personalized therapeutic strategies based
on the HMRS panel.
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Figure 6. HMRS Panel as a predictive biomarker for chemotherapy sensitivity and identification
of ABCC2 as the core gene by WGCNA. (A) Bar plot of drug sensitivity analysis revealing distinct
patterns between HMRS-based risk groups; (B) Kaplan-Meier survival analysis distinguished the
prognosis of TCGA-LUAD patients treated with platinum-based chemotherapy based on the HMRS
panel; (C) Time-dependent ROC curve analysis of TCGA-LUAD patients treated with platinum-based
chemotherapy; (D) Kaplan-Meier survival analysis and time-dependent ROC curve analysis of
GSE68465 validation cohort; (E) Kaplan-Meier survival analysis and time-dependent ROC curve
analysis of GSE14814 validation cohort; (F) module assignment of 49 HMGs identified by WGCNA;
(G) Module-trait correlation analysis. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001; (H) Functional
enrichment analysis of genes in the orange module.

Building on these observations, we further evaluated the predictive ability of the
HMRS panel for chemotherapy outcomes in LUAD patients. Chemotherapeutic drugs
used in LUAD primarily inhibit tumor cell proliferation through mechanisms such as DNA
damage [20], cell cycle disruption [21], and topoisomerase inhibition [22]. These drugs are
often administered in combination chemotherapy regimens or alongside other treatments,
such as targeted therapies [23] and immunotherapies [24], to enhance efficacy. To assess the
clinical relevance of HMRS, we analyzed TCGA cohort patients who received platinum-
based chemotherapy. Kaplan—Meier analysis revealed that patients in the high HMRS group
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had significantly worse prognoses compared to those in the low HMRS group (p < 0.05)
(Figure 6B). ROC curve analysis demonstrated robust predictive performance, with AUC
values of 0.72, 0.64, and 0.80 at 1, 3, and 5 years, respectively (Figure 6C). Validation in
the GSE68465 cohort yielded AUCs of 0.90, 0.73, and 0.82 (Figure 6D), while the GSE14814
cohort showed AUCs of 0.79, 0.83, and 0.82 (Figure 6E) for the same time points. These
results underscore the strong predictive performance of the HMRS panel in evaluating
chemotherapy efficacy, further supporting its clinical utility in guiding treatment decisions
for LUAD patients.

2.7. ABCC2 Is the Core Gene Identified by WGCNA

To explore highly correlated genes within HMGs, we performed weighted gene co-
expression network analysis (WGCNA) using the TCGA-LUAD cohort to identify gene
modules and core genes. Initially, we set the soft threshold power to eight and constructed
a weighted gene co-expression network using genome-wide expression data from 405 sam-
ples with assigned HMRS, encompassing 19,938 genes. Following standard WGCNA
procedures, a gene dendrogram was generated and 36 distinct co-expression modules were
identified, each represented by a different color (module colors) (Figure A7a,b). These
modules reflect groups of genes sharing similar expression patterns across samples. Subse-
quently, we mapped the 49 HMGs onto the pre-defined modules to assess their distribution.
These genes were found to be distributed across 13 modules, reflecting the biological di-
versity and complex regulatory characteristics of heme metabolism rather than indicating
artificial fragmentation. (Figure 6F). Notably, four of the core genes were assigned to the
gray module, which represents genes that are not co-expressed with any defined module
and are therefore typically excluded from downstream network-based analyses, while
ABCC2 was assigned to the orange module. A subsequent analysis of module—clinical trait
correlations (including cluster, HMRS, and HMRS group) demonstrated that the orange
module was strongly associated with these three clinical traits (Figure 6G).

To further investigate the biological significance of the orange module, we extracted
all genes within this module and performed functional enrichment analysis (Figure 6H).
The results revealed that the enriched pathways were closely related to redox metabolism.
Importantly, GO analysis highlighted pathways associated with the negative regulation of
ferroptosis, aligning with our previous findings. In the gene contribution analysis, ABCC2
exhibited a relatively high contribution score (0.72) to the orange module, suggesting its
potential involvement in heme metabolism and ferroptosis (Figure A7c). These findings
suggest that ABCC2 may play an important role within the HMRS panel, potentially linking
heme metabolism with ferroptosis suppression. Its involvement in these processes points to
its possible relevance as a therapeutic target and supports the need for further investigation
into its role in tumor progression and treatment resistance.

