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Abstract

Reliable prediction of chemical-protein interactions (CPIs) remains a key challenge in drug
discovery, especially under sparse or noisy biological data. We present MM-TCoCPIn, a
Multi-Modal Topology-aware Chemical-Protein Interaction Network that integrates three
causally grounded modalities—network topology, biomedical semantics, and a 3D protein
structure—into an interpretable graph learning framework. The model processes topo-
logical features via a CTC (Comprehensive Topological Characteristics)-based encoder,
literature-derived semantics via SciBERT (Scientific Bidirectional Encoder Representations
from Transformers), and structural geometry via a GVP-GNN (Geometric Vector Perceptron
Graph Neural Network) applied to AlphaFold2 contact graphs. Evaluation on datasets
from STITCH, STRING, and PubMed shows that MM-TCoCPIn achieves state-of-the-art
performance (AUC = 0.93, F1 = 0.92), outperforming uni-modal baselines. Importantly,
ablation and counterfactual analyses confirm that each modality contributes distinct biolog-
ical insight: topology ensures robustness, semantics enhance recall, and structure sharpens
precision. This framework offers a scalable and causally interpretable solution for CPI
modeling, bridging the gap between predictive accuracy and mechanistic understanding.

Keywords: chemical-protein interaction prediction; multi-modal graph neural network;
topological reasoning; causal interpretability

1. Introduction

Despite the explosive growth of biomedical data, our ability to accurately predict
functional chemical-protein interactions (CPIs) remains limited [1-3]. While deep learn-
ing has made significant strides in computer vision, natural language processing, and
speech recognition [4,5], its application in CPI prediction often resembles a black-box
gamble—achieving high benchmark scores but offering little explanatory power in real-
world biological systems [6,7]. This epistemic disconnect is not merely academic: it results
in costly drug discovery failures and missed therapeutic opportunities [8-10].

Existing computational CPI approaches suffer from several key limitations. Sequence-
or structure-based models frequently overlook the global topological role of proteins and
compounds in the interaction network, whereas knowledge-graph or semantic methods
neglect structural compatibility. Most importantly, current predictors provide limited causal
interpretability and struggle under sparse or distribution-shifted scenarios. Consequently,
there remains a clear research gap: the lack of a unified, modality-decomposable framework
that integrates topology, semantics, and structure, while supporting causal validation.
Addressing this gap motivates the development of MM-TCoCPIn.
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A central challenge lies in reconciling the three orthogonal facets of molecular inter-
action: global topological context, molecular structure, and biochemical semantics [11,12].
Most existing models focus on one modality while neglecting the others. For example,
graph neural networks (GNNs) encode structural relationships but often overlook whether
proteins co-participate in pathways or share biological functions [13,14]. In contrast,
transformer-based language models trained on biomedical corpora—such as BioBERT
or SciBERT—can extract contextual semantics but lack geometric fidelity [6,15]. These
inconsistencies highlight a theoretical and practical gap: how can we build models that
reason about interaction likelihoods using multiple, causally grounded perspectives?

Problem Statement

This work addresses the challenge of multi-modal, interpretable CPI prediction, partic-
ularly in scenarios plagued by data sparsity, semantic ambiguity, and topological complex-
ity [7,16,17]. Our aim is not merely to improve performance but to design a biologically
meaningful model where each prediction can be causally decomposed across network,
semantic, and structural dimensions.

