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Abstract: (1) Differential co-expression analysis between two phenotypes with a known
gene set helps to uncover gene regulation alterations. (2) GSNCASCR uses CSCORE to
estimate the gene pair correlations for network reconstruction and GSNCA to quantify
the structure changes of co-expression networks of the predefined gene sets. It also ranks
genes based on their “importance” in the weighted network. The method is implemented
with free R software (version 0.1.0, available on GitHub), allowing users to analyze their
data with the help of demo vignettes included in the package. (3) With analysis of both
simulated and real datasets, we demonstrate that the statistical tests performed with
GSNCASCR are able to identify differentially co-expressed gene sets with higher precision
than tests with Gene Set Co-Expression Analysis (GSCA, version 1.1.1) and Gene Sets Net
Correlations Analysis (GSNCA, version 1.42.0). Specifically, GSNCASCR achieved an AUC
value of 0.985, while GSNCA and GSCA achieved 0.817 and 0.893, respectively, when
positive and negative pathways are defined as having more than 40% and less than 20%
co-expressed gene pairs in the simulated data, respectively. Furthermore, across simulated
data with varying noise levels, pathway sizes, and positive/negative pathway definitions,
GSNCASCR consistently performs best in over 90% of scenarios, as evaluated by AUC
values. With an available COVID-19 dataset, we show CD4+ T cell dysfunction in severe
COVID-19 as TNF-α/TNF receptor 1-dependent immune pathways. In the weighted
network of a gene set of IFN-γ, IFITM3 was identified as a hub gene, which has been
evidenced by a genome-wide association study and functional studies. (4) We developed a
bioinformatics tool, GSNCASCR, that analyzes differentially co-expressed pathways with
single-cell RNA-sequencing data and also evaluates the importance of the genes within
pathways. This tool combines the advantages of two algorithms, enabling the quantification
and examination of cell type-specific co-expression changes within pathways. The package
allows for the analysis of shared and unique disease-affected pathways across different
cell types.

Keywords: single-cell RNA-seq; differential co-expression; pathway analysis

1. Introduction
Differential co-expression analysis examines diseases and phenotypic variations by

finding gene pairs whose co-expression patterns vary across conditions. The simplest
differential co-expression analysis compares clusters of co-expressed genes under different
conditions. Many methods have been developed to identify differentially co-expressed
gene modules [1].

Gene set analysis methods, such as the well-known Gene Set Enrichment Analysis
(GSEA) [2], examine the overall differential expression of sets of related genes (pathways).
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They enhance statistical power and aggregate prior biological knowledge. One motivation
to test pathways is based on the idea that complex diseases are rarely consequences of
abnormalities in a single gene but a result of changes in a set of related genes. Despite their
success, GSEA and similar approaches do not identify important classes of differentially
regulated pathways, such as groups of differentially co-expressed genes.

Other methods that test differential co-expression for a predefined collection of gene
sets have been developed [3,4]. These methods vary in how they quantify co-expression
between genes, measure changes in the co-expression of a group of genes, and cluster genes.
The problem of measuring differential co-expression of a given gene set is formulated
by the Gene Sets Co-expression Analysis (GSCA) [3] and Gene Sets Net Correlations
Analysis (GSNCA) methods [4]. For example, GSCA calculates the Pearson correlation and
aggregates the pairwise correlation differences between two conditions [3]. These methods
are mainly used for microarray or bulk RNA sequencing (bulk RNA-seq) data and, more
occasionally, for single-cell RNA-sequencing (scRNA-seq) data. Advances in scRNA-seq
technology have enabled direct inference of co-expression in specific cell types [5,6].

Pearson correlation is often used to calculate gene co-expression, but co-expression
derived from scRNA-seq showed lower functional connectivity than that from bulk RNA-
seq [7], due to batch effects or incomplete transcriptome coverage inherent in current
scRNA-seq protocols [7]. Thus, the usual correlation approach cannot be applied to
scRNA-seq, and new approaches have been proposed to capture gene co-expression from
scRNA-seq data [6,7]. Several methods have been developed recently to better capture co-
expressions from scRNA-seq data, including PIDC [8], locCSN [9], scLink [10], SpQN [11],
CoAM [12], DeepCSCN [13], and others. For instance, scLink calculates correlations of
gene pairs and applies a penalized, data-adaptive likelihood method to examine sparse
dependencies among genes and to construct sparse gene co-expression networks [10].
PIDC utilizes partial information decomposition based on multivariate information theory
to quantify statistical dependencies among genes and infer gene networks [8]. scDiff-
CoAM considers different association metrics or additional adjustments when inferring
co-expressions from scRNA-seq [12]. DeepCSCN can infer co-expression at the whole
sample level and build cell-type-specific co-expression networks, demonstrating significant
improvements over many existing methods [13]. However, these methods primarily focus
on gene–gene co-expression and network inference without incorporating curated path-
way information, resulting in difficulties for biologists to interpret and infer a biological
hypothesis. GSCA and GSNCA are two tools that allow pathway level analysis, but were
developed before RNA-seq technology came to the fore [3,4].

For a typical single-cell experiment, there is a substantial variation of sequencing depth
across cells. As a result, gene co-expression measured via correlations of Unique Molecular
Identifier (UMI) counts across cells can be confounded by varying sequencing depths,
resulting in inflated false positive findings for co-expressed gene pairs. Measurement
errors in the count data add an additional challenge in inferring co-expression levels, as
these errors tend to attenuate correlation estimates to different degrees for genes with
distinct expression levels. Several methods have been recently developed to better capture
gene co-expression from scRNA-seq data than a simple normalization-based approach:
they consider different association or additional adjustments when inferring co-expression.
Recently, Circuit Switching-Core (CS-CORE) identified gene co-expression that was more
reproducible across independent datasets and is more enriched with known transcription
factor–target gene pairs than other methods [6].

In this manuscript, we integrate GSCNA and CS-CORE and develop a new package,
Gene Sets Net Correlations Analysis with Single-Cell RNA-seq (GSNCASCR), available at
GitHub. Performance was evaluated with both simulated and real experimental datasets.
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We implemented the algorithms as a publicly available package, allowing users to freely
download, use, and modify it. Several demo vignettes were created to guide users for data
preparation, analysis, results summary, and visualization.

