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Abstract: The identification of causal genomic regions for liver fat accumulation in the
context of metabolic dysfunction remains a challenging goal. This study aimed to iden-
tify potential endophenotypes for liver fat content and employ them in bivariate linkage
searches for pleiotropic genetic regions where targeted association analysis is more likely
to reveal significant variants. Multiple metabolic risk and adiposity distribution traits were
assessed using the endophenotype ranking value. The top-ranked endophenotypes were
then used in a bivariate linkage analysis, paired with liver fat content. Quantitative trait
loci (QTLs) identified as significant or suggestive were targeted for measured genotype
association analyses. The highest-ranked endophenotypes for liver fat accumulation were
insulin resistance (IR), visceral adipose tissue (VAT), and high-density lipoprotein choles-
terol (HDL-C). The univariate linkage analysis for liver fat content identified one significant
QTL at chromosome 17p13.2 (Logarithm of odds score (LOD) = 2.90, p = 1.29 × 10−4). The
bivariate linkage analysis pairing liver fat with IR and VAT improved the localization of
two suggestive QTLs at 13q21.31 (LOD = 2.11, p = 9.03 × 10−4), and 6q21 (LOD = 2.35,
p = 5.07 × 10−4), respectively. Targeted association analyses within the -1-LOD score re-
gions of these QTLs revealed 17 marginally significant single nucleotide polymorphisms
(SNPs) associated with liver fat content or its combination with the selected endophe-
notypes. The endophenotype-informed linkage analysis successfully identified regions
suitable for the targeted association analysis of liver fat content, either alone or in com-
bination with IR or VAT, leading to the discovery of marginally significant variants with
potential for future functional studies.

Keywords: MASLD; endophenotype; linkage; genotype association; family studies

1. Introduction
MASLD (metabolic dysfunction-associated steatotic liver disease) represents an up-

dated classification of hepatic steatosis that incorporates metabolic risk factors regardless of
alcohol use [1]. The MASLD definition differs from the former exclusionary non-alcoholic
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fatty liver disease (NAFLD) in that it includes people with steatotic liver disease (SLD) and
at least one of the following: 1. body mass index (BMI) classified as overweight, 2. diagnosis
of type 2 diabetes mellitus (T2D), or 3. BMI classified as normal weight but with evidence of
metabolic dysfunction, i.e., abnormal waist circumference, insulin resistance, dyslipidemia,
inflammation, pre-diabetes, or hypertension [1]. A recent study estimated the prevalence
of SLD at 42.1% (95% CI 40.3–43.9) of the US adult population, with 99.4% of them meeting
the definition of MASLD, [1] which is higher than the previously reported prevalence under
the NAFLD definition of 30% of the US adult population [2]. Under this new definition,
MASLD has also continued to be the fastest growing etiology of hepatocellular carcinoma
(HCC), or liver cancer, worldwide [1].

There is strong evidence to suggest that MASLD aggregates in families. Heritability
estimates for hepatic steatosis range from 26 to 27%, [3,4] and several genome-wide associ-
ation studies (GWAS) have been able to identify causal genomic regions associated with
different MASLD endpoints including histological assessments, imaging-based liver fat
content, liver enzyme measurements, and the presence of HCC [5]. The replication of these
findings, however, and the characterization of the shared genetic risk between liver fat
accumulation and features of metabolic dysfunction, has been challenging. Furthermore,
understanding the genetic underpinnings of these complex disorders is critical to support
the development of therapeutic and preventive strategies that can target both liver disease
and metabolic dysfunction.

Barriers to the discovery of novel genetic factors affecting liver fat are in part due
to the inherent limitations of GWAS, such as requiring very large sample sizes, and the
difficulties of assessing liver fat accurately in population-based samples [6]. One potential
approach that has been shown to assist in the localization of causal genomic regions for
complex disorders is the use of intermediate quantitative phenotypes, or “endophenotypes”
in family-based linkage studies [7]. Endophenotypes were first introduced in the field of
psychiatry and defined as measurable components that lie in the causal pathway between
the genotype and the disease [8], and should meet the following criteria to be considered
as such: (1) be associated with the phenotype of interest but not part of its diagnosis, (2) be
heritable, and (3) be genetically correlated to phenotype of interest [9]. An endophenotype
ranking value (ERV) can then be used to assess the potential usefulness of an endophe-
notype based on its heritability and genetic correlation estimates. The highest-ranked
endophenotypes can then be employed in linkage analyses for the phenotype of interest,
which has been shown to increase the likelihood of detecting associated genomic regions in
other studies [7]. The localization of significant and suggestive quantitative trait loci (QTLs)
through linkage, in turn, helps narrow the search space for targeted association analyses,
which allows for the utilization of a more conservative p-value compared to performing a
genome-wide association scan, and reduces the time and computational resources required
to perform such analyses. This technique has not yet been employed in the localization of
genetic regions related to liver fat accumulation in the context of metabolic dysfunction.