2.8. Inhibition of ABCC2 Significantly Promotes Cisplatin-Induced Ferroptosis

We evaluated the expression patterns of ABCC2 across tumor and normal tissues using
the TCGA pan-cancer dataset (Figure 7A). The analysis revealed significant variations in
ABCC2 expression between tumor and adjacent normal tissues across multiple cancer types.
Specifically, in LUAD, ABCC2 expression was significantly elevated in tumor tissues com-
pared to normal tissues, suggesting its potential involvement in LUAD pathogenesis and
progression. To further explore the clinical relevance of ABCC2, we analyzed its expression
in relation to clinical outcomes in TCGA-LUAD cohort patients. By stratifying patients into
high- and low-expression groups based on the quartile of ABCC2 expression, Kaplan-Meier
analysis demonstrated that patients with high ABCC2 expression had significantly worse
prognoses compared to those with low expression (p < 0.05) (Figure 7B).
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Figure 7. Inhibition of ABCC2 significantly promotes cisplatin-induced ferroptosis. (A) Expression
patterns of ABCC2 across tumor and normal tissues in the TCGA pan-cancer dataset. Statistical sig-
nificance is indicated as follows: ns = not significant, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001;
(B) Kaplan—-Meier survival analysis stratified by ABCC2 expression levels (C) Validation of ABCC2
knockdown efficiency using three independent siRNAs; (D) Confocal microscopy images showing
lipid peroxidation levels in cisplatin-resistant A549 cells and ABCC2 siRNA-treated cisplatin-resistant
Ab549 cells. Green fluorescence indicates oxidized lipids, while red fluorescence represents non-
oxidized lipids. Merged images show the overlay of oxidative and reductive signals. Scale bar:
50 um; (E) Flow cytometry analysis of lipid peroxidation in cisplatin-resistant A549 cells and ABCC2
siRNA-treated cisplatin-resistant A549 cells. Horizontal and vertical lines indicate gating boundaries
used to define cell subpopulations. Color intensity reflects cell density, with red indicating higher
density and blue indicating lower density; (F) ABCC2 inhibition enhances Fe?* ion accumulation in
cisplatin-resistant A549 cells; (G) ABCC2 inhibition promotes MDA content in cisplatin-resistant A549
cells; (H) Promotion of MDA accumulation by the positive ferroptosis inducer RSL3; (I) Reduction of
MDA levels by negative ferroptosis inhibitor Fer-1.
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Cisplatin has been shown to induce ferroptosis in certain cell types, underscoring
the potential of ferroptosis induction as a therapeutic strategy to combat cisplatin re-
sistance [25,26]. ABCC2, a well-known multidrug resistance protein, primarily medi-
ates chemoresistance through drug efflux [27]. However, whether ABCC2 can modulate
chemosensitivity by regulating ferroptosis remains unexplored in LUAD. To investigate
this, we performed a series of experiments using cisplatin-resistant A549 cells. Three
independent siRNAs targeting ABCC2 were used, all of which effectively knocked down
ABCC2 expression (Figure 7C). Using BODIPY 581/591 C11 as a lipid peroxidation sensor,
confocal microscopy demonstrated that lipid peroxidation levels in cisplatin-resistant A549
cells were unaltered by 50uM cisplatin treatment. In contrast, cisplatin treatment elicited a
significant elevation in lipid oxidation states in cells treated with ABCC2 siRNA relative
to the control group (Figure 7D). This observation was further corroborated by flow cy-
tometry analysis (Figure 7E), indicating that ABCC2 inhibition enhances cisplatin-induced
lipid peroxidation. Mechanistically, ABCC2 inhibition elevated intracellular lipid perox-
idation levels, significantly increased Fe?* ion accumulation (p < 0.01) (Figure 7F), and
promoted malondialdehyde (MDA) content (p < 0.0001) (Figure 7G). These findings suggest
that ABCC2 modulates tumor cell sensitivity to cisplatin by regulating the ferroptosis
pathway, providing a novel theoretical foundation for overcoming cisplatin resistance in
LUAD. Notably, MDA levels in the cisplatin + siABCC2 group were similar to those in the
cisplatin + RSL3 group, suggesting that ABCC2 knockdown induces lipid peroxidation
comparable to ferroptosis activation. Fer-1 treatment significantly reduced MDA levels
in the cisplatin + siABCC2 group to levels close to the cisplatin + NC group, indicating
a ferroptosis-dependent effect. Although RSL3 increased MDA levels and Fer-1 reduced
them in both NC and siABCC2 groups, the changes were more evident in the siABCC2
group, supporting a role for ABCC2 in regulating ferroptosis sensitivity.

3. Discussion

Heme metabolism, a critical component of energy metabolism and redox homeostasis,
has been strongly implicated in the pathogenesis and progression of various tissue dis-
eases [17,28]. Elevated hemoglobin uptake is associated with an increased risk of multiple
cancers [28]. Notably, non-small-cell lung cancer (NSCLC) cells demonstrate enhanced
hemoglobin synthesis and uptake compared to normal lung tissues, resulting in signifi-
cantly elevated mitochondrial hemoglobin levels, oxygen consumption rate (OCR), and
ATP production, thereby promoting tumorigenesis and growth [4]. Our study further
underscores the significance of heme metabolism in LUAD. In the chemotherapy cohort,
we observed that elevated heme metabolism risk based on HMGs was associated with
poorer prognosis, reinforcing its potential role as a prognostic marker and therapeutic
target in LUAD.

In this study, we conducted a comprehensive bioinformatics analysis of heme
metabolism in LUAD by integrating data from TCGA-LUAD, three GEO RNA-seq co-
horts, and one scRNA-seq cohort. A total of 282 heme metabolism-related genes were
curated from five authoritative sources, including Reactome, WikiPathways, and MSigDB
Hallmark, and validated through published literature [4,15,17,29]. Using LASSO regres-
sion, we developed a robust prognostic panel, termed HMRS, which exhibited a high
AUC in both the TCGA-LUAD training set and an independent external validation cohort.
The HMRS panel effectively stratified LUAD patients into high-risk and low-risk groups,
with the high-risk group associated with increased malignant proliferation, elevated tu-
mor metabolism, and reduced ferroptosis activity. To facilitate clinical application, we
constructed a nomogram based on the HMRS panel, providing a user-friendly tool for
prognostic assessment. Furthermore, we identified five core heme metabolism-related
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genes (SLC2A1, SMOX, ABCC2, SLCO1B3, and FBXO9) and established a diagnostic model
using deep learning algorithms to assess its classification efficiency. Single-cell analysis
revealed a significant correlation between elevated heme metabolism risk in epithelial
cells and tumor progression, suggesting its potential utility as a biomarker for disease
advancement. Through WGCNA, ABCC2 emerged as a key molecule potentially mediating
ferroptosis inhibition in heme metabolism subtypes. This finding prompted further cellular-
level investigations, which demonstrated that ABCC2 knockdown in cisplatin-resistant
A549 cells significantly enhanced cisplatin-induced lipid peroxidation, accompanied by
increased intracellular Fe?* levels and elevated MDA content. These results underscore
the critical role of ABCC2 in modulating ferroptosis and drug sensitivity, highlighting its
potential as a therapeutic target in LUAD. ABCC2, also known as ATP binding cassette
subfamily C member 2, encodes multidrug resistance-associated protein 2 (MRP2) [30].
MRP2 is an ABC transporter involved in bilirubin metabolism [31] and drug efflux, in-
cluding anticancer agents [27]. In non-small-cell lung cancer (NSCLC), elevated ABCC2
expression in cisplatin-resistant A549 cells promotes drug resistance by facilitating drug
efflux and inhibiting apoptosis [27]. Although ABCC2 is not traditionally associated with
ferroptosis [32], our experiments demonstrate that its inhibition enhances cisplatin-induced
ferroptosis, likely through regulating intracellular iron accumulation and lipid metabolism.
These findings position ABCC2 as a key regulator of ferroptosis-mediated drug sensitivity,
providing novel insights into overcoming cisplatin resistance in NSCLC. Interestingly, an-
other study reported a distinct role of ABCC2 in gastric cancer (GC) [33]. It was found that
ABCC2 is upregulated in GC and enhances glutathione (GSH) efflux, inducing metabolic
vulnerability and ferroptosis in gastric cancer cells, thereby suppressing tumor growth and
improving chemosensitivity [33]. The observed differences in ABCC2’s role may stem from
several factors. First, cancer type-specific variations in molecular and metabolic features
likely contribute to its divergent functions. Second, the experimental conditions differed as
in GC, ABCC2’s effects were studied under amino acid restriction, mimicking metabolic
stress, whereas in NSCLC its role was examined in the context of cisplatin treatment. Third,
molecular mechanisms may vary, for example, in GC, ABCC2 induces ferroptosis via
glutathione metabolism and oxidative stress, while in NSCLC it may influence ferroptosis
through iron accumulation and lipid metabolism.