2. Results
The GSNCASCR R package (version 0.1.0) compares gene co-expression networks in

terms of their structural properties. The construction of co-expression networks, the graph
spectral analysis, and main features of the package are described below:

The GSNCASCR package receives a gene expression matrix, cell labels, and a collection
of gene sets as input data. Then, it randomly selects the same number of cells of two
conditions, constructs two gene co-expression networks for each gene set, and tests the
equality in the network structural features between two biological conditions (Figure 1).
The software allows the user to further analyze each gene set by visualizing the gene
co-expression graphs, ranking the genes according to their “importance” in the gene set
network, and performing standard single gene differential expression analysis.
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Figure 1. Overview of the GSNCASCR package. The package receives scRNA-seq expression matrix
of case and control, and a collection of pathways as input data. It constructs two gene co-expression
networks for each pathway and tests the network difference between case and control. The software
allows for examining each pathway by visualizing the gene co-expression networks (case, control,
and difference) and ranking the genes according to their network importance.

Our package integrates the advantages of CS-CORE and GSNCA. CS-CORE is able
to identify the gene co-expression of each population, while the co-expression derived
from bulk RNA-seq is mainly from cell type composition [6], important when there are no
good surface markers for flow cytometry sorting cell populations. GSNCA captures the
topological difference between co-expression networks of two conditions. The results from
GSNCASCR are able to prioritize trait-relevant cell types and candidate genes.

We used both simulation experiments and analyses of biological data to evaluate the
performance of GSNCASCR.
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2.1. GSNCASCR Package

Most co-expression analyses have been performed on bulk samples, which consist
of mixed cell types. Utilizing the variancePartition tool [14], we analyzed the expression
variance for each gene in the COVID-19 dataset, finding that cell type was the largest
contributor to gene expression (Figure S1). This indicates that changes in co-expression
between two conditions are largely influenced by variations in cell type composition in bulk
samples. CS-CORE demonstrates a significant advantage in this context, as it is specifically
designed to infer co-expression changes within one single cell type [6]. Although profiling
sorted cells can achieve similar insights, cell sorting presents challenges due to the lack
of high-quality antibodies. Even if feasible, this process can be tedious and susceptible to
technical artifacts [6].

The GSNCASCR package is a tool to analyze gene co-expression networks. It receives
gene expression data and a predefined collection of gene sets, from which it performs
differential network analysis. The software also includes further analytics of a gene set,
such as network visualization, centralities of the genes that belong to the set, and the
standard single gene differential expression analysis, as shown in Figure 1. In the next
paragraphs, we describe briefly the input, output, and main features of the package.
For a detailed tutorial and manual, refer to https://github.com/shouguog/GSNCASCR
(accessed on 14 May 2024) (examples are available as vignettes in the same website).

2.2. Simulation

To evaluate the statistical powers of GSNCASCR, GSCA, and GSNCA methods, we
generated simulated datasets with scDesigner2 (version 0.1.0).

With scDesign2, and based on the dataset of mouse_sie_10x.rds in this package, we sim-
ulated one dataset, maintaining the gene co-expression and another without co-expression
(Figure 2). We extracted the highly corelated gene pairs in the training dataset and manually
created gene sets with different numbers of co-expressed gene pairs. Datasets with >40%
and <20% gene pairs were defined as positive and negative datasets, respectively [15].
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Figure 2. The simulation of scRNA-seq data by scDesign2 with maintaining correlation (column 3)
or not maintaining correlation (column 4). Pearson (top) and Kendall’s tau (bottom) correlations
between gene pairs were shown. Highly correlated gene pairs in training data are used to create
negative/positive pathways.

Steps to generate the simulated data are illustrated in Figure S2. (1) Based on the
training dataset, scDesign2 was used to generate two single-cell datasets: one that maintains
co-expression and another that does not. (2) We manually created pathways of varying sizes
(20, 40, 60, 80, and 100) by selecting different numbers (n) of highly correlated gene pairs
from the initial training dataset. The remaining genes were randomly selected to complete
the pathways (pathway size–number of correlated genes). (3) We ran the GSNCASCR,

https://github.com/shouguog/GSNCASCR
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GSNCA (version 1.42.0), and GSCA (version 1.1.1) software tools to compare datasets with
and without maintained co-expression. Positive pathways exhibited more co-expression
changes than negative pathways. (4) We used AUC values to evaluate the performance of
the three tools.

The w value, as described in Equation (3) of Materials and Methods, is utilized to
quantify the differences between networks under two conditions. Permutations were
obtained by shuffling cell labels. We observed that the w values from these permutations
follow a normal distribution (Shapiro–Wilk test), as shown in Figure S3. Consequently,
we compared our observed results with the permutation-derived distribution to estimate
p-values.

We used simulated data to compute true sensitivities and precision of the tools for
detecting co-expression alteration pathways. Receiver operating characteristic (ROC)
curves, using the simulated data (>40% and <20% gene pairs for positive and negative
pathways, respectively), are shown in Figure 3. GSNCASCR shows the highest area-under-
the-curve (AUC) value, indicating the best performance among the three tools tested.

Int. J. Mol. Sci. 2025, 26, x FOR PEER REVIEW 5 of 18 
 

 

between gene pairs were shown. Highly correlated gene pairs in training data are used to create 

negative/positive pathways. 

Steps to generate the simulated data are illustrated in Figure S2. (1) Based on the 

training dataset, scDesign2 was used to generate two single-cell datasets: one that main-

tains co-expression and another that does not. (2) We manually created pathways of var-

ying sizes (20, 40, 60, 80, and 100) by selecting different numbers (n) of highly correlated 

gene pairs from the initial training dataset. The remaining genes were randomly selected 

to complete the pathways (pathway size–number of correlated genes). (3) We ran the 

GSNCASCR, GSNCA (version 1.42.0), and GSCA (version 1.1.1) software tools to compare 

datasets with and without maintained co-expression. Positive pathways exhibited more 

co-expression changes than negative pathways. (4) We used AUC values to evaluate the 

performance of the three tools. 