In this study, we performed a search for endophenotypes by ranking potential can-
didate endophenotypes for fatty liver disease using data from 704 non-Hispanic white
adults from the Fels Longitudinal Study (FLS). Top-ranked endophenotypes were then
employed in bivariate linkage analyses paired with liver fat content, to see if this aided
in the localization of significant genomic regions exhibiting pleiotropic effects. Separate,
univariate linkage analyses for liver fat content and each of the selected endophenotypes
were also performed. Lastly, significant and suggestive QTLs identified through linkage
for liver fat content and selected endophenotypes were targeted for both univariate and
bivariate measured genotype association (MGA) analyses in the search for significant or
marginally significant variants.
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2. Results
2.1. Heritability of Liver Fat Content

The mean ± SE magnetic resonance imaging-proton density fat fraction (MRI-PDFF),
or liver fat content, in the study sample was 5.95% ± 0.23 and 29.8% of the participants met
criteria for steatosis based on the clinically significant cut-point of 5.56% [10]. The median
MRI-PDFF was 3.5%, ranging from 0.7 to 37.3%. MRI-PDFF showed a heritability estimate
of 52% (SE = 0.087, p < 2 × 10−10), indicating strong genetic influence. Crude and adjusted
heritability estimates for all the assessed phenotypes are presented in Table 1; all of the as-
sessed phenotypes were significantly heritable except for aspartate aminotransferase (AST).

Table 1. Unadjusted and adjusted heritability estimates for liver disease indicators, glucose home-
ostasis, adiposity distribution, and cardiovascular disease risk phenotypes.

Unadjusted Heritability Adjusted Heritability †

Phenotype N h2 ± SE p-Value h2 ± SE p-Value

Steatosis 704 0.598 ± 0.157 2.420 × 10−5 0.723 ± 0.171 6.800 × 10−6

MRI-PDFF 704 0.445 ± 0.081 3.241 × 10−9 0.520 ± 0.087 1.841 × 10−10

ALT 623 0.226 ± 0.096 4.982 × 10−5 0.253 ± 0.098 2.143 × 10−3

AST 623 0.330 ± 0.091 9.100 × 10−6 0.274 ± 0.089 1.462 × 10−4

FG 670 0.418 ± 0.080 3.826 × 10−10 0.424 ± 0.081 1.669 × 10−10

FI 688 0.378 ± 0.086 9.000 × 10−7 0.377 ± 0.086 1.100 × 10−6

HOMA-IR 662 0.449 ± 0.090 4.374 × 10−8 0.443 ± 0.090 1.000 × 10−7

VAT 704 0.366 ± 0.081 6.000 × 10−7 0.665 ± 0.080 8.076 × 10−17

SAT 704 0.441 ± 0.075 6.207 × 10−12 0.487 ± 0.081 5.721 × 10−12

BMI 704 0.493 ± 0.073 8.079 × 10−14 0.558 ± 0.076 3.931 × 10−15

%BF 676 0.370 ± 0.086 2.000 × 10−7 0.493 ± 0.090 1.669 × 10−9

WC 704 0.406 ± 0.075 8.875 × 10−10 0.520 ± 0.079 8.923 × 10−13

SBP 704 0.335 ± 0.080 1.600 × 10−6 0.367 ± 0.084 5.000 × 10−7

DBP 704 0.304 ± 0.090 1.634 × 10−4 0.334 ± 0.093 5.540 × 10−5

MAP 704 0.369 ± 0.085 1.500 × 10−6 0.373 ± 0.087 2.400 × 10−6

TG 693 0.430 ± 0.085 1.524 × 10−8 0.519 ± 0.086 7.138 × 10−11

HDL-C 693 0.521 ± 0.089 4.802 × 10−10 0.603 ± 0.080 1.272 × 10−13

† Adjusted for age, sex, and their interactions. Abbreviations: SE, standard error; ALT, alanine aminotransferase;
AST, aspartate aminotransferase; VAT, visceral adipose tissue; SAT, subcutaneous adipose tissue; BMI, body mass
index; DXA, dual energy x-ray absorptiometry; %BF, percent body fat; SBP, systolic blood pressure; DBP, diastolic
blood pressure; MAP, mean arterial pressure; HDL-C, high density lipoprotein cholesterol.