While analyzing drug sensitivities in different HMRS risk groups using the GDSC2
database, we observed a notable pattern: the high-risk group exhibited greater sensitivity
to EGFR inhibitors (e.g., Gefitinib, Lapatinib, and AZD3759), whereas the low-risk group
showed higher sensitivity to KRAS inhibitors. In NSCLC, approximately 50% of non-
squamous patients harbor oncogenic driver mutations, which influence drug response
and therapeutic outcomes [34]. This finding suggests that heme metabolism alterations
may be closely linked to specific oncogenic mutation profiles, highlighting a potential
interplay between heme metabolism and oncogenic signaling pathways that warrants
further investigation.

The heterogeneity of NSCLC and its interaction with the tumor microenvironment
pose significant challenges for molecular classification. Although k = 2 provided clearer
separation in our heme metabolism-based clustering, the k = 3 classification still showed
potential biological relevance. The intermediate cluster identified at k = 3 may reflect
a transitional state between low- and high-risk groups, suggesting dynamic changes in
metabolic states during tumor progression. This intermediate phenotype warrants further
functional investigation. In our single-cell analysis, we focused on tumor versus non-tumor
epithelial cells. However, lung tissue contains multiple epithelial subtypes, such as AT1,
AT?2, and Club cells, which represent distinct differentiation states. Tumor epithelial cells
may also include subpopulations with different metabolic profiles and biological roles.
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Future studies should aim to resolve this cellular diversity to refine risk classification and
better understand metabolic heterogeneity in LUAD.

Despite the strengths of our study, several limitations should be noted. (1) The gene
set we selected was validated through both literature support and functional enrichment
analysis, confirming its strong representation of core heme-related pathways. Nevertheless,
due to the complex regulation of heme metabolism and its interaction with iron homeosta-
sis and oxidative stress, some relevant regulatory components may not have been fully
captured. This underscores the need for continuous refinement of pathway-based gene
sets as our understanding of metabolic networks deepens. (2) While our findings highlight
the potential clinical relevance of heme metabolism-based risk stratification in LUAD, the
translation of gene expression signatures into routine clinical decision-making remains a
major challenge. To address this, we have begun developing a detection strategy based on
heme metabolism markers and plan to conduct prospective validation studies to evaluate
its predictive value and clinical applicability. These efforts aim to help bridge the gap
between molecular profiling and real-world patient management. (3) In our study, we also
analyzed the mutation landscape of the prognosis-associated heme metabolism-related
genes and found that the mutation frequency of individual genes was relatively low (mostly
below 2%), limiting further statistical correlation with clinical features or HMRS subgroups.
These findings indicate the need for more comprehensive datasets, particularly those with
detailed genomic mutation profiles, to better elucidate the relationship between HMGs
alterations and clinical outcomes.

In summary, our study uncovers a previously unrecognized role of heme metabolism
in LUAD and highlights its potential clinical significance in guiding personalized treatment
strategies. We developed the first population-based molecular panel reflecting heme
metabolism activity, which can stratify patients by prognosis and chemotherapy response.
Notably, we identified ABCC2 as a core gene within this signature and showed that its
knockdown promotes ferroptosis and enhances cisplatin sensitivity in resistant LUAD cells.
These findings reveal a novel link between heme metabolism, ferroptosis, and treatment
response, offering a new avenue for both mechanistic studies and biomarker development
in LUAD.

4. Materials and Methods
4.1. Data Collection and Processing

Clinical information, transcriptome expression, and copy number variation (CNV)
and single nucleotide variation (SNV) data for TCGA-LUAD patients were obtained
from the TCGA database. Three GEO RNA-seq datasets of LUAD patients were ob-
tained from the GEO database: GSE31210, GSE68465, and GSE14814. Genes asso-
ciated with heme metabolism were derived from the molecular signatures database
(MSigDB; https:/ /www.gsea-msigdb.org/gsea/msigdb, accessed on 6 May 2025), includ-
ing gene sets from REACTOME_Heme_Biosynthesis, REACTOME_Heme_Degradation,
Wikipathway_Heme_Biosynthesis, REACTOME_Scavenging_Heme_from_Plasma, and
HALLMARK_Heme_Metabolism (Table Al). These gene sets were further validated
through literature review and functional enrichment analysis to ensure their relevance
to heme metabolism. (Table Al). The dataset of 18 cell death pathways was com-
piled from literature [35], the MSigDB database, and the FerrDb V2 database, http:
//www.zhounan.org/ferrdb/current/ (accessed on 6 May 2025).