The � value, as described in Equation (3) of Materials and Methods, is utilized to 

quantify the differences between networks under two conditions. Permutations were ob-

tained by shuffling cell labels. We observed that the � values from these permutations 

follow a normal distribution (Shapiro–Wilk test), as shown in Figure S3. Consequently, 

we compared our observed results with the permutation-derived distribution to estimate 

�-values. 

We used simulated data to compute true sensitivities and precision of the tools for 

detecting co-expression alteration pathways. Receiver operating characteristic (ROC) 

curves, using the simulated data (>40% and <20% gene pairs for positive and negative 

pathways, respectively), are shown in Figure 3. GSNCASCR shows the highest area-un-

der-the-curve (AUC) value, indicating the best performance among the three tools tested. 

 

Figure 3. ROC curves for the three differential co-expression analysis tools using simulated data 

with default parameters. No extra errors were added to the simulated data. 

Average true positive rates (TPRs, sensitivities), false positive rates (FPRs), precision, 

and accuracy of the tools are given in Table 1. We defined TPs as truly called differentially 

co-expressed pathways and FPs as the pathways called significant but not differentially 

co-expressed pathways. Similarly, true negatives (TNs) were defined as pathways that 

were not truly differentially co-expressed and were not called significant, and false nega-

tives (FNs) were defined as pathways that were truly differentially co-expressed but were 

not called significant. 

As seen in Table 1, GSNCASCR identified the gained, highest identification accuracy 

at 0.79 and precision at 1.00. In comparison, GSCA identified the greatest number of truly 

differentially co-expressed pathways but also introduced the highest number of false pos-

itives (high false positive rate), which resulted in a low identification accuracy at 0.69. 

GSNCA identified the smallest number of truly differentially co-expressed pathways 

Figure 3. ROC curves for the three differential co-expression analysis tools using simulated data with
default parameters. No extra errors were added to the simulated data.

Average true positive rates (TPRs, sensitivities), false positive rates (FPRs), precision,
and accuracy of the tools are given in Table 1. We defined TPs as truly called differentially
co-expressed pathways and FPs as the pathways called significant but not differentially
co-expressed pathways. Similarly, true negatives (TNs) were defined as pathways that were
not truly differentially co-expressed and were not called significant, and false negatives
(FNs) were defined as pathways that were truly differentially co-expressed but were not
called significant.

Table 1. Comparison of average true positive rates (sensitivities), false positive rates, precision, and
accuracy of the three tools.

Method Sensitivity False Positive Rate Precision Accuracy

GSNCASCR 0.69 0.00 1.00 0.79
GSNCA 0.60 0.15 0.77 0.73
GSCA 1.00 0.59 0.60 0.69

Sensitivity = TP/(TP + FN), False positive rate = FP/(FP + TN), Precision = TP/(TP + FP), and Accuracy = (TP +
TN)/(TP + TN + FP + FN). TP, true positive; FN, false negative; FP, false positive; TN, true negative.

As seen in Table 1, GSNCASCR identified the gained, highest identification accuracy
at 0.79 and precision at 1.00. In comparison, GSCA identified the greatest number of
truly differentially co-expressed pathways but also introduced the highest number of
false positives (high false positive rate), which resulted in a low identification accuracy at
0.69. GSNCA identified the smallest number of truly differentially co-expressed pathways
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though it introduced a small number of false positives, which resulted in a low identification
accuracy at 0.73.

Adjusting the cutoff criteria used to define positive and negative pathways in simu-
lated data will produce different AUC values for the three software tools. More stringent
cutoffs are anticipated to result in higher AUC values because they create a clearer distinc-
tion between positive and negative pathways. We experimented with various cutoff types
and discovered that GSNCASCR consistently outperformed the others in approximately
90% of the cutoff combinations. AUC values using the criteria of greater than 40% for
positive and less than 40% for negative pathways, without any grey area, are presented in
Supplementary Figure S4.

Due to the inherent noise in scRNA-seq data, it is essential to assess the impact of
dropout and noise. Our simulated dataset is based on actual scRNA-seq data, which
naturally includes dropout and noise. To further mimic these conditions, we introduced
two types of data corruption: (a) increasing the number of zeros (dropouts) and (b) adding
noise [16,17]. Dropouts were applied by setting low expression values to zero with a higher
probability, varying the fraction of zeros from 0.1 to 0.7. For noise addition, we randomly
increased expression values by 30–50% or decreased them by 20–40%, with probabilities
ranging from 0.1 to 0.7.

AUC values decrease as dropout rates and noise levels increase (Figure S5). Therefore,
conducting quality control and removing low-quality cells are essential steps before analysis.
Further improvements in performance can be achieved by screening and eliminating
technical noise in scRNA-seq data [18].

2.3. Biological Experiments

To examine performance in a real dataset, we firstly applied GSNCASCR to a
scRNA-seq dataset from human peripheral blood mononuclear cells (PBMC) of seven
hospitalized patients with SARS-CoV-2 and six healthy donors to identify biological
pathways differentially regulated in COVID-19 patients [19]. Gene sets were taken
from the Hallmark pathway sets of the molecular signature database (MSigDB, https:
//www.gsea-msigdb.org/gsea/index.jsp (accessed on 16 May 2023)) where a total of
50 pathways are present. We also used gene sets taken from the Gene Ontology (GO) bio-
logical process pathways from MSigDB. Pathways with <40 or >1000 genes were discarded
and the resulting datasets comprised 7000 genes and 1026 pathways to analyze [2].

Approximately 80% of gene expressions follow a normal or log-normal distribu-
tion [20]. Given that different genes may exhibit varying distributions, selecting a normal
distribution is often the best approach, as it fits most genes well, which is required by
CS-CORE. We used the same real dataset as referenced in the paper of CS-CORE [6].
Consequently, the dataset met the requirements for CS-CORE’s measurement model.