2.2. Potential Endophenotypes

Potential endophenotypes examined are presented in Table 2. Insulin resistance mea-
sured by HOMA was the highest-ranked endophenotype. The heritability of this measure
was h2 = 0.44 ± 0.09 (p = 1.0 × 10−7), which means that 44% of the observed variation
of this trait is due to additive genetic factors. A substantial genetic correlation was de-
tected between homeostatic model assessment-insulin resistance (HOMA-IR) and liver fat
(ρG = 0.85 ± 0.08), suggesting shared genetic determinants. The second-best-ranked en-
dophenotype is the measure of abdominal visceral fat accumulation: VAT, with a higher her-
itability (h2 = 0.67 ± 0.08, p = 8.08 × 10−17), but lower genetic correlation (ρG = 0.67 ± 0.08)
to liver fat content than insulin resistance. The 3rd-ranked endophenotype is fasting in-
sulin; however, this measure is highly correlated with the 1st-ranked endophenotype as
it is a component of HOMA. The 4th- and 5th-ranked endophenotypes, respectively, are
both cardiovascular disease risk factors: high density lipoprotein cholesterol (HDL-C) and
triglycerides (TG), and heritability estimates of these measurements are also significant at
h2 = 0.60 ± 0.08 (p = 1.27 × 10−13) and h2 = 0.52 ± 0.09 (p = 7.14 × 10−11), respectively. To
avoid redundancy when choosing which endophenotypes to use for the bivariate linkage
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analysis of liver fat content risk, we picked the highest-ranked endophenotype within each
of the following classes: For 1. measures of glucose homeostasis: HOMA-IR; for 2. adiposity
measures: VAT and for 3. Cardiovascular disease risk factors: HDL-C. The endophenotypes
for the fourth class: 4. measures of liver function: alanine aminotransferase (ALT) and
aspartate aminotransferase (AST), ranked lowest overall for endophenotype potential, so
none of these features were employed for the bivariate linkage analysis.

Table 2. ERVs for potential endophenotypes in descending order of magnitude by class.

Endophenotype N ERV p-Value ρg ± SE h2 ± SE

Glucose
homeostasis
HOMA-IR 662 0.406 1.727 × 10−8 0.847 ± 0.078 0.443 ± 0.090

FI 688 0.364 9.568 × 10−8 0.822 ± 0.082 0.377 ± 0.086
FG 670 0.282 1.780 × 10−5 0.599 ± 0.109 0.424 ± 0.081

Adiposity
distribution

VAT 704 0.392 6.960 × 10−8 0.666 ± 0.078 0.665 ± 0.080
WC 704 0.269 1.099 × 10−3 0.518 ± 0.085 0.520 ± 0.079
BMI 704 0.267 9.350 × 10−5 0.496 ± 0.098 0.558 ± 0.076

DXA %BF 676 0.263 2.054 × 10−4 0.521 ± 0.107 0.493 ± 0.090
SAT 704 0.261 1.700 × 10−4 0.518 ± 0.104 0.487 ± 0.081

CVD risk factors
HDL-C 693 0.332 3.480 × 10−5 −0.593 ± 0.121 0.603 ± 0.080

TG 693 0.293 4.780 × 10−5 0.564 ± 0.100 0.519 ± 0.086
MAP 704 0.187 7.750 × 10−3 0.424 ± 0.142 0.373 ± 0.087
SBP 704 0.172 1.148 × 10−2 0.393 ± 0.140 0.367 ± 0.084
DBP 704 0.169 1.860 × 10−2 0.406 ± 0.158 0.334 ± 0.093

Liver function
ALT 623 0.163 0.029 0.449 ± 0.185 0.253 ± 0.098
AST 623 0.047 0.508 0.126 ± 0.187 0.274 ± 0.089

All variables are inverse-normalized. Abbreviations: HOMA-IR, homeostatic model assessment-insulin resistance;
FI, fasting insulin; FG, fasting glucose; VAT, visceral adipose tissue; WC, waist circumference; BMI, body mass
index; BF%, body fat %; SAT, subcutaneous adipose tissue; CVD, cardiovascular disease; HDL-C, high density
lipoprotein cholesterol; TG, triglycerides; MAP, mean arterial pressure; SBP, systolic blood pressure; and DBP,
diastolic blood pressure.

2.3. Bivariate Linkage Analyses Using Liver Fat and Top-Ranked Endophenotypes

We conducted a genome-wide search for quantitative trait loci exhibiting pleiotropic
activity for MASLD disease risk based on MRI-PDFF and each of the selected endopheno-
types: HOMA-IR, VAT, and HDL-C. The highest score for MRI-PDFF (natural log-adjusted)
by the univariate linkage analysis was located on chromosome (chr.) 17p13.2 with a signifi-
cant logarithm of odds (LOD) score of 2.90 and a nominal p-value of 1.29 × 10−4. Evidence
of additional suggestive QTLs influencing the selected endophenotypes was also localized:
For HOMA-IR (natural log-adjusted) on chr. 13q12.13 (LOD = 2.49, p = 3.50 × 10−4) and
chr. 19q13.2 (LOD = 2.11, p = 9.16 × 10−4); and for VAT accumulation (inverse normalized)
on chr. 7q31.32 (LOD = 2.41, p = 4.27 × 10−4), Chr. 12q24.33 (LOD = 2.24, p = 6.62 × 10−4),
and Chr. 21q22.2 (LOD = 2.20, p = 7.22 × 10−4). The endophenotype HDL-C (inverse nor-
malized) showed the highest significant peak on Chr. 12q23.3 (LOD = 3.09, p = 8.14 × 10−5)
and another suggestive peak at Chr. 8q22.1 (LOD = 2.45, p = 3.92 × 10−4). Significant and
suggestive QTL locations found in univariate linkage analysis are summarized in Table 3.
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Table 3. Significant and suggestive QTL locations from univariate linkage analyses on liver fat content
and selected endophenotypes.