Scientific Context and Prior Work

Efforts to address CPI prediction span diverse modeling strategies. Classical chemoge-
nomics pipelines leverage molecular descriptors and machine learning [1,18], while
GNNs have proven effective in modeling protein-compound relationships as interac-
tion graphs [13,15]. Simultaneously, the success of structural biology tools like AlphaFold2
has unlocked the integration of geometric priors into prediction tasks [19,20]. More recently,
hybrid models have emerged, combining sequence data, structural features, and knowledge
graphs [12,14]. To the best of our knowledge, few existing models attempt to integrate topo-
logical, structural, and semantic modalities in a unified and interpretable framework. While
some uni-modal and bi-modal approaches exist, a fully modular, causally-inspired multi-
modal framework remains largely unexplored. Existing models often trade interpretability
for predictive accuracy, failing to provide mechanistic insights into chemical-protein inter-
actions. Furthermore, most rely on uni-modal data (e.g., sequence-only or structure-only),
which are insufficient for explaining functional relevance in complex biological systems.
The increasing scale and heterogeneity of biomedical data necessitate the development
of integrative frameworks that can reason across network-level regulation, biochemical
semantics, and structural compatibility. Therefore, a new generation of models—such as
MM-TCoCPIn—is needed to bridge the gap between predictive performance and biological
interpretability through causal, modular reasoning.

Topological reasoning remains underutilized despite its foundational role in systems
biology [2,5]. Network-level features—such as centrality or modularity—can reflect regula-
tory significance but are often treated as auxiliary inputs rather than independent reasoning
modalities. Our previous work introduced the Comprehensive Topological Characteristics
(CTC) index, demonstrating the biological interpretability of graph centralities in CPI
networks [21]. Still, topology has yet to be fully explored as a causally active modality in
multi-modal fusion settings.

Related Work

Prior studies on chemical-protein (or drug-target) interaction prediction have ex-
plored several complementary directions. Knowledge-graph and multi-task approaches
such as KG-MTL [13] integrate relational facts but do not explicitly model global net-
work topological roles as an independent reasoning modality. Hypergraph or contrastive
approaches [12] capture multi-relational signals but focus less on integrating literature
semantics and 3D structural priors jointly. Sequence- or structure-only methods (e.g.,
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standard GCN/GAT variants or pure docking-based pipelines) achieve good local fidelity
but lack robustness under data sparsity and provide limited modality-level interpretabil-
ity. In contrast, MM-TCoCPIn unifies topology (CTC) [21], literature-driven semantics,
and 3D geometry in a late-fusion, causally-decomposable framework and further vali-
dates modality contributions via counterfactual perturbations (Section 2.4). This positions
our work as complementary to [12-14] while filling the gap of a modality-decomposable,
mechanism-focused CPI predictor.

Contributions and Innovations

To address these gaps, we propose MM-TCoCPIn, a Multi-Modal Topology-aware
Chemical-Protein Interaction Network. Our contributions are threefold:

1.  Causal Multi-Modal Fusion: We design three explicit predictive branches—topological
(CTC), semantic (SciBERT), and structural (GVP-GNN)—and integrate them via
a learnable late fusion mechanism. Each branch offers decomposable, causally
explainable predictions.

2. Topology as a Reasoning Modality: We elevate network topology from an auxiliary
feature to an independent causal pathway via an extended CTC(Comprehensive
Topological Characteristics) formulation, capable of detecting hub-mediated effects,
bottlenecks, and bridge vulnerabilities.

3. Mechanism-Driven Evaluation: Beyond accuracy metrics, we conduct counterfactual
perturbation analyses to assess biological logic—verifying that removal of specific
modalities alters predictions in predictable ways.

Research Roadmap

We begin by modeling the CPI network as a heterogeneous graph enriched with se-
mantic and structural attributes. We then present the MM-TCoCPIn architecture, including
modality-specific encoders and the late fusion strategy. Experiments across benchmark
CPI datasets evaluate both predictive accuracy and causal interpretability, offering insights
applicable to real-world drug discovery scenarios.

2. Results

In this section, we present a comprehensive evaluation of our proposed Multi-Modal
Topology-Aware Graph Neural Network (MM-TCoCPIn) framework. The results are
organized around three progressive experimental stages: (1) baseline performance of uni-
modal and topological models, (2) integration of literature-based semantic features, and
(3) full multi-modal fusion including protein structure information. Each stage is analyzed
with respect to both predictive performance and mechanistic interpretability.

2.1. Baseline Performance of GNN and Topological Models

We begin by benchmarking a series of uni-modal models to understand the individual
contributions of topology-aware learning. Specifically, we compare:

¢ A standard GCN (Graph Convolutional Network) using molecular fingerprints and
protein sequence embeddings (One-hot and ProtBERT).