4.2. Consensus Clustering

We performed consensus clustering using the ConsensusClusterPlus R package (ver-
sion 1.70.0) to categorize lung adenocarcinoma (LUAD) patients into two distinct subgroups
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based on gene expression profiles. The clustering was conducted with a maximum num-
ber of clusters set to five. A total of 1000 resampling iterations were performed, with
80% of samples randomly selected in each iteration and all genes included. The k-means
clustering algorithm was used, and Euclidean distance was applied to measure similar-
ity between samples. Each sample was then assigned to its corresponding subgroup for
downstream analysis.

4.3. Construction of the HMRS Panel

To further refine our analysis, we employed a LASSO-regularized Cox proportional
hazards model with 100 iterations using the glmnet R package (version 4.1-8). Each iteration
was performed with 10-fold cross-validation to identify the optimal penalty parameter
(lambda) that minimized the partial likelihood deviance. The model was specified with the
Cox family and L1 regularization (alpha set to 1). During model fitting, gene expression
values were standardized for cross-validation and unstandardized for the final model.
Regression coefficients were extracted for each iteration, and genes not selected in a given
iteration were assigned a coefficient of zero. This approach allowed us to determine the
frequency of occurrence and regression coefficients of each gene in the risk model construc-
tion. Using a scoring metric (score = frequency X contribution), we selected the top 50% of
genes that exhibited the highest contribution to the risk model (16 genes: ABCC2, SLCO1B3,
SLCO2B1, JCHAIN, AQP3, DMTN, EIF2AK1, FBXO9, HTATIP2, LRP10, MAP2K3, NFE2,
NNT, SLC2A1, SMOX, and TENT5C). Based on these results, we developed the heme
metabolism risk score (HMRS) panel, defined by the following formula: HMRS = ABCC2
x 0.0738 + SLCO1B3 x 0.0307 + SLCO2B1 x (—0.0524) + JCHAIN x (—0.0341) + AQP3 x
(—0.0289) + DMTN x (—0.0999) + EIF2AK1 x 0.0880 + FBXO9 x (—0.0941) + HTATIP2 x
0.0345 + LRP10 x 0.1718 + MAP2K3 x 0.0365 + NFE2 x (—0.0848) + NNT x (—0.0567) +
SLC2A1 x 0.0764 + SMOX x 0.0530 + TENT5C x (—0.0631).

4.4. Decision Curve Analysis for Evaluating the HMRS Panel

To evaluate the clinical utility of predictive models, we performed decision curve
analysis (DCA) using the rmda R package (version 1.6). Logistic regression models were
constructed to predict event survival using the following predictors: (1) age, (2) risk score,
(3) total score (nomogram), (4) gender, and (5) T stage. Each predictor was included as a
separate model, and the logistic regression models were fitted with a binomial family and
logit link. Decision curves were generated for each model, with threshold probabilities
ranging from 0 to 1 (in increments of 0.01). The net benefit of each model was calculated
and plotted against the threshold probability to assess the clinical utility of the predictors.

4.5. Comparative Analysis of Cluster-Based Subtyping and HMRS Risk Groups

To evaluate the consistency and similarity between a Cluster and an HMRS Group,
we generated a confusion matrix to compare the distribution of samples across Cluster and
Group categories. To quantify the similarity between Cluster and Group, we converted
both categorical variables into dummy matrices and computed the Jaccard similarity index
using the vegan package (version 2.6-10). The Jaccard index, ranging from 0 (no similarity)
to 1 (complete similarity), was used to measure the overlap between the two classification
schemes. This integrated approach allowed us to systematically evaluate the alignment be-
tween cluster-derived subgroups (unsupervised clustering) and predefined HMRS groups
(supervised stratification), providing insights into the robustness and biological relevance
of the classification methods.



Int. J. Mol. Sci. 2025, 26, 4685

18 of 29

4.6. Core Heme Metabolism Genes Identification

To identify core heme metabolism-related genes, we employed a random survival
forest (RSF) model implemented in the randomForestSRC R package (version 3.3.3). The
model was trained using survival data, with the optimal number of trees determined by
evaluating the out-of-bag (OOB) error rate across 1 to 500 trees, selecting the number of
trees corresponding to the lowest error rate. Feature importance scores were calculated for
each gene, and genes with importance scores greater than 0.5 were considered significant.
To ensure robustness, the RSF model was iterated 100 times with different random seeds,
and the average importance scores across all iterations were used to rank the genes. The
top 50% of genes based on cumulative importance scores were selected for further analysis.
These genes were then intersected with those identified by LASSO regression, resulting in
the identification of 5 core heme metabolism-related genes.

4.7. Deep Learning Model Construction

To validate the discriminative power of the 5 core heme metabolism-related genes in
stratifying LUAD patients by risk, we constructed a deep neural network (DNN) model
using the keras R package (version 2.15.0) with TensorFlow (version 2.16.0) as the backend.
The TCGA-LUAD dataset was preprocessed to retain the core genes and relevant clinical
variables, and it was randomly split into training (80%) and test (20%) sets using the caret
package (version 7.0-1). The DNN architecture consisted of an input layer (64 neurons,
ReLU activation), a hidden layer (32 neurons, ReLU activation), and an output layer
(1 neuron, sigmoid activation). The model was compiled with binary cross-entropy loss,
the Adam optimizer, and accuracy as the evaluation metric. Training was performed over
100 epochs with a batch size of 32, and validation was conducted on the test set. Model
performance was assessed using accuracy, sensitivity, specificity, and the area under the
ROC curve (AUC). Additionally, the training process was visualized through loss and
accuracy curves and the discriminative power of the model was further illustrated using
a confusion matrix, a bar plot of predicted versus actual labels, and a ROC curve with
AUC value.