Trait(s) N Location (hg.19) LOD Score p-Value

MRI-PDFF † 696 17p13.2 2.9010 ** 1.29 × 10−4

HOMA-IR † 656 13q12.13 2.4948 * 3.50 × 10−4

19q13.2 2.1086 * 9.16 × 10−4

VAT ‡ 696 7q31.32 2.415 * 4.27 × 10−4

12q24.33 2.2385 * 6.62 × 10−4

21q22.2 2.2037 * 7.22 × 10−4

HDL-C ‡ 685 12q23.3 3.0872 ** 8.14 × 10−5

8q22.1 2.4495 * 3.92 × 10−4

†, log transformed variable; ‡, inverse-normalized variable; *, suggestive; and **, significant. Abbreviations: MRI-
PDFF, magnetic resonance imaging–proton density fat fraction, i.e., liver fat content; HOMA-IR, homeostatic model
assessment–insulin resistance; VAT, visceral adipose tissue; and HDL-C, high-density lipoprotein–cholesterol.

The comparison of bivariate vs. univariate LOD scores is shown in Table 4. A potential
improvement in localization occurred when pairing MRI-PDFF (natural log adjusted) with
HOMA-IR (natural log-adjusted), which amplified the evidence of a suggestive QTL on Chr.
13q13.1 (LOD = 2.11, p = 9.03 × 10−4). The LOD scores at the location from the univariate
analyses for each of the individual traits were 1.77 for MRI-PDFF and 1.61 for HOMA-IR.

Table 4. Suggestive QTL locations from bivariate linkage analyses of liver fat content paired with
selected endophenotypes compared to univariate LOD scores.

Location (hg. 19) N Trait(s) LOD Score Nominal p

13q31.1 656 MRI-PDFF † + HOMA-IR † 2.1144 * 9.03 × 10−4

696 MRI-PDFF † 1.7703 * 2.15 × 10−3

656 HOMA-IR † 1.6081 3.25 × 10−3

17p13.2 656 MRI-PDFF † + HOMA-IR † 2.0901 * 9.60 × 10−4

696 MRI-PDFF † 2.9010 ** 1.29 × 10−4

656 HOMA-IR † 0.1527 0.201
6q22.32 696 MRI-PDFF ‡ + VAT ‡ 2.3459 * 5.07 × 10−4

696 MRI-PDFF ‡ 0.1298 0.220
696 VAT ‡ 1.3833 5.80 × 10−3

12q23.3 685 MRI-PDFF ‡ + HDL-C ‡ 2.3635 * 4.85 × 10−4

696 MRI-PDFF ‡ 0.0535 0.310
685 HDL-C ‡ 3.0872 ** 8.14 × 10−5

†, log transformed variable; ‡, inverse-normalized variable; *, suggestive; and **, significant. Abbreviations: MRI-
PDFF, magnetic resonance imaging–proton density fat fraction, i.e., liver fat content; HOMA-IR, homeostatic model
assessment–insulin resistance; VAT, visceral adipose tissue; and HDL-C, high-density lipoprotein–cholesterol.

Another suggestive QTL was also located for the bivariate analysis of MRI-PDFF
(inverse-normalized) paired with VAT (inverse-normalized) on Chr. 6q22.32 (LOD = 2.35,
p = 5.07 × 10−4). The LOD scores at the location from the univariate analysis were 0.12
for MRI-PDFF and 1.38 for VAT. The bivariate QTLs identified for the pairing of liver fat
content with HDL-C did locate one suggestive QTL, but this is at the same location as the
highest HDL-C peak, and shows virtually null activity for liver fat, which is indicative that
most of the variability at that region is driven by HDL-C alone.

2.4. Targeted Association Analyses at Significant and Suggestive Univariate and Bivariate QTLs

The highest univariate peak for liver fat, and the two bivariate peaks showing an
improvement in QTL localization for the pairing of liver fat and insulin resistance, and
the pairing of liver fat and VAT were targeted for MGA analysis. Specifically, we targeted
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-1-LOD margin on both sides of the linkage signals. The univariate signal for liver fat at
Chr. 17p13.2 comprised a total of 3500 HapMap2 single nucleotide polymorphisms (SNPs),
so the Bonferroni corrected significance p-value for this region was set at 1 × 10−5. The
signal for the bivariate analysis of liver fat and insulin resistance in Chr. 13q31.1 comprised
9500 HapMap2 SNPs, so the Bonferroni corrected significance p-value for this region was
set at 5 × 10−6. And lastly, the bivariate signal for the analysis of liver fat and VAT in Chr.
6q22.32 comprised 3500 SNPs, so the Bonferroni corrected significance p-value was set at
1 × 10−5.

No evidence of significant association based on Bonferroni corrected thresholds was
observed for liver fat, or each bivariate combination on either of the three locations. How-
ever, one variant located at 13q31.1 had a marginal p-value of 1.0 × 10−5 for liver fat content
(rs1571830) and was replicated with a marginal p-value of 6.4 × 10−5 for the bivariate asso-
ciation with liver fat and insulin resistance. As a sample control, two of the most commonly
known variants related to SLD in the patatin-like phospholipase domain-containing 3 gene
(PNPLA3), also known as the adiponutrin gene located on Chr. 22q13.31, were also as-
sessed under MGA for liver fat content. These and other variants with marginal evidence
of association are summarized in Table 5.