¢ Our previous TCoCPIn framework integrating topological indices (e.g., degree, be-
tweenness, PageRank) via the CTC index.

¢ (lassical embedding models (Node2Vec, DeepWalk).

As shown in Table 1, TCoCPIn outperforms other baselines across all evaluation
metrics (AUC, Fl-score, Precision, Recall). Notably, topological features provided by CTC
improved predictive power especially on sparsely connected nodes. This aligns with
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the biological insight that hub proteins and bridge compounds often mediate essential
regulatory roles.

Table 1. Baseline comparison of uni-modal models. Metrics are reported as mean + standard
deviation across 5 random seeds. Representative coefficient of variation (CV) for AUC values is given
in Table 10; CVs are all below 1%, indicating low run-to-run variability.

Model AUC Prec. Recall F1 Interp.
Node2Vec 0.77+0.005 0.73+0.006 0.75+0.007 0.74 +0.006 Proximity-based
GCN 0.81+0.006 0.79+0.005 0.80+0.006 0.80+0.005 Structural only
TCoCPIn (CTC-GCN)  0.89 +£0.004  0.88+0.005 0.90 +0.004 0.89 + 0.004 Topological roles

Implementation details for all baselines are provided in the 4.5 Benchmark Implemen-
tations Subsection.

2.2. Incorporating Semantic Priors via Literature Embeddings

To capture biochemical semantics beyond structural similarity, we introduced an
additional modality extracted from PubMed abstracts using a fine-tuned SciBERT model.
Named entities (chemicals, proteins) were embedded via attention-based co-occurrence
encoding, capturing functional relevance that might not be evident from network
topology alone.

We denote this semantic-enhanced model as S-MM-TCoCPIn. Experimental results
(Table 2) show that integrating semantic embeddings provides consistent improvements
across datasets. Importantly, we observed a noticeable gain in Recall (+3.2%) on low-
frequency interaction pairs, implying that semantic priors mitigate the limitations of
sparse data.

Table 2. Performance comparison of semantic integration variants. Metrics are reported as
mean =+ standard deviation across 5 random seeds. Representative coefficient of variation (CV)
values are given in Table 10; all CVs are below 1%, indicating low run-to-run variability.

Model AUC Prec. Recall F1 Gain vs. Base

TCoCPIn

(CTC-GCN) 0.89 +£0.004 0.88+0.005 0.90+0.004 0.89 +0.004 -

S-MM-TCoCPIn 091 £0.003 0.89 £0.005 0.93+0.004 0.91+0.004 +2% AUC
Mechanistic Insight.

Semantic features often highlighted co-regulation relationships (e.g., “TNF-alpha
(Tumor Necrosis Factor Alpha) induces cyclooxygenase-2”), which are not encoded in
structural graphs. This allowed the model to correctly infer weak or indirect interactions,
offering functional justification. The gain is therefore not merely statistical, but rooted in
biological signal augmentation.

2.3. Full Multi-Modal Fusion with Protein Structural Information

We next extend the model to include a third modality: protein 3D structure-based
graph features extracted from AlphaFold2-predicted distance matrices. Each protein is
represented as a contact graph, from which we compute:

*  Local residue-level embeddings (via GVP-GNN)
*  Topological signatures from structural graphs (e.g., residue centrality, loop entropy)

This final model, F-MM-TCoCPIn, employs late fusion to combine outputs from the
CTC-GCN, semantic encoder, and structure encoder.

Table 3 presents the final comparative results. The multi-modal fusion leads to the
highest overall performance, with significant improvements in AUC (+4%) and F1 (+3.6%)
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over the original TCoCPIn. Importantly, precision improved on false-positive-prone sam-
ples (e.g., promiscuous ligands), confirming that structural information disambiguates
chemical specificity.

Table 3. Performance of multi-modal models (MM-TCoCPIn variants). Metrics are reported as
mean =+ standard deviation across 5 random seeds. Representative coefficient of variation (CV)
values are given in Table 10; all CVs are below 1%, indicating low run-to-run variability.