4.8. Functional Enrichment Analysis

To explore biological differences between HMRS-defined groups, we performed gene
set variation analysis (GSVA) using the GSVA R package (version 1.50.5). GSVA was
conducted with the non-parametric “gsva” method, using a Gaussian kernel density
estimation. Gene sets were obtained from MSigDB, with a minimum and maximum
gene set size of 10 and 500, respectively. A linear model was then fitted using the limma
R package (version 3.58.1), with HMRS group labels included in the design matrix as a
categorical variable. Empirical Bayes moderation was applied to assess differential pathway
activity. Gene sets with an adjusted p-value < 0.05 and absolute log fold change > 0.2 were
considered significant. Subsequent functional enrichment analyses were conducted using
Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set
enrichment analysis (GSEA) via the clusterProfiler R package (version 4.10.1).

4.9. Single-Cell RNA-Seq Analysis Data Collection and Processing

We analyzed 26 samples from the GSE131907 dataset, including 11 lung adenocarci-
noma (LUAD) tissues, 11 matched adjacent normal tissues, and 4 endobronchial brushing
samples from patients with advanced-stage tumors. Single-cell RNA sequencing data
were processed using the Seurat R package (version 5.1.0). To ensure high data quality,
we applied the following filtering criteria: cells with fewer than 250 detected genes or
fewer than 500 unique molecular identifiers (UMIs) were excluded; cells with a log10 ratio
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of detected genes per UMI (log10GenesPerUMI) below 0.80 were removed to filter out
low-complexity cells; cells with over 20% mitochondrial gene content were excluded to
avoid inclusion of dying or stressed cells. Potential doublets were identified and removed
based on the co-expression of canonical markers from distinct lineages. In addition, cells
with a housekeeping gene UMI sum (ACTB, GAPDH, MALAT1) below 1 were removed to
exclude transcriptionally inactive or damaged cells.

Cell clustering was performed using Seurat’s “FindClusters” and “FindNeighbors”
functions, with results visualized via t-distributed stochastic neighbor embedding (t-SNE).
Cell types were annotated based on characteristic marker genes, and the activity lev-
els of specific gene sets in individual cells were quantified using Seurat’s “AddModule-
Score” function.

Copy number variation (CNV) analysis was performed using the infercnv R package
(version 1.18.1). The key parameters are as follows: the cutoff was set to 0.1, which is
appropriate for 10x genomics data; and reference group names were set as “Normal” to
define the baseline for CNV inference. Gene positional information was provided using a
gene order file based on GENCODE v27 (hg38). Cells from the Early-stage and Advanced
groups whose CNV scores did not exceed the median CNV score of the Normal group were
considered normal-like cells within tumor tissues and were excluded from the analysis due
to their ambiguous classification.

To investigate the dynamic changes in heme metabolism during tumor progression,
we performed pseudotime trajectory analysis using the Monocle R package (version 2.30.1).
Risk module scores for heme metabolism were mapped onto the trajectory, and a general-
ized additive model (GAM) was fitted using the mgcv R package (version 1.9-1) to assess
the relationship between pseudotime and risk scores.

4.10. Drug Sensitivity Prediction

Drug sensitivity data were obtained from the genomics of drug sensitivity in cancer 2
(GDSC2) database, which includes gene expression profiles and drug response data for a
wide range of cancer cell lines. The R package oncoPredict (version 1.2) was used to predict
drug sensitivity in LUAD patients based on their gene expression profiles. The training
data were preprocessed by exponentiating the drug response values and standardizing
the gene expression data. The LUAD patient gene expression data were aligned with the
GDSC2 data by retaining common genes and removing low-variance genes (20% threshold).
Drug sensitivity predictions were generated using the calcPhenotype function with batch
correction (standardize) and power transformation of the phenotype data. The predicted
drug sensitivity values were merged with patient grouping information (high- vs. low-risk
groups) and analyzed for significant differences. Significant drugs (p < 0.05) were further
visualized using violin plots and boxplots, and the sensitivity ratios, defined as the ratio of
the mean AUC values between the low- and high-risk groups, were calculated to identify
drugs with higher sensitivity in specific risk groups.

4.11. Weighted Gene Coexpression Network Analysis (NGCNA)

Gene expression data from TCGA-LUAD samples, matched with risk scores, were
analyzed using weighted gene co-expression network analysis (WGCNA) implemented in
the R package WGCNA (version 1.73). The soft-thresholding power (f3) was selected using
the pickSoftThreshold function to achieve a scale-free topology fit index (R?) > 0.9, with
the optimal power determined to be 8. Gene co-expression modules were identified using
the blockwiseModules function with a minimum module size of 30 genes and a module
merging threshold (mergeCutHeight) of 0.25, allowing modules with eigengene correlation
above 0.75 to be merged. The topological overlap matrix (TOM) type was set to “unsigned”
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to focus on the strength rather than the direction of gene-gene correlations. Module eigen-
genes, representing the overall expression patterns of each module, were calculated and
correlated with classification traits, including cluster, HMRS, and HMRS group. Significant
module-trait relationships were visualized using heatmaps, with p-values annotated to
indicate statistical significance. Hub genes within each module were identified based on
their high correlation with module eigengenes. Candidate genes of interest were mapped
to their respective modules, and their module assignments were visualized using a color-
coded tile plot. Functional enrichment analysis of WGCNA gene modules was performed
using Metascape (https://metascape.org/gp/index.html, accessed on 6 May 2025), an
online tool for identifying associated biological functions and pathways.