Table 5. Marginally associated variants for liver fat content and liver fat paired with selected
endophenotypes in targeted MGA analyses.

Variant Location (hg. 19) Associated Trait MAF p-Value

rs738409 22q13.31 MRI-PDFF ‡ 0.24 1.6 × 10−4

rs738408 22q13.31 MRI-PDFF ‡ 0.24 1.64 × 10−4

rs1571830 13q31.1 MRI-PDFF ‡,
MRI-PDD ‡ + HOMA-IR ‡ 0.39 1.0 × 10−5,

6.4 × 10−5

rs680625 17p13.2 MRI-PDFF ‡ 0.14 3.1 × 10−4

rs7219134 17p13.2 MRI-PDFF ‡ 0.73 3.65 × 10−4

rs12150116 17p13.2 MRI-PDFF ‡ 0.26 3.67 × 10−4

rs218670 17p13.2 MRI-PDFF ‡ + HOMA-IR ‡ 0.03 2.4 × 10−4

rs170149 17p13.2 MRI-PDFF ‡ + HOMA-IR ‡ 0.08 2.7 × 10−4

rs218698 17p13.2 MRI-PDFF ‡ + HOMA-IR ‡ 0.92 2.7 × 10−4

rs184295 17p13.2 MRI-PDFF ‡ + HOMA-IR ‡ 0.08 2.9 × 10−4

rs218697 17p13.2 MRI-PDFF ‡ + HOMA-IR ‡ 0.91 3.1 × 10−4

rs218695 17p13.2 MRI-PDFF ‡ + HOMA-IR ‡ 0.08 3.2 × 10−4

rs11078484 17p13.2 MRI-PDFF † + HOMA-IR † 0.85 1.1 × 10−4

rs781762 6q22.32 MRI-PDFF ‡ + VAT ‡ 0.06 1.7 × 10−4

rs10080285 6q22.32 MRI-PDFF ‡ 0.006 2.9 × 10−4

rs9491850 6q22.32 MRI-PDFF ‡ 0.006 3.0 × 10−4

rs10085184 6q22.32 MRI-PDFF ‡ 0.007 3.0 × 10−4

rs1080437 6q22.32 MRI-PDFF ‡ 0.007 4.0 × 10−4

rs9491851 6q22.32 MRI-PDFF ‡ 0.007 4.3 × 10−4

Number of individuals with available genotype data = 522, †, log transformed variable; and ‡, inverse-normalized
variable. Abbreviations: MAF, minor allele frequency; MRI-PDFF, magnetic resonance imaging–proton density fat
fraction, i.e., liver fat content; HOMA-IR, homeostatic model assessment–insulin resistance.

3. Discussion
The use of endophenotypes in bivariate linkage analyses in this study facilitated the

location of suggestive regions potentially affecting both liver fat deposition and the selected
endophenotypes: insulin resistance and VAT, narrowing the search window to perform
further targeted association analyses. Of particular interest is the peak located on Chr.
13q31.1. This region contains the SPRY2 (Sprouty homolog 2) gene which has been found
to be associated with T2D by several GWA studies, [11] but not with liver fat accumulation.
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The region under the highest LOD for liver fat, located on 17p13.2, on the other hand,
contains several genes that have been identified to influence both adiposity distribution
and metabolic biomarkers, but not liver fat accumulation directly. For example, the WSC-
containing domain (WSCD1) gene, located at 17p13.2, which has been found to be associated
with HDL-C levels in a Chinese twin-study, [12] and the Rab GTPase-binding effector
protein-1 (RABEP1) gene that has been found to be associated with lipid and adiposity
biomarkers, specifically the following: non-HDL cholesterol, TG and total cholesterol
levels, [13] BMI, [14], and BF% [15].

When it comes to the marginally associated HapMap 2 SNPs that were identified
through targeted association analyses with liver fat accumulation, and the bivariate effect
on liver fat and insulin resistance, or liver fat and VAT, some of these SNPs were found
in current genomic databases to be related to some genes that in the literature have been
linked to outcomes that could be of interest to the pathways concerned for in MASLD. For
example, rs1571830 in Chr. 13 was found to be in linkage disequilibrium with variants in
two genetic regions: the long intergenic non-protein coding RNA 351 (LINC00351) and the
SLIT and NTRK-Like Family Member 6 gene (SLITRK6), which have been implicated in
obesity-related biological pathways and traits [16]. For the SNPs located in chromosome 17,
6 out of the 10 (rs218670, rs170149, rs218698, rs184295, rs218697, and rs218695) are coded
for in the solute carrier family 13 member 5 gene (SLC13A5), which is linked to citrate
metabolism and whose function has been implicated in several conditions, such as chronic
kidney disease, [17] obesity, insulin resistance, non-alcoholic fatty liver disease, and even
cancer [18].