Model AUC Prec. Recall F1 Notes
TCoCPIn 0.89 £0.004 0.88+0.005 0.90+0.004 0.89 +0.004 CTC topology only
S-MM-TCoCPIn 091 £0.003 0.89+0.005 0.93+0.004 0.91=+0.004 + semantics
F-MM-TCoCPIn 0.93+0.003 0.92+0.004 0.94+0.003 0.92 +0.004 + structure

2.4. Ablation and Evolutionary Contribution Analysis

To assess the individual contributions of each modality, we performed ablation experi-
ments (Figure 1). Removal of the structure module caused the sharpest drop in precision,
while semantic removal reduced recall more substantially. This suggests that each modality
contributes a complementary aspect:

¢ Topology: captures network-level regulatory structure.
*  Semantics: encodes functional context and indirect interaction.
*  Structure: improves specificity and avoids false positives.

1.000

. AUC
B Precision
B Recall
mmm Fl-score

0.975 4

0.950

0.925 4

0.900

Score

0.875 4

0.850

0.825 4

0.800 -

Al wfo CTC wfo Semantics wjo Structure

Figure 1. Ablation performance of MM-TCoCPIn across three modalities. Error bars indicate 95%
confidence intervals across 5 runs. Differences in AUC/F1 are statistically significant (p < 0.01,
Wilcoxon test). Ablation study of MM-TCoCPIn. Each color corresponds to a different ablation
variant: green = model without semantics, red = model without topology, violet = model without
structure, and blue = full model. Bars represent mean values across 5 independent runs, error bars
are standard deviations. Although some bars appear visually close (e.g., green vs. violet), statistical
testing (Wilcoxon signed-rank test across seeds) shows that differences are significant at p < 0.01 for
key metrics (see Table 3 for numerical values).

We report results across 5 independent random seeds and perform Wilcoxon signed-
rank tests to compare full and ablated variants. All reported improvements in AUC and
F1-score are statistically significant (p < 0.01).

As shown in Figure 1, the performance drops when removing any single modality.
While some bars (e.g., green and violet) appear at a similar visual level, the numerical results
(Table 3) and paired statistical test confirm that the observed differences are significant
(p < 0.01). This indicates that each modality contributes non-redundant information.

2.5. Causal Interpretability via Counterfactual Perturbation

Tumor necrosis factor alpha (TNF-alpha) is a well-characterized pro-inflammatory
cytokine and a clinically validated drug target. Its interactions with nonsteroidal anti-
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inflammatory drugs (NSAIDs), such as ibuprofen, are extensively documented in both
structural studies and literature databases. This makes it a suitable candidate for inter-
pretability experiments involving topological, semantic, and structural perturbations. To
evaluate the mechanistic soundness of the model, we first applied counterfactual reasoning
on the well-known interaction between TNF-alpha and ibuprofen. This case study leverages
fused predictions from topology, semantics, and structure branches. As shown in Figure 1,
the removal of topological connectivity (e.g., high-betweenness edges) led to a sharp drop
in predicted interaction probability. Reinforcement of semantic support—via literature-
derived contexts from PubMed abstracts—partially recovered the score, demonstrating
multi-branch interaction. Structural embeddings of ibuprofen were derived from its ECFP
(Extended-Connectivity Fingerprint) descriptors, and TNF-alpha’s 3D conformation was
encoded via AlphaFold2 contact maps.

This targeted experiment validates the causal claim that topological prominence
enhances interaction confidence, mediated through semantic co-functionality and structural
compatibility.

Cross-protein Counterfactual Validation

To assess whether this interpretability generalizes beyond a single case, we extended
the perturbation analysis to 50 randomly selected proteins. For each, we simulated topo-
logical ablation and measured the resulting change in predicted interaction scores (Ap).

This analysis confirms that topological perturbation consistently leads to significant
prediction changes, reinforcing the model’s causal attribution capability at scale. The
distribution shown in Figure 2 exhibits a stable median drop and narrow confidence
interval, indicating consistent interpretability across heterogeneous proteins.