The top 20 complete lists of pathways identified in CD4+ T cells are provided in Table 2.
Pathways found by GSNCASCR approaches were mainly immune related, including HALL-
MARK_INTERFERON_GAMMA_RESPONSE, HALLMARK_INTERFERON_ALPHA_RES
PONSE, HALLMARK_TNFA_SIGNALING_VIA_NFKB, HALLMARK_COMPLEMENT,
HALLMARK_IL2_STAT5_SIGNALING, and HALLMARK_IL6_JAK_STAT3_SIGNALING.
GO terms datasets contained many more pathways, and again most of pathways were
immune related, with top pathways of GOBP_DEFENSE_RESPONSE_TO_SYMBIONT,
GOBP_CYTOPLASMIC_TRANSLATION, GOBP_REGULATION_OF_VIRAL_GENOME_R
EPLICATION, GOBP_POSITIVE_REGULATION_OF_IMMUNE_SYSTEM_PROCESS, GOB
P_RESPONSE_TO_VIRUS, GOBP_AMIDE_BIOSYNTHETIC_PROCESS, GOBP_PEPTIDE_
BIOSYNTHETIC_PROCESS, GOBP_PROTEIN_ACETYLATION, GOBP_NEGATIVE_REGU

https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp


Int. J. Mol. Sci. 2025, 26, 4771 7 of 18

LATION_OF_VIRAL_PROCESS, and GOBP_ANTIGEN_RECEPTOR_MEDIATED_SIGNAL
ING_PATHWAY.

Table 2. Gene sets identified by GSCNASCR in the CD4+ T cells.

Pathway p-Value

HALLMARK_INTERFERON_GAMMA_RESPONSE 1.42 × 10−21

HALLMARK_INTERFERON_ALPHA_RESPONSE 2.34 × 10−20

HALLMARK_KRAS_SIGNALING_DN 1.09 × 10−13

HALLMARK_TNFA_SIGNALING_VIA_NFKB 9.53 × 10−13

HALLMARK_COMPLEMENT 3.04 × 10−9

HALLMARK_FATTY_ACID_METABOLISM 5.25 × 10−9

HALLMARK_XENOBIOTIC_METABOLISM 9.73 × 10−9

HALLMARK_ALLOGRAFT_REJECTION 7.31 × 10−8

HALLMARK_IL2_STAT5_SIGNALING 7.61 × 10−8

HALLMARK_IL6_JAK_STAT3_SIGNALING 1.11 × 10−7

HALLMARK_DNA_REPAIR 3.10 × 10−6

HALLMARK_TGF_BETA_SIGNALING 3.52 × 10−6

HALLMARK_OXIDATIVE_PHOSPHORYLATION 5.27 × 10−5

HALLMARK_ADIPOGENESIS 1.26 × 10−5

HALLMARK_HYPOXIA 1.52 × 10−5

HALLMARK_APICAL_JUNCTION 1.95 × 10−5

HALLMARK_KRAS_SIGNALING_UP 2.17 × 10−5

HALLMARK_REACTIVE_OXYGEN_SPECIES_PATHWAY 6.85 × 10−5

HALLMARK_COAGULATION 7.04 × 10−5

HALLMARK_APICAL_SURFACE 0.000129693

Co-expression networks for healthy, control, and differential conditions are shown
in Figure 4 (figure with .pdf format is available in Supplementary File S2). Additionally,
network visualizations in ggraph format for control, COVID-19, and differential networks
are available in Supplementary File S3 for further examination.

In both B cells (Tables 3 and S1) and CD4+ T cells, HALLMARK_INTERFERON_GA
MMA_RESPONSE, HALL-MARK_INTERFERON_ALPHA_RESPONSE, and HALL-MARK
_TNFA_SIGNALING_VIA_NFKB were all among the top identified pathways. This was
consistent with our understanding of COVID-19. Cytokines, such as interleukin-6 (IL-6),
interleukin-1 (IL-1), interleukin-17 (IL-17), and tumor necrosis factor-alpha (TNF-α) play
a significant role in lung damage in acute respiratory distress syndrome patients through
impairment of respiratory epithelium. Cytokine storm is defined as acute overproduction
and uncontrolled release of proinflammatory markers, locally and systemically [21].

Multiple studies have highlighted dysregulation of complex networks of peripheral
blood immune responses in COVID-19, using scRNA-seq analysis [20,22,23]. Monocytes,
dendritic cells, natural killer (NK) cells, T cells, and B cells are all reported to relate to
disease severity, while a dysregulated interferon (IFN) response, which has a key role
in innate immune response, is associated with disease pathogenesis and severity. Rare
loss-of-function mutations in IFNAR2 are associated with severe COVID-19 and many
other viral infections. Administration of IFN might reduce the likelihood of critical illness
in COVID-19 but could not distinguish if such a treatment might be effective during disease
progression of COVID-19. Several of these loci corresponded to previously documented
associations to lung or autoimmune and inflammatory diseases [24].

High levels of proinflammatory cytokines such as TNF-α and interleukins are pro-
duced by innate immune cells to fight SARS-CoV-2 infections. Cytokine-mediated inflam-
matory events are also linked to detrimental lung injury and respiratory failure, which
can result in patients’ deaths. TNF-α is among the early cytokines produced to mediate
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proinflammatory responses and enhance immune cell infiltration in response to SARS-CoV-
2 infections.
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Table 3. Gene sets identified by GSNCASCR in the B cells.