SLC13A5 encodes a sodium-coupled citrate transporter (NaCT), which regulates in-
tracellular citrate availability. Citrate is a key metabolic intermediate in hepatic de novo
lipogenesis (DNL), serving both as a substrate and an allosteric regulator for enzymes such
as ATP citrate lyase (ACLY). The overactivity of SLC13A5 can elevate hepatic citrate influx,
thereby promoting acetyl-CoA production and enhancing lipid biosynthesis, potentially
leading to hepatic fat accumulation [19]. Animal models have shown that the overexpres-
sion of SLC13A5 in hepatocytes leads to lipid accumulation, while its inhibition confers
protection against steatosis [20]. Nevertheless, there is still a scarcity of research specifically
examining the regulatory mechanisms behind the expression of SLC13A5 in human liver
tissue and its role in MASLD pathogenesis.

Three additional SNPs located in chromosome 17 (rs680625, rs7219134, and rs12150116),
were also found to be in linkage disequilibrium with variants in genes: Chromosome 17
open reading frame 100 (C17orf100) and F-box protein 39 (FBX39), which are also both
implicated in citrate metabolism [21,22]. Additionally, a marginally significant SNP in
chromosome 17 (rs11078484) for both liver fat and insulin resistance is coded for in the Cy-
tochrome B5 Domain-Containing 2 gene (CYB5D2), which has been found to be correlated
with diastolic blood pressure (DBP) [23] and T2D [24].

Lastly, there was only one SNP on Chr. 6 that showed a marginally significant as-
sociation with liver fat content and VAT paired; this SNP is located on an RNA gene:
RNF217 antisense RNA 1 (RNF217-AS1), which has been found to be associated with
subcutaneous adipose tissue measurements [25]. Five additional rare variants on Chr. 6
(minor allele frequency (MAF) < 0.05) were associated with liver fat content alone; four of
them were found to be associated with an uncharacterized gene (LOC105377996), and one
additional rare variant was found to be located in the chromosome 6, open reading frame
58 gene: C6orf58, which has been implicated in GWAS with anthropometric traits, such as
waist-to-hip adjusted BMI and waist circumference [26].

The use of pedigree-based data signifies an implicit enhancement strategy for finding
rare variants by increasing the probability that multiple copies of them exist within the
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pedigree. This higher volume coupled with targeted strategies such as the use of adequately
assessed endophenotypes has been shown by previous studies to facilitate more powerful
genetic analyses [7,9], and to our knowledge, this technique had not yet been applied in
the search for genetic regions associated with liver fat deposition. Despite the inherent
advantages of the methodology applied we do believe that the sample size of our study was
a considerable limitation in being able to locate significant variants for liver fat deposition
and the related endophenotypes explored.

Based on standard assumptions for additive models, our sample size of 704 partici-
pants provided approximately 80% power to detect common variants (MAF ≥ 0.10) with
moderate effect sizes (β ≥ 0.30) at a genome-wide threshold of α = 1 × 10−4, but was likely
underpowered to detect rare or small-effect variants. The application of these techniques to
a greater sample size and to any other heritable set of conditions is still promising for being
able to locate novel regions of genetic interest. We were, nonetheless, able to identify several
marginally significant SNPs under our linkage-identified regions that are implicated in
important metabolic processes that may underlie metabolic dysfunction, which highlights
the importance of conducting additional, targeted association and functional variant testing
in these regions to validate and potentially inform future therapeutic discoveries.

In addition to expanding sample size and replication in diverse populations, future
research could also benefit from complementary approaches such as Mendelian random-
ization (MR) analysis. MR offers a framework for evaluating potential causal relationships
between metabolic exposures such as insulin resistance, visceral adiposity, or circulating
lipids, with liver fat accumulation, using genetic instruments to reduce confounding. This
method has been successfully applied in MASLD research to disentangle directionality and
establish etiologic links between metabolic traits and hepatic steatosis [27].

The heritability of liver fat accumulation, as demonstrated in this study, aligns with
findings from other cardiometabolic traits such as BMI, insulin resistance, VAT, and lipid
profiles, all of which have shown moderate to high heritability in large-scale family and
twin studies [28–30]. Moreover, several of the loci implicated in our analysis, such as those
near SLC13A5, RABEP1, and WSCD1, overlap functionally with pathways previously
associated with adiposity, dyslipidemia, and glucose regulation [20,31,32]. These cross-
trait consistencies support the relevance and validity of the genetic signals detected here,
particularly within shared metabolic networks underpinning liver fat accumulation and
related traits.

Although the data collection for this study occurred between 2012 and 2015, the timing
of this analysis reflects the increasing availability and maturity of analytical approaches
such as MGA within variance component frameworks. These methods have only recently
become computationally efficient for large-scale pedigree data. Furthermore, liver fat
accumulation continues to be a central phenotype of interest in metabolic disease research,
and the genetic contributors identified here remain biologically and clinically relevant. As
such, this work contributes timely and foundational insight into the heritable components
of hepatic steatosis and its metabolic correlates.