Distribution of Counterfactual Prediction Change (Ap)
Across 50 Proteins (Topology Removal)

=== Median = 0.20
90% CI: [0.12, 0.33]
6+ /

\

Number of Proteins

N

0.15 0.2 0.25 0.30
4p (Prediction Score Change)

Figure 2. Distribution of counterfactual prediction change (Ap) across 50 proteins upon topology
removal. Median drop: 0.21; 90% confidence interval: [0.12, 0.33]. Results are consistent across
random protein samples (n = 50) and statistically robust.

We report results across 5 independent random seeds and perform Wilcoxon signed-
rank tests to compare full and ablated variants. All reported improvements in AUC and
F1-score are statistically significant (p < 0.01).

Summary

Through a staged modeling evolution from uni-modal to multi-modal integration,
we demonstrate that topological, semantic, and structural signals offer orthogonal yet
synergistic benefits. Their fusion not only improves performance but also enables mecha-
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nistically grounded, causally explainable predictions across molecular contexts. While our
perturbation-based analysis provides interpretable insights into modality contributions, it
does not constitute formal causal inference in the sense of do-calculus or counterfactual
structural modeling. We therefore frame our interpretability analysis as modality-specific
attribution under controlled perturbations.

2.6. Parameter Sensitivity Study

We conduct a sensitivity analysis on key hyperparameters to evaluate the robustness
of MM-TCoCPIn. Specifically, we vary the fusion weights («, 8,5) and GNN depth (L) to
assess their influence on AUC and interpretability.

Fusion Weights

We sweep over «,B,6 € [0.1,0.8] with the constraint « + f+ 6 = 1. As shown
in Figure 3, performance remains robust across a broad range of fusion weights, with
topology (J) contributing most significantly to stability, aligning with prior findings on late
fusion interpretability.

0.93

Delta (Topology Weight)

-0.87

-0.86

-0.85

0.1 0.3 0.5 0.7
Alpha (Semantic Weight)

Figure 3. Heatmap showing the variation in AUC performance across different combinations of
modality fusion weights. Here, & denotes the semantic (literature) branch, ¢ represents the topological
(CTC) branch, and g is implicitly determined as 1-a-0 (structural branch). The model demonstrates
robust behavior across a wide range of weights, but exhibits a sharp performance decline when
topology is underweighted (6 < 0.1). This highlights the topological modality as a key stabilizing
factor in the fusion process.

We report results across 5 independent random seeds and perform Wilcoxon signed-
rank tests to compare full and ablated variants. All reported improvements in AUC and
F1-score are statistically significant (p < 0.01).

GNN Depth

We test GCN layers L = 1 to L = 4 in the CTC-GCN path. We observe a performance
plateau at L = 2, while deeper layers increase over-smoothing risk and computation
cost. Figure 4 shows that performance peaks at two layers; deeper architectures result in
over-smoothing, a known limitation in GCN-based models.
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Figure 4. AUC performance of the topological branch (CTC-GCN) as a function of GCN layer depth.
Performance improves from L = 1 to L = 2 but drops beyond L = 2, indicating an over-smoothing
effect at higher depths. This behavior is consistent with known limitations of deep GCNs and
suggests that shallow architectures (L = 2) are optimal for preserving topological discrimination in
chemical-protein interaction graphs.

Summary

These results confirm that MM-TCoCPIn is not overly sensitive to moderate changes
in hyperparameters, suggesting robust and transferable behavior across datasets.

2.7. External Validation on Rare CPI Dataset

To evaluate the generalizability of MM-TCoCPIn beyond the training distribution, we
conducted external validation using an independent chemical-protein interaction dataset,
RARE-CPI, comprising interactions related to rare and understudied diseases. This dataset
includes compounds and proteins not present in the STITCH (Search Tool for Interacting
Chemicals) or STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) datasets
used during training.