Pathway p-Value

HALLMARK_ALLOGRAFT_REJECTION 1.89 × 10−28

HALLMARK_IL2_STAT5_SIGNALING 8.11 × 10−21

HALLMARK_INTERFERON_GAMMA_RESPONSE 4.67 × 10−20

HALLMARK_TNFA_SIGNALING_VIA_NFKB 4.35 × 10−19

HALLMARK_KRAS_SIGNALING_UP 1.36 × 10−16

HALLMARK_ESTROGEN_RESPONSE_EARLY 1.60 × 10−16

HALLMARK_P53_PATHWAY 6.02 × 10−16

HALLMARK_HYPOXIA 2.22 × 10−15

HALLMARK_UV_RESPONSE_DN 1.71 × 10−14

HALLMARK_MYC_TARGETS_V2 1.97 × 10−14

HALLMARK_E2F_TARGETS 3.27 × 10−14

HALLMARK_G2M_CHECKPOINT 1.66 × 10−13

HALLMARK_MTORC1_SIGNALING 4.99 × 10−13

HALLMARK_APOPTOSIS 7.16 × 10−13

HALLMARK_PROTEIN_SECRETION 1.01 × 10−12

HALLMARK_ESTROGEN_RESPONSE_LATE 1.56 × 10−12

HALLMARK_CHOLESTEROL_HOMEOSTASIS 1.83 × 10−12

HALLMARK_MYC_TARGETS_V1 2.07 × 10−12

HALLMARK_COMPLEMENT 3.43 × 10−12

HALLMARK_PANCREAS_BETA_CELLS 7.39 × 10−12

We then examined differential expressed pathways in CD8+ T cells, and the results are
shown in Table 4.

Table 4. Gene sets identified by GSNCASCR in the CD8+ T cells.

Pathway p-Value

HALLMARK_HYPOXIA 3.71 × 10−22

HALLMARK_G2M_CHECKPOINT 6.01 × 10−22

HALLMARK_MYC_TARGETS_V1 1.53 × 10−20

HALLMARK_INTERFERON_ALPHA_RESPONSE 5.19 × 10−19

HALLMARK_E2F_TARGETS 7.08 × 10−19

HALLMARK_ALLOGRAFT_REJECTION 2.50 × 10−18

HALLMARK_MTORC1_SIGNALING 9.14 × 10−17

HALLMARK_APICAL_JUNCTION 1.66 × 10−15

HALLMARK_UV_RESPONSE_UP 5.53 × 10−15

HALLMARK_INTERFERON_GAMMA_RESPONSE 9.81 × 10−15

HALLMARK_UNFOLDED_PROTEIN_RESPONSE 1.00 × 10−14

HALLMARK_MITOTIC_SPINDLE 1.32 × 10−14

HALLMARK_IL2_STAT5_SIGNALING 1.01 × 10−13

HALLMARK_TNFA_SIGNALING_VIA_NFKB 1.18 × 10−12

HALLMARK_XENOBIOTIC_METABOLISM 5.88 × 10−12

HALLMARK_UV_RESPONSE_DN 6.04 × 10−11

HALLMARK_GLYCOLYSIS 3.25 × 10−10

HALLMARK_MYC_TARGETS_V2 4.39 × 10−10

HALLMARK_PI3K_AKT_MTOR_SIGNALING 5.17 × 10−5

HALLMARK_FATTY_ACID_METABOLISM 1.40 × 10−9

Surprisingly, in CD8+ T cells, top pathways were not immune-related, although
COVID-19 causes several immune-related complications, such as lymphocytopenia and cy-
tokine storm. Our results are consistent with a study that showed that SARS-CoV-2-infected
human CD4+ T helper cells, but not CD8+ T cells, are present in blood and bronchoalveolar
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lavage CD4+ T helper cells of severe COVID-19 patients. Also, previous studies showed
SARS-CoV-2 spike glycoprotein directly binds to the CD4 molecule, which in turn me-
diates the entry of SARS- CoV-2 into CD4+ T helper cells, leading to impaired CD4+ T
cell functions and cell death. SARS-CoV-2-infected CD4+ T helper cells express elevated
IL-10, which is associated with viral persistence and disease severity. Thus, CD4-mediated
SARS-CoV-2 infection of CD4+ T helper cells may contribute to a poor immune response in
COVID-19 patients [21]. Similarly, with GO biological process terms, the top terms were
TELOMERE related, DNA replication, and protein synthesis and localization (Table S2). In
contrast, in CD4+ T cells, most of the top terms were immune related (Table S3), such as
GOBP_DEFENSE_RESPONSE_TO_SYMBIONT, GOBP_CYTOPLASMIC_TRANSLATION,
GOBP_REGULATION_OF_VIRAL_GENOME_REPLICATION, GOBP_POSITIVE_REGUL
ATION_OF_IMMUNE_SYSTEM_PROCESS, GOBP_RESPONSE_TO_VIRUS, GOBP_AMID
E_BIOSYNTHETIC_PROCESS, GOBP_PEPTIDE_BIOSYNTHETIC_PROCESS, and GOBP_
PROTEIN_ACETYLATION.

Our results also revealed the importance of identifying cell-type-specific co-expression,
which is more enriched for biorelevant pathways [2], as most gene–gene correlations were
brought by the cell-type specificity of gene expression. For example, two genes specifically
expressed in one cell type were highly correlated when we analyzed all cell populations.

We examined the importance of HALLMARK_INTERFERON_GAMMA_RESPONSE
in COVID-19 infection. In network analysis of B cells, interferon-induced antiviral factor
(IFITM3) was the hub gene (Table 5). IFITM3 inhibits SARS-CoV-2 infection by preventing
SARS-CoV-2 spike-protein-mediated virus entry and cell-to-cell fusion. Analysis of a
Chinese COVID-19 patient cohort demonstrated that the rs12252 C genotype of IFITM3 is
associated with the SARS-CoV-2 infection risk in the studied cohort. These data suggest
that individuals carrying the rs12252 C allele in the IFITM3 gene may be vulnerable to
SARS-CoV-2 infection and benefit from early medical intervention [25].

Table 5. Top hub genes in the network of the IFN-γ pathway identified in B cells.