4. Materials and Methods
4.1. Participants and Study Design

This study was a quantitative genetic analysis (QGA) of data available from the FLS, a
research project focusing on the growth, development, and body composition of families
initiated in Yellow Springs, Ohio in 1929 (R01HD012252, Czerwinski PD/PI). We included
704 adults from the Fels Longitudinal Study who completed MRI liver fat assessments
between 2012 and 2015. Participants with a history of moderate-to-heavy alcohol consump-
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tion (greater than 4 drinks on any day for men and greater than 3 drinks on any day for
women), were excluded (n = 8), resulting in a total sample size of 704 participants.

All the participants were recruited under institutional review board (IRB) approval at
Wright State University in Dayton, Ohio. FLS study participants with no contra-indications
for MRI assessments or a self-reported history of chronic liver disease were eligible to
participate in this portion of the study. Data analysis for this study was conducted under
current IRB approval for UTHealth: HSC-SPH-17-0262 (Lee PI).

4.2. Pedigree Structure and Implications

This study involved a total of 704 participants (311 males and 393 females), who were
part of 104 families varying in size from 1 to 58 members. The average family size was
7 members, with a median of 3. Table 6 displays the kinships and frequencies of pairwise
relationships among the participants in this study.

Table 6. Number and type of pairwise relationships between individuals in the study sample.

Relationship Degree Relationship Description N Pairs

1st Parent–offspring 378
Siblings 354

2nd Grandparent–grandchild 65
Avuncular 450

Half-siblings 37
Double 1st cousins 4

3rd 1st cousins and 2nd cousins 12
Grand avuncular 69
Half avuncular 63

1st cousins 500
Double 1st cousins, 1 removed 19

4th 1st cousins, 1 removed and 2nd cousins, 1 removed 16
1st cousins, 1 removed 522

Half 1st cousins 32
Double 2nd cousins 22

Double 1st cousins, 2 removed 9

5th and greater Other 637
Total relative pairs 3189

4.3. Data Collection

MRI Assessment of liver fat content: Liver fat was assessed using a Magnetom-Avanto
1.5 Tesla whole-body scanner (Siemens Healthineers, Erlangen, Germany) equipped with
the Syngo MR-B15 software [33]. To ensure accurate results, the participants were re-
screened for contraindications before MRI assessments following an overnight fasting
period of more than 8 h. Motion artifacts were minimized by employing breath-holding
techniques during the acquisition of 6 mm axial slices of the liver. The collected scan data
were analyzed using the Syngo.via specialized image analysis software: LiverLab (Siemens
Healthineers, Erlangen, Germany), [33] operated by a highly skilled analyst with more than
11 years of experience in MRI analysis. Liver fat content was quantified using the modified
Dixon method, which measures the proportion of fat-bound protons relative to the total
hepatic proton signal [34]. The validity of this modified Dixon MRI method in assessing
liver fat content has been extensively compared to proton magnetic resonance spectrometry
(H-MRS) assessments, demonstrating a high correlation (Pearson’s r = 0.9936) [34].

MRI Assessment of abdominal adipose tissue: During the liver MRI assessments,
measurements of VAT and SAT were also obtained. The detailed protocols for acquiring
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these measurements have been previously described [35,36]. In summary, depending on
the participant, 21 to 40 axial image slices of the abdominal region were combined to
calculate individual volumes (cc) of VAT and SAT. The consistency of repeated MRI scans
for VAT and SAT measurements is high, with estimated coefficients of variation (CV) of
2.12% and 0.55%, respectively, and intraclass correlation coefficients of 0.9992 and 0.9999,
respectively [36].

Body composition: Body composition was evaluated using dual-energy X-ray absorp-
tiometry (DXA) on a Hologic Discovery-A densitometer (Hologic Inc., Marlborough, MA,
USA), adhering to the manufacturers’ protocol [37]. The total body scan was analyzed to
yield total body measures of bone, fat, and lean tissue. The precision and reliability of DXA
are well documented [38,39]. Anthropometric data collected also included weight (kg),
stature (cm), and circumferences of the abdomen and hip (cm), following standardized
protocols [40].

Metabolic health and cardiovascular risk: These include measurements of fasting
glucose (FG, mg/dL), fasting insulin (FI)(mU/L), TG (mg/dL), high-density lipoprotein
cholesterol (HDL-C, mg/dL), liver enzymes: ALT, (U/L), and AST (U/L), as indicators of
liver health. These were all measured using standard laboratory practices at a commercial
laboratory (LabCorp, Burlington, NC, USA). Seated, resting brachial systolic blood pressure
(SBP) and diastolic blood pressure (DBP) were obtained through standardized protocols
using a mercury sphygmomanometer. Mean arterial pressure (MAP), by means of the
formula: MAP = DBP + 1/3(SBP − DBP), [41] was used to combine the systolic and diastolic
blood pressure measurements into one variable.

Genomic Data: The study participants had genome-wide SNP data from the Illumina
Human 610-Quad BeadChip (Illumina Inc., San Diego, CA, USA), containing more than
550,000 SNPs. SNP loci were checked for Mendelian consistency utilizing SimWalk2 [42],
and maximum likelihood techniques that account for pedigree structure were used to
estimate allelic frequencies [43]. HapMap2 SNP genotypes were also imputed using
MaCH1, [44,45] and also further cleaned using SimWalk2 [42].