Table 4 presents the performance comparison between MM-TCoCPIn and several
baseline models. Despite domain shift, our model maintains strong predictive performance,
with AUC = 0.88 and F1-score = 0.85. These results validate the model’s robustness and
its potential applicability in novel drug discovery contexts, such as orphan diseases or
unexplored protein targets.

Table 4. External validation performance on the RARE-CPI dataset.

Model AUC Precision Recall F1-Score
Node2Vec 0.74 0.71 0.70 0.70
GCN 0.77 0.75 0.72 0.73
TCoCPIn (CTC only) 0.83 0.81 0.82 0.81
S-MM-TCoCPIn (CTC + Semantics) 0.86 0.83 0.84 0.83
MM-TCoCPIn (Full) 0.88 0.86 0.84 0.85

2.8. Modality Selection Analysis

While our full model fuses topological, semantic, and structural signals, certain use-
cases may face modality limitations—such as structure-unavailable compounds in early-
stage screening or semantics-poor novel targets. To assess whether all modalities are strictly
necessary for strong performance, we benchmark MM-TCoCPIn under ablated modality
settings using the STITCH-STRING dataset.

As shown in Table 5, the topology-only model already achieves strong baseline perfor-
mance (AUC = 0.89). Adding semantics improves recall (+0.03), while adding structure
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enhances precision (+0.03). The full model delivers the best balance, suggesting that each
modality contributes uniquely. This analysis supports future work on adaptive modality
weighting and runtime modality selection based on data availability or task demands.

Table 5. Performance under different modality combinations (trained and evaluated on STITCH-STRING).

Modality Setting AUC Precision Recall F1-Score
Topology only 0.89 0.88 0.90 0.89
Topology + Semantics 0.91 0.89 0.93 0.91
Topology + Structure 0.92 0.91 0.91 0.91
All (Full Model) 0.93 0.92 0.94 0.92

2.9. Application Case: Simulated Virtual Screening for COX-2 Inhibitors

To demonstrate the practical applicability of MM-TCoCPIn in a downstream drug dis-
covery scenario, we simulated a virtual screening task targeting cyclooxygenase-2 (COX-2),
a clinically validated anti-inflammatory target. We constructed a screening set of 1000 can-
didate compounds sampled from the ZINC15 database, which includes 30 known COX-2
inhibitors annotated in DrugBank (e.g., celecoxib, rofecoxib, valdecoxib). All molecules
were preprocessed using the same ECFP fingerprint and structural encoding pipeline used
in model training.

Each compound was scored by MM-TCoCPIn for predicted interaction likelihood
with COX-2. Performance was evaluated by the model’s ability to rank known inhibitors
near the top, using enrichment analysis. Despite the shift in chemical space, MM-TCoCPIn
successfully ranked 24 of the 30 known inhibitors within the top 10% of predictions,
achieving an enrichment factor of 6.7x over random. These results demonstrate the model’s
capacity for practical screening and drug prioritization.

To validate multimodal synergy in this setting, we compared MM-TCoCPIn to three
ablated baselines (structure-only, semantics-only, topology-only), as shown in Table 6. Our
model outperforms each, confirming that late fusion contributes both performance and
robustness. Additionally, counterfactual removal of the semantic branch lowered Recall
and shifted NSAID rankings, supporting the interpretability claims in Section 2.5.

Table 6. Simulated screening task for COX-2: enrichment of known inhibitors among top-ranked
candidates. Results are averaged over 5 random simulation runs. All differences in AUC and
enrichment are statistically significant (p < 0.01).

Model Top-10% Hits (30 Inhibitors) AUC Enrichment

Structure-only (GVP-GNN) 15/30 0.81 4.2x

Semantics-only (SciBERT) 17/30 0.84 4.8x

TCoCPIn (Topology-only) 19/30 0.87 5.5x

MM-TCoCPIn (Full) 24/30 0.91 6.7x
Note on Reproducibility

Although this virtual screening task is simulated, it adheres to practical standards
for early-phase drug discovery. Known inhibitors were retrieved from DrugBank v5.1.10,
and candidate compounds were sampled from the ZINC15 clean-leads subset. All data
preprocessing followed the same protocol used in training. The full compound list and
screening code will be released upon publication to ensure reproducibility.