Gene Degree in COVID-19 Degree in Healthy Degree in Difference

PSMB2 39.62 25.02 39.21
IFITM3 24.22 44.54 38.32

IFI35 42.9 21.91 33.26
PTPN2 34.64 14.37 32.82

IRF5 29.9 16.22 26.54
CD40 29.8 12.29 24.19

MTHFD2 32.95 11.26 23.06
CASP4 22.08 22.68 22.74
BST2 28.95 14.26 22.62

IFNAR2 27.08 12.81 22.01
HLA-G 25.65 21.32 22
LY6E 27.68 20.66 21.7
LAP3 28.44 26.56 21.63

HLA-DMA 29.15 15.12 21.5
OGFR 24.44 15.61 21.28
STAT2 29.45 13.3 20.76
CD38 34.48 15.12 20.58

HLA-DRB1 29.29 12.27 20.56
PSMB2 39.62 25.02 39.21
IFITM3 24.22 44.54 38.32

The IFITM3 rs6598045 G allele was significantly more common in deceased COVID-19
patients than in those who recovered. Highest mortality rates were observed in the Delta
variant and with the lowest qPCR Ct values. COVID-19 mortality was associated with the
IFITM3 rs6598045 GG and AG in the Delta variant and the IFITM3 rs6598045 AG in the
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Alpha variant. A statistically significant difference was observed in the qPCR Ct values
between individuals with GG and AG genotypes and those with an AA genotype [26].
IFITM proteins are directly involved in adaptive immunity, and they regulate CD4+ T
helper cell differentiation [27]. IFITM3 also directly engages and shuttles incoming virus
particles to lysosomes [28].

IFITM3 was also a hub gene in the differential network of CD4+ T cells, ranking 12 out
of 118 genes (Table 6). The number one hub gene was BST2, which was associated with
COVID-19. There was a decrease in SARS-CoV-2 in cells with deleted transmembrane
BST2 domains compared to the initial Vero cell line. Similar results were obtained for
SARS-CoV-2 and avian influenza virus [29]. Another study found that BST-2 restricts
SARS-CoV-2 virion egress by tethering virions to the plasma membrane. We also identified
several SARS-CoV-2 proteins that are putative modulators of BST2 function [30]. BST2 is
an antiviral protein that inhibits the release and spread of many viruses and is upregulated
as part of the innate immune defense against infections [31]. BST2 can respond to infection
by inducing proinflammatory responses via NF-κb signaling pathway activation [32].

Table 6. Top hub genes in the network of the IFN-γ pathway identified in CD4+ T cells.

Gene Degree in COVID-19 Degree in Healthy Degree in Difference

BST2 26.16 14.76 22.08
SRI 21.88 17.74 21.67

OGFR 21.02 11.82 18.87
LAP3 24.6 12.19 18.62
LY6E 26.82 22.24 16.68
NMI 21.58 15.11 16.66

MYD88 26.17 15.46 16.54
HLA-G 18.63 17.57 16.29
IFI44L 26.89 9.7 15.99
RSAD2 25.8 9.23 15.67

MX2 23.83 9.99 15.32
IFITM3 19.33 14.97 15.12
CASP4 20.56 13.68 14.83
OAS3 28.31 13.93 14.81

PARP14 22.44 10.35 14.56
OAS2 32.82 17.39 14.18
IFIT1 26.56 13.92 13.95

STAT2 23.22 16.76 13.92
UBE2L6 25.05 18.35 13.38

RAPGEF6 16.65 15.45 13.37

Successful identification of hub genes illustrated the capability of GSNCASCR in
prioritizing disease-related genes for understanding pathophysiology of disease and poten-
tial therapies.

DADA2 (deficiency of adenosine deaminase 2) is a vasculitis disease caused by
autosomal-recessive loss-of-function mutations in the ADA2 gene [33]. The spectrum
of disease manifestations includes vasculitis, vasculopathy, and inflammation. ADA2
protein is primarily secreted by stimulated monocytes and macrophages, and aberrant
monocyte differentiation to macrophages is important in the pathogenesis of DADA2. We
also applied GSNCASCR to an scRNA-seq dataset comprising monocytes, CD4+, and CD8+

T lymphocytes of DADA2 patients and the results are shown in Table 7.
As expected, gene sets identified by GSNCASCR in monocytes in DADA2 patients

were highly related with immune response, including IFN-γ and IFN-α and TNF-α sig-
naling via NFκB and other pathways, indicating activation of monocytes and general
inflammation in DADA2. Our previous research also revealed that T lymphocytes were
activated and potentially contributed to exaggerated inflammation via ligand–receptor
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interactions with monocytes [34]. Consistently, upregulation of genes in the immune
pathways such as IFN-γ and IFN-α, IL6 JAK STAT3 signaling, IL2 STAT5 signaling, and
TNF-α signaling via NFκB were seen in CD4+ T cells of DATA2 patients, defined by
GSNCASCR [33]. GSNCASCR also showed that CD8+ T cells in DADA2 upregulated
stress pathways, including unfolded protein response, UV response, and inflammation
(TNF-α signaling via NFκB and PI3K AKT MTOR signaling), suggesting T cell activation,
cytotoxicity, and contribution to inflammation in the disease [34,35].

Table 7. Gene sets identified by GSNCASCR in the monocytes in DADA2.