4.12. Cell Culture and Transfection

The human lung adenocarcinoma cell line A549 was obtained from the American Type
Culture Collection (ATCC, Manassas, VA, USA). Cells were cultured in vitro using RPMI-
1640 medium (Gibco, Thermo Fisher Scientific, Waltham, MA, USA) supplemented with
15% fetal bovine serum and 1% penicillin-streptomycin (Gibco, Thermo Fisher Scientific,
Waltham, MA, USA). A549 cells were continuously exposed to increasing concentrations of
cisplatin over several months. The resistance was confirmed by evaluating the half-maximal
inhibitory concentration (IC50) of cisplatin in cisplatin-resistant A549 cells compared to
the parental A549 cells using a cell viability assay (CCK-8). Small interfering RNA (siRNA)
targeting ABCC2 and a negative control siRNA were purchased from RiboBio (Guangzhou,
China). The sequences of the ABCC2-targeting siRNAs were as follows: stB0001370A
(st-h-ABCC2_001): AGTGGATGCTCATGTAGGA; stB0001370B (st-h-ABCC2_002): GTAC-
CTACAAGCAATAGGA; stB0001370C (st-h-ABCC2_003): AGACATCTATCTTCTAGAT.
For transient transfection, cisplatin-resistant A549 cells were transfected with siRNA using
Lipofectamine 2000 (Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA) for 48 h,
followed by functional assays. Three validated siRNA sequences targeting ABCC2 were
mixed in equal proportions and used as a pooled siRNA for all subsequent experiments. To-
tal RNA was extracted using an RNA extraction kit (TOYOBO, Osaka, Japan) according to
the manufacturer’s instructions, and cDNA was synthesized for real-time PCR using SYBR
Green qPCR mix (Applied Biosystems, Thermo Fisher Scientific, Waltham, MA, USA).

4.13. Cellular Lipid Peroxidation Assay

Lipid peroxidation assay was performed using BODIPY 581/591 C11 (Invitrogen,
Thermo Fisher Scientific, Waltham, MA, USA). Cisplatin-resistant A549 cells were inocu-
lated in 6-well plates, and when the cell density reached 70-80%, ABCC2 knockdown and
control treatments were carried out, respectively, and the cells of the experimental group
and the control group were treated with cisplatin for 24 h. After discarding the medium,
cells were washed twice with PBS and incubated with the C11-BODIPY 581/591 probe
(final concentration: 5 uM) at 37 °C for 30 min in the dark. Unbound probe was removed by
washing twice with PBS. For confocal microscopy, cells were imaged at 488 nm (oxidized,
green fluorescence) and 581 nm (reduced, red fluorescence) excitation wavelengths. For
flow cytometry, stained cells were trypsinized, resuspended in PBS, and analyzed at 488 nm
excitation, detecting green fluorescence (FITC channel, oxidized state) and red fluorescence
(PE channel, reduced state). At least 10,000 live cells per sample were collected. The
primary readout was the shift from the reduced state (Q1, PE-positive) to the oxidized state
(Q2, FITC-positive), reflecting increased lipid peroxidation levels.

4.14. Detection of Cellular Fe** Content

Intracellular Fe?* content was measured using a Fe?* assay kit (Solarbio, Beijing,
China). Cisplatin-resistant A549 cells were seeded in 10 cm dishes and treated with cisplatin


https://metascape.org/gp/index.html

Int. J. Mol. Sci. 2025, 26, 4685

21 of 29

for 24 h after ABCC2 knockdown or control. Cells were washed twice with PBS, collected,
and counted, followed by lysis using the kit-provided extraction buffer and ultrasonication
on ice. After centrifugation (10,000 x g, 10 min, 4 °C), the supernatant was mixed with the
Fe?* assay working solution and incubated at 37 °C for 30 min in the dark. Absorbance at
593 nm was measured using a microplate reader, and the Fe?* concentration was calculated
based on the kit’s standard curve.

4.15. Cellular Malondialdehyde (MDA) Content

The malondialdehyde (MDA) content in cells was determined using a commercial
MDA assay kit (Solarbio, Beijing, China) following the manufacturer’s protocol. Briefly,
harvested cells were centrifuged, and the pellet was resuspended in extraction buffer at
a ratio of 1 mL buffer per 5 x 10° cells. The cell suspension was then sonicated on ice
(200 W, 3 s pulses with 10 s intervals, 30 cycles) to lyse the cells. The lysate was centrifuged
at 8000x g for 10 min at 4 °C, and the supernatant was collected for analysis. For the
assay, 0.1 mL of the supernatant was mixed with 0.1 mL of reagent 3 and 0.3 mL MDA
detection working solution and incubated at 100 °C for 60 min in a tightly sealed tube
to prevent evaporation. After cooling on ice, the mixture was centrifuged at 10,000x g
for 10 min at 25 °C. The supernatant (500 uL) was transferred to a microquartz cuvette
or a 96-well plate, and the absorbance was measured at 532 nm and 600 nm using a
spectrophotometer. The MDA concentration was calculated based on the difference in
absorbance (AA = A532 — A600) and quantified using a standard curve.

4.16. Statistical Analysis

Data processing and statistical analyses were performed using R (version 4.3.3)
programs. Kaplan-Meier survival curves were plotted by the survminer R package
(version 0.5.0) for OS analysis and differences between groups were evaluated using the
log-rank test. Time-dependent ROC curves were generated using the timeROC package
(version 0.4). Both univariate and multivariate Cox regression analyses were performed
using the survival R package (version 3.5-8) to assess the associations between clinical
variables and patient survival outcomes. For comparisons between two groups, Wilcoxon
rank-sum tests were used. For comparisons among more than two groups, the Kruskal-
Wallis test followed by pairwise Wilcoxon post hoc tests was applied. Spearman’s rank
correlation was used to evaluate associations between continuous variables. p-values were
adjusted using the Benjamini-Hochberg (BH) method where applicable, and values less
than 0.05 were considered statistically significant.
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Appendix A

Table A1l. Heme metabolism-related genes.