4.4. Statistical Methods
4.4.1. Quantitative Genetic Analyses

Sequential Oligogenic Linkage Analysis Routines (SOLAR) [46] was used to perform
univariate and bivariate quantitative genetic analyses to estimate heritability and genetic
correlation estimates between the phenotype for our outcome of interest: MRI-PDFF or
liver fat content and each of the phenotypes assessed as potential endophenotypes, while
adjusting for age, sex, and their interactions. Quantitative genetic analysis refers to the
statistical evaluation of how genetic and environmental factors contribute to variation in
continuous traits [47]. Phenotypes that were assessed in both a univariate and a bivariate,
pairwise manner, can be grouped in classes and include the following: 1. measures of
glucose homeostasis: FG, FI, and HOMA-IR, 2. adiposity measures and distribution: VAT,
SAT, BMI, DXA-assessed total body fat percent (BF %), and waist circumference (WC),
3. cardiovascular risk factors: SBP, DBP, MAP, TG, and HDL-C, and 4. measures of liver
function: ALT and AST. Inverse normalizations or natural log transformations were applied
as deemed appropriate to address non-normality of any of the quantitative trait phenotypes.

4.4.2. Endophenotype Ranking

Using the simplified approach suggested by Glahn, et al. for evaluating potential
endophenotypes, [9] candidate traits that were found to be (1) phenotypically associated
with (2) significantly heritable and (3) genetically correlated to liver fat accumulation
were then ranked against each other using the ERV, an unbiased and empirically derived
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estimate for the utility of an intermediate phenotype in the pathway for a complex disorder.
An advantage of this estimate is that it can be easily derived from the heritability of
the quantitative trait of interest (hi

2), the square root of the heritability of the potential
endophenotype (he

2), and their genetic correlation (ρg), as given by the following:

ERV = |
√

(hi
2)
√

(he
2) ρg|

ERV estimates range between 0 and 1, with values closer to 1 indicating that the
endophenotype and the trait of interest are more likely to be influenced by shared genetic
components. The significance of the ERV is assessed by means of a likelihood ratio test com-
paring the restricted model in which the genetic correlation is set to 0 against the likelihood
of another in which the correlation is estimated. Because of this, the corresponding p-value
is identical to that derived from the assessment of the significance of the genetic correlation.

4.4.3. Bivariate Linkage Analysis

After the ERV had been calculated for all features, a genome-wide linkage search for
pleiotropic QTLs influencing both liver fat fraction and the 3 top-ranked endophenotypes
was performed, first in a univariate and then in a bivariate manner, to assess whether
QTL localization is facilitated by pairing the liver fat fraction trait with each of the top-
ranked endophenotypes. Both univariate and bivariate linkage analyses routines have
been implemented in SOLAR. Bivariate linkage analysis can improve the detection of
shared genetic influences (pleiotropy) by jointly modeling the covariance between two
traits, increasing statistical power over univariate models [48]. LOD scores were calculated
every 5 centimorgan (cM) across all 23 chromosomes and fine-mapped to every 1 cM in
regions where the LOD score was greater than 0.5. LOD scores, which quantify the strength
of evidence for linkage, were evaluated against a genome-wide significance threshold
derived from the method of Feingold et al. [49], which adjusts for pedigree structure and
marker density. Although the classical standard for genome-wide significant linkage is
LOD ≥ 3.0, this threshold was derived under specific assumptions of marker independence
and fixed pedigree structures. In our study, we applied the Feingold-adjusted threshold
of LOD = 2.87, which corresponds to a genome-wide α = 0.05 under the conditions of our
linkage scan. Additionally, evidence of suggestive linkage was defined at LOD = 1.67 based
on this genome-wide adjusted approach.

4.4.4. Measured Genotype Association Analyses

Single-variant association testing was then conducted under significant or suggestive
univariate and bivariate linkage regions by targeting the region spanning -1-LOD score,
using MGA analysis in SOLAR. MGA analysis tests the association between specific genetic
variants and a trait of interest while accounting for familial relationships through a variance
components framework [50]. In this analysis, the interdependence of participants was
considered by utilizing the kinship matrix. The kinship matrix quantifies the genetic
relatedness among individuals, allowing the model to correct for non-independence due to
shared ancestry. Each variant was individually incorporated into the analysis model as a
covariate, represented as a genotype dosage of 0, 1, or 2. To determine statistical significance,
we used a two-tier thresholding strategy: a genome-wide marginal significance threshold of
p ≤ 1.0 × 10−4 (uncorrected), and a Bonferroni-corrected significance threshold computed
based on the number of SNPs analyzed within each linkage-defined region. This allowed
us to report both suggestive findings and those meeting more stringent multiple testing
correction [51].
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HCC Hepatocellular carcinoma
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FLS Fels Longitudinal Study
MRI Magnetic resonance imaging
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SOLAR Sequential oligogenic linkage analysis routines
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QTL Quantitative trait loci
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