Type Pathway p-Value

Monocyte HALLMARK_INTERFERON_GAMMA_RESPONSE 1.19 × 10−22

Monocyte HALLMARK_INTERFERON_ALPHA_RESPONSE 2.73 × 10−17

Monocyte HALLMARK_INFLAMMATORY_RESPONSE 5.61 × 10−14

Monocyte HALLMARK_ALLOGRAFT_REJECTION 1.87 × 10−12

Monocyte HALLMARK_ADIPOGENESIS 1.87 × 10−11

Monocyte HALLMARK_TNFA_SIGNALING_VIA_NFKB 1.51 × 10−9

Monocyte HALLMARK_ESTROGEN_RESPONSE_LATE 2.43 × 10−9

Monocyte HALLMARK_PROTEIN_SECRETION 3.09 × 10−9

Monocyte HALLMARK_NOTCH_SIGNALING 3.30 × 10−9

Monocyte HALLMARK_XENOBIOTIC_METABOLISM 1.83 × 10−8

CD4+ T HALLMARK_INTERFERON_GAMMA_RESPONSE 3.47 × 10−15

CD4+ T HALLMARK_IL6_JAK_STAT3_SIGNALING 4.58 × 10−15

CD4+ T HALLMARK_INTERFERON_ALPHA_RESPONSE 4.86 × 10−14

CD4+ T HALLMARK_IL2_STAT5_SIGNALING 1.42 × 10−13

CD4+ T HALLMARK_TNFA_SIGNALING_VIA_NFKB 4.46× 10−13

CD4+ T HALLMARK_ALLOGRAFT_REJECTION 6.27 × 10−12

CD4+ T HALLMARK_KRAS_SIGNALING_UP 6.78 × 10−12

CD4+ T HALLMARK_APOPTOSIS 1.75 × 10−11

CD4+ T HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION 1.82 × 10−1

CD4+ T HALLMARK_OXIDATIVE_PHOSPHORYLATION 7.87 × 10−9

CD8+ T HALLMARK_MYC_TARGETS_V1 4.06 × 10−13

CD8+ T HALLMARK_TNFA_SIGNALING_VIA_NFKB 1.85 × 10−11

CD8+ T HALLMARK_COMPLEMENT 5.99 × 10−11

CD8+ T HALLMARK_UNFOLDED_PROTEIN_RESPONSE 2.04 × 10−10

CD8+ T HALLMARK_PANCREAS_BETA_CELLS 1.95 × 10−9

CD8+ T HALLMARK_UV_RESPONSE_UP 4.93 × 10−9

CD8+ T HALLMARK_INFLAMMATORY_RESPONSE 1.05 × 10−8

CD8+ T HALLMARK_CHOLESTEROL_HOMEOSTASIS 3.01 × 10−8

CD8+ T HALLMARK_PI3K_AKT_MTOR_SIGNALING 4.83 × 10−7

CD8+ T HALLMARK_ESTROGEN_RESPONSE_LATE 1.69 × 10−6

The results from GSNCA and GSCA applied to DADA2 and COVID-19 datasets
are presented in Supplementary File S4. While most findings aligned with those from
GSNCASCR, some discoveries were not clearly identified by these two tools. For instance,
GSCA and GSNCA also identified immune response pathways to be differentially co-
expressed in monocytes in DADA2, but GSNCA failed in CD4 and CD8 cells, and GSCA
failed in CD8 cells. We recommend using multiple software tools on real datasets to
thoroughly assess both consistent and inconsistent results for biological interpretation.

3. Discussion
We propose a statistical test, GSNCACR, to advantageously integrate GSNCA and

CSCORE, and to better detect significant changes in the co-expression structure between
two different biological conditions.

To further improve co-expression analysis for scRNA-seq data, one possibility is to
use neighboring information of co-expression networks to refine gene–gene dependence
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identification. For example, topological overlap measure is a combination of the adjacency
values between a pair of genes as well as the adjacency values these genes have with other
genes to which they are connected [36].

Due to a high dropout rate, imputation can be considered in the future, and also
batch correction, sequence depth, and other factors. Imputation with a sophisticated
approach, such as Markov affinity-based graph imputation of cells, can denoise the cell
count matrix and fill in missing transcripts, making it more effective in recovering gene–
gene relationships [37]. Our program can run in parallel with multiple cores under Linux.
However, on a personal computer, about 10 h is needed to calculate 100 pathways when
using permutations to estimate statistical significance. The algorithm can be improved to
increase computational speed. Additionally, our algorithm, including CS-CORE, supports
parallel execution on Linux systems, which can enhance performance. Since individual
pathways are treated independently, users can divide a pathway set into small pathway
subsets, run the program on each subset separately, and then merge the results. The number
of cells in the dataset impacts processing time; we have found that having around 3000 cells,
with comparable numbers in both healthy and control groups, is optimal.

One limit of GSNCACR is its reliance on the quality and completeness of pathway
databases. The quality and completeness of biological pathway content can vary signif-
icantly. Usually, large datasets such as GO have low quality. Users can choose different
pathway datasets, depending on their study aim, for screening or validating. Recent studies
have emphasized the contribution of cell–cell interactions across different cell populations
in normal tissues and disease states [38]. Also, GSNCACR cannot examine the relationships
of differentially co-expressed pathways across different cell populations, which would be
another direction for improvement.

Integration with some known regulatory markers, such as K4me2, K4me3, K27ac, and
ATAC-seq signals, can enhance co-expression estimation [39]. Additionally, integrating
external datasets like STRING and BioGRID can also improve these estimations [40,41].

Interpreting and validating co-expression changes of gene pairs within interesting
pathways is important. We plan to develop a Shiny app tool that allows users to interac-
tively examine these changes in the context of STRING databases [39]. While it is important
to validate co-expression changes with external databases for performance evaluation, there
are currently no comprehensive databases detailing interaction changes due to diseases or
biological processes.

There are many software packages for differential co-expression analysis at the gene
pair, network, and subnetwork levels. Though useful, results are noisy and challenging to
interpret. There are only several co-expression software packages based on well-defined
pathways (functionally annotated gene set) [42,43]. Compared to network analysis, results
from pathway analysis are more easily comprehensible for biologists to interpret and to
infer a biological hypothesis.

4. Materials and Methods
The GSNCASCR R package compares gene co-expression networks in terms of their

structural properties. In the following subsections, we explain the construction of co-
expression networks (graphs), the graph spectral analysis, and the package’s main features.

4.1. Simulated and Read Datasets

We used scDesign2 as the simulator because we desired synthetic cells that preserved
real genes and gene–gene correlations observed in real data [8], which preserved genes and
gene–gene correlations and allowed us to generate non-zero-inflated data, making it easy
for us to introduce non-biological zeros using various masking schemes. We focused on
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500 genes randomly sampled from the top 5000 highly expressed genes with probabilities
proportional to the inverse density of expression levels.

Real datasets were downloaded. We used the scRNA-seq data on PBMCs from COVID-19
patients and healthy donors from [19], at the NCBI Gene Expression Omnibus (accession no.
GSE150728). The data are available at https://hosted-matrices-prod.s3-us-west-2.amazonaws.
com/Single_cell_atlas_of_peripheral_immune_response_to_SARS_CoV_2_infection-25/blish_
covid.seu.rds (accessed on 22 May 2023). The datasets contain the metadata of cell types. The
subsets of B cells, CD8+ T cells, CD4+ T cells, and monocytes were extracted from the Seurat
object. The datasets of DADA2 patients were downloaded from GEO (accession IDs, GSE142444
and GSE168163) [33,35].