Symbol

COX10 CD163 IGKV1-5 IGLV3-27 BTRC EZH1 ICAM4 NFE2 SELENBP1 TRAK?2
COX15 HBA1 IGKV1D-12 IGLV6-57 C3 FBXO34 IGSF3 NFE2L1 SIDT2 TRIM10
ALAS1 HBA2 IGKV1D-16 IGLV7-43 CA1 FBXO7 ISCA1 NNT SLC10A3 TRIM58
FECH HBB IGKV1D-33 JCHAIN CA2 FBXO9 KAT2B NR3C1 SLC11A2 TSPAN5
CPOX HP IGKV1D-39 LRP1 CAST FN3K KDM7A NUDT4 SLC22A4 TSPO2
ABCG2 HPR IGKV2-28 ABCB6 CAT FOXJ2 KEL OPTN SLC25A37 TYR
UROD HPX IGKV2-30 ACKR1 CCDC28A FOXO3 KHNYN OSBP2 SLC25A38 UBAC1
PPOX IGHA1 IGKV2D-28 ACP5 CCND3 FICD KLF1 P4HA2 SLC2A1 Uucp2
ALAD IGHA?2 IGKV2D-30 ACSL6 CcDC27 GAPVDI1 KLF3 PC SLC30A1 USP15
ALAS?2 IGHV1-2 IGKV2D-40 ADD1 CDR2 GATA1 LAMP? PDZK1IP1 SLC30A10 VEZF1
FLVCR1 IGHV1-46 IGKV3-11 ADD?2 CIR1 GCLC LMO2 PGLS SLC4A1 XK

ALB IGHV1-69 IGKV3-15 ADIPOR1 CLCN3 GCLM LPIN2 PICALM SLC66A2 XPO7

UROS IGHV2-5 IGKV3-20 AGPAT4 CLIC2 GDE1 LRP10 PIGQ SLC6AS8 YPEL5
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Table A1. Cont.
Symbol
HMBS IGHV2-70 IGKV3D-20 AHSP CROCCP2 GLRX5 MAP2K3 PPP2R5B SLC6A9
ABCC2 IGHV3-11 IGKV4-1 ALDHIL1 CINS GMPS MARCHF2 PRDX2 SLC7AT1
BLVRB IGHV3-13 IGKV5-2 ALDH6A1 CTSB GYPA MARCHF8 PSMD9 SMOX
HMOX1 IGHV3-23 IGLC2 ANKI CTSE GYPB MARK3 RAD23A SNCA
ABCC1 IGHV3-30 IGLC3 AQP3 DAAMI GYPC MBOAT?2 RANBP10 SPTA1
HMOX2 IGHV3-33 IGLV1-40 ARHGEF12 DCAF10 GYPE MFHAS1 RAP1GAP SPTB
BLVRA IGHV3-48 IGLV1-44 ARL2BP DCAF11 H1-0 MGST3 RBM38 SYNJ1
SLCO1B3 IGHV3-53 IGLV1-47 ASNS DCUN1D1 H4C3 MINPP1 RBM5 TAL1
SLCO1B1 IGHV3-7 IGLV1-51 ATG4A DMTN HAGH MKRN1 RCL1 TCEA1
SLCO2B1 IGHV4-34 IGLV2-11 ATP6V0A1 E2F2 HBBP1 MOCOS RHAG TENT5C
FABP1 IGHV4-39 IGLV2-14 BACH1 EIF2AK1 HBD MOSPD1 RHCE TFDP2
UGTI1A1 IGHV4-59 IGLV2-23 BCAM ELL? HBQ1 MPP1 RHD TFRC
GSTA1 IGKV1-12 IGLV2-8 BMP2K ENDOD1 HBZ MXI1 RIOK3 TMCC2
UGT1A4 IGKV1-16 IGLV3-1 BNIP3L EPB41 HDGF MYL4 RNF123 TMEMO9B
AMBP IGKV1-17 IGLV3-19 BPGM EPB42 HEBP1 NARF RNF19A TNRC6B
APOA1 IGKV1-33 IGLV3-21 BSG EPOR HTATIP2 NCOA4 SDCBP TNSI
APOL1 IGKV1-39 IGLV3-25 BTG2 ERMAP HTRA2 NEK7 SEC14L1 TOP1
Table A2. 49 prognostic genes associated with OS by univariate Cox regression analysis.
Gene HR Coef p Value LowerCI UpperCI
PPOX 0.752504 —0.284348 0.028362 0.58358 0.970326
HMBS 1.379057 0.3214 0.009022 1.083454 1.75531
ABCC2 1.160223 0.148612 0.000087 1.077248 1.249589
ABCC1 1.218173 0.197352 0.043659 1.005626 1.475644
SLCO1B3 1.15296 0.142333 0.026213 1.016984 1.307117
SLCO2B1 0.873744 —0.134968 0.043410 0.766482 0.996015
FABP1 1.407514 0.341825 0.006982 1.097981 1.804308
APOL1 1.189261 0.173332 0.019232 1.028612 1.375
JCHAIN 0.870827 —0.138312 0.002853 0.795181 0.95367
ACKR1 0.885668 —0.121414 0.021099 0.798835 0.981939
ACP5 0.825942 —0.19123 0.026820 0.697319 0.978291
AQP3 0.883456 —0.123914 0.005288 0.809776 0.96384
ARL2BP 1.583942 0.459917 0.022251 1.067797 2.349579
BCAM 0.867207 —0.142478 0.027419 0.76407 0.984265
BSG 1.328363 0.283948 0.040976 1.011707 1.74413
BTG2 0.80163 —0.221108 0.002304 0.695385 0.924108
CAT 0.76955 —0.261949 0.010607 0.629476 0.940794
CCDC28A 0.701313 —0.354801 0.011501 0.532601 0.923467
CDC27 1.516675 0.416521 0.012826 1.092501 2.10554
CLCN3 1.362124 0.309045 0.014418 1.063403 1.744758
DCUN1D1 1.469944 0.385224 0.005040 1.122989 1.924093
DMTN 0.835953 —0.179183 0.020993 0.717961 0.973337
EIF2AK1 1.571036 0.451735 0.003926 1.155738 2.135566
EZHI1 0.753368 —0.283201 0.026424 0.586699 0.967384
FBXO9 0.744254 —0.295373 0.026388 0.573441 0.965947
GATA1 0.475254 —0.743907 0.006836 0.277209 0.814786
GCLC 1.146746 0.136928 0.007932 1.036491 1.268728
GCLM 1.176157 0.162253 0.037816 1.00917 1.370776
GLRX5 1.553487 0.440502 0.007061 1.127513 2.140394
GMPS 1.528959 0.424587 0.000510 1.203396 1.942598
HDGF 1.318635 0.276597 0.031325 1.025095 1.696231
HTATIP? 1.520409 0.418979 0.000264 1.21393 1.904264
KAT2B 0.754193 —0.282107 0.011658 0.60573 0.939044
KLF3 1.30228 0.264116 0.048514 1.00172 1.693021
LRP10 1.368367 0.313618 0.010557 1.075973 1.740218
MAP2K3 1.342451 0.294497 0.039175 1.014722 1.776028
MGST3 1.372603 0.316709 0.036875 1.019481 1.848037
NFE2 0.842092 —0.171867 0.028823 0.721826 0.982395
NNT 0.799911 —0.223255 0.043716 0.643894 0.993731
RAD23A 1.833232 0.606081 0.001152 1.272041 2.642006
RBMb5 0.743686 —0.296136 0.016172 0.584221 0.946678
SELENBP1 0.873031 —0.135784 0.013918 0.78349 0.972806
SLC10A3 1.348278 0.298829 0.042569 1.010058 1.799754
SLC2A1 1.29581 0.259136 0.000020 1.150278 1.459753
SLC6AS 1.165467 0.153122 0.024519 1.019865 1.331856
SLC7A11 1.123212 0.116192 0.019410 1.018945 1.238148
SMOX 1.369945 0.314771 0.000072 1.172704 1.600361
TAL1 0.715952 —0.334143 0.043638 0.517495 0.990514
TENT5C 0.7314 —0.312794 0.000116 0.62387 0.857464
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Appendix B