The gene lists of Hallmark and GO biology process gene sets were downloaded from
the Gene Set Enrichment Analysis (GSEA) database https://www.gsea-msigdb.org/gsea/
msigdb (accessed on 20 October 2022).

4.2. Estimation of Co-Expression Gene Pairs

The first step is to estimate co-expression from scRNA-seq data with CS-CORE, which
models unobserved true gene expression levels as latent variables, linked to observed UMI
counts through a measurement model that accounts for both sequencing depth variations
and measurement errors.

Under the expression measurement model of a Poisson distribution:(
zi1, . . . , zip

)
∼ Fp(µ, Σ), xij

∣∣zij ∼ Poisson(sizi1) (1)

Here, xij is a UMI count of gene j in cell i, assumed to follow a Poisson measurement
model depending on an underlying expression level zij and sequencing depth si.

With E
(
xij

)
= siµi, Var

(
xij

)
= siµi + s2

i σjj and E
[(

xij − siµj
)(

xij′ − siµj′
)]

= siσjj′ , CS-
Core estimates µj via the regression approaches. CS-CORE selects and updates weights via
an IRLS procedure, such that the weighted least squares estimators are statistically efficient.

Next, CS-CORE develops a statistical test to assess whether a gene pair has
independent expression levels. When zij and zij′ are independent, Var

(
ξijj′

)
=(

siµj′ + s2
i σjj

)(
siµj′ + s2

i σjj′
)

= 1/gijj′ . Letting σ̂jj′ be estimated with true µjs, the test

statistic is defined as Tjj′ = σ̂jj′/
√

Var
(

σ̂jj′
)

.

It follows that Tjj′ ∼ N(0, 1) under the null hypothesis that zij and zij′ are independent.
This result allows us to directly compute p-values by plugging in IRLS estimated u′

j′ and
σjj

′ values, all of which are consistent to weight least squares estimators.

4.3. Identification of Co-Expressed Pathways

The GSNCA method detects differences in a network correlation structure for a gene
set between two conditions [4] and is implemented in function GSNCAtest. Genes under
each phenotype are assigned weight factors that are adjusted simultaneously such that
equality is achieved between each gene’s weight as well as a sum of its weighted correlations
with other genes in a gene set of p genes:

wi = ∑j ̸=i wjrij, 1 ≤ i ≤ p (2)

where rij is the correlation estimated by CS-CORE, and then solves as an eigenvector prob-
lem with a unique solution that is an eigenvector corresponding to the largest eigenvalue
of the genes’ correlation matrix.

https://hosted-matrices-prod.s3-us-west-2.amazonaws.com/Single_cell_atlas_of_peripheral_immune_response_to_SARS_CoV_2_infection-25/blish_covid.seu.rds
https://hosted-matrices-prod.s3-us-west-2.amazonaws.com/Single_cell_atlas_of_peripheral_immune_response_to_SARS_CoV_2_infection-25/blish_covid.seu.rds
https://hosted-matrices-prod.s3-us-west-2.amazonaws.com/Single_cell_atlas_of_peripheral_immune_response_to_SARS_CoV_2_infection-25/blish_covid.seu.rds
https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb


Int. J. Mol. Sci. 2025, 26, 4771 15 of 18

As a test statistic, wGSNCASCR, we use the L1 norm between the scaled weight vectors
w(1) and w(2) (each vector is multiplied by its norm to scale weight factor values around
one) between two conditions. The test statistic GSNCASCR is the first norm between two
scaled weight vectors under two phenotypes where each vector is multiplied by its norm.

wGSCNASCR = ∑p
i=1

∣∣∣w(1)
i,norm − w(2)

i, norm

∣∣∣ (3)

We use this test statistic to test the hypothesis H0: wGSNCASCR = 0 against the al-
ternative H1: wGSNCASCR ̸= 0. We downloaded the code of the GSAR package, which
implemented the GSNCAtest function and used it in our package. In this function, GSNCAt-
est uses permutations to estimate p-values (https://bioconductor.org/packages/release/
bioc/manuals/GSAR/man/GSAR.pdf (accessed on 12 May 2023)). The p-values for the
test statistic are obtained by comparing the observed value of the test statistic to its null
distribution, which is estimated using a permutation approach.

4.4. Identification of Hub Genes in Pathways

Hub genes provide useful biological information beyond the result that a pathway is
differentially co-expressed between two conditions. A weighted node connectivity (WNC)
score can be specified as follows:

WNCi = ∑N
j wij (4)

where node i is connected to node j, and wij reflects the strength of a connection of node i
with node j. In this paper, wij is computed as an absolute value of a correlation (differential
correlation in differential networks) between genes i and j estimated by GSNCASCR.

5. Conclusions
GSNCASCR identified differential gene sets through examining co-expression net-

works with scRNA-seq data. It performs better than GSCNA and GSCA, with higher
precision and accuracy. As an additional result from GSNCASCR, we defined hub genes as
genes with the largest weights and showed that these genes corresponded frequently to
major and specific pathway regulators, as well as to genes that were most affected by the
biological difference between two conditions. GSNCASCR is a new approach, resulting
in the generation of novel biological hypotheses at both gene and pathway levels. This
package provides pathways for understanding the mechanism of diseases and hub genes
for functional studies.

In addition to Supplementary File S1, a vignette for analysis of CD4 cells in COVID-
19 (available in Appendix A), several additional vignettes are available on our GitHub
repository. These resources provide comprehensive guidance for users to effectively utilize
the analytical tools. Furthermore, they should be useful in allowing other users to reproduce
our analysis and to track the tool’s analysis procedures. These vignettes also provide
exemplary steps for others to establish pipelines for their own single-cell data.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms26104771/s1.
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Appendix A
Vignette of analysis of CD4+ T cells of COVID-19 patients is available at https://

htmlpreview.github.io/?https://github.com/shouguog/GSNCASCR/blob/main/vignette/
COVIDCD4Tcell.html (accessed on 22 June 2023), and a pdf file is attached as Supplementary
Materials.
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