consensus CDF

Delta area

relative change in area under CDF curve

consensus index

Figure Al. Selection of optimal k value for consensus clustering. (a) The CDF curve for k = 2 exhibits
the flattest profile, indicating the most stable and consistent clustering results; (b) Selection of optimal
k value based on delta area analysis where the delta area curve shows a significant change at k = 2,
indicating that the clustering stability is optimal at this value.
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Figure A2. (a) Consensus heatmap matrix of the TCGA-LUAD cohort (k = 3); (b) T-SNE analysis
showed significant differences between the three subtypes; (c) Kaplan—-Meier survival analysis
distinguished the prognosis of TCGA-LUAD patients based on cluster classification; (d) Time-
dependent ROC curve analysis of TCGA-LUAD cohort; (e) Expression characteristics of 49 HMGs



Int. J. Mol. Sci. 2025, 26, 4685

25 of 29

across different clusters; (f) Heatmap showing the expression patterns of a combined set of 90 top
differentially expressed genes (DEGs), selected from pairwise comparisons (30 DEGs each) between
clusters C1 vs. C2, C1 vs. C3, and C2 vs. C3; (g) Volcano plots of differential gene expression
analyses for each pairwise comparison among C2 vs. C3. The horizontal dashed line represents the
threshold for statistical significance (adjusted p-value = 0.05), and the vertical dashed lines indicate
logy fold change thresholds (+1.5), which define biologically meaningful changes in gene expression;
(h) volcano plots of differential gene expression analyses for each pairwise comparison among C2
vs. C1.
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Figure A3. Validation cohort analysis of the HMRS panel. (a—c) Kaplan-Meier survival curves,
time-dependent ROC curves, HMRS distribution, survival time, and expression patterns between
low- and high-risk groups in the GSE31210 validation cohort; (d—f) Kaplan—-Meier survival curves,
time-dependent ROC curves, HMRS distribution, survival time, and expression patterns between
low- and high-risk groups in the GSE68465 validation cohort.
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Figure A4. (a) Importance ranking of 49 HMGs based on RSF analysis; (b) Confusion matrix and
performance metrics of model validation; (c) Comparison of predicted values and real labels.
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Figure A5. (a) Heatmap of cell types and marker gene expression in single-cell RNA sequencing data;
(b) CNV heatmap of epithelial cells inferred using inferCNV; (c) T-SNE visualization of CNV Score;
(d) T-SNE visualization of tumor stages; (e) Violin plot of heme metabolism risk module score across

normal and tumor stages. Overall group differences were assessed using the Kruskal-Wallis test,

while pairwise comparisons between individual stages were conducted using the Wilcoxon rank-sum
test. *** p < 0.001, **** p < 0.0001.
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Figure A6. (a) Violin plot showing higher drug sensitivity in the high-risk group (p < 0.05); (b) Violin
plot showing higher drug sensitivity in the low-risk group (p <0.05). * p <0.05, ** p <0.01, *** p < 0.001,
w04t ) < 0.0001.
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Figure A7. (a) Hierarchical clustering dendrogram in WGCNA analysis. Different colors below
the dendrogram represent distinct gene co-expression modules identified by hierarchical clustering;
(b) Determination of the soft-thresholding power in WGCNA analysis. The y-axis shows the scale-free
topology fit index (signed R?), and the x-axis represents the soft-thresholding power values from 1
to 20. Red numbers indicate the corresponding power values. The blue horizontal line denotes the
threshold R? = 0.90. Power 8 was selected as the soft-thresholding power, as it is the lowest value
at which the scale-free topology fit index reaches the threshold of R? = 0.90; (c) Gene contribution
analysis of the orange module.
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