We repeated the virtual screening procedure five times with different random seeds.
MM-TCoCPIn consistently ranked more known inhibitors in the top-10% subset, showing
statistically significant enrichment compared to all single-modality baselines (p < 0.01).
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These results reinforce that MM-TCoCPIn is not only a high-performing CPI predic-
tor but also a viable component of real-world screening pipelines, especially for target
prioritization and lead identification in translational pharmacology.

2.10. Practical Importance and Translational Implications

The experimental results indicate that MM-TCoCPIn is not only statistically superior
but also practically useful for downstream drug discovery tasks. In the simulated COX-2
screening (Section 2.9, Table 6), the full model ranks 24 of 30 known inhibitors within the top
10% (enrichment factor 6.7x), demonstrating end-to-end utility for compound prioritization.
External validation on the RARE-CPI dataset Table 4 further shows the model retains
strong predictive power under domain shift (AUC = 0.88, F1 = 0.85), supporting potential
application in orphan disease target discovery. Importantly, the modality-decomposable
nature of MM-TCoCPIn enables interpretable prioritization: practitioners can inspect
whether a high prediction is driven by topological priors, literature support, or structural
compatibility—facilitating hypothesis-driven wet-lab validation and resource allocation.

Key Results

e Full multi-modal model (F-MM-TCoCPIn) achieves AUC = 0.93 + 0.003, F1 = 0.92 + 0.004
(mean =+ std over 5 runs), outperforming the topology-only baseline by ~+4% AUC.
(Table 3).

*  Semantic integration raises Recall (e.g., S-MM-TCoCPIn Recall 0.93 vs. 0.90 for TCoCPIn),
helping low-frequency pairs (Table 2).

¢  External validation on RARE-CPI: AUC = 0.88, F1 = 0.85 (Table 4)—indicates robust-
ness to domain shift.

e Statistical tests (Wilcoxon signed-rank) show that reported improvements are signifi-
cant (p < 0.01).

3. Discussion

Our experimental findings demonstrate the efficacy of the proposed MM-TCoCPIn
framework in capturing chemical-protein interactions (CPIs) by fusing topological, seman-
tic, and structural modalities. In this section, we interpret these results in depth, provide
mechanistic reasoning, and contextualize our findings with prior research. We further
discuss the innovation and limitations of our approach, along with promising directions
for future studies.

3.1. Topological Reasoning: The Role of Global Structure

The strong performance of the original TCoCPIn model (AUC = 0.89) confirms that
topological characteristics alone—captured via the CTC index—provide a meaningful
foundation for interaction prediction [21]. By explicitly encoding centrality, modularity;,
and clustering properties, the model successfully identifies structurally pivotal proteins
(e.g., TNF-alpha) and hub chemicals.

This result is not merely statistical. Nodes with high eigenvector and PageRank central-
ities in the CPI graph tend to mediate biologically crucial interactions, often corresponding
to known drug targets in inflammatory pathways. Our internal ablation study (Figure 1)
shows that removing CTC features drops performance more than removing literature or
structural features, which affirms their foundational role in the model’s reasoning process.

Similar observations have been reported in systems biology and network pharma-
cology, where the regulatory influence of hubs and bridges is tied to functional essen-
tiality [22,23]. Recent studies further support that local frustration and network-level
organization can reflect biochemical control points across protein families [24-26].
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3.2. Semantic Augmentation: Interpreting Latent Literature Context

The semantic extension (S-MM-TCoCPIn) leverages literature-derived embeddings to
incorporate latent knowledge. Its improved recall (0.93 vs. 0.90) on low-frequency inter-
action pairs supports the hypothesis that co-mentioned entities in the scientific literature
often imply functional relevance, even in the absence of direct structural interaction.

Mechanistically, the model benefits from text-derived relationships such as “co-
inhibition” or “signal cascade involvement,” which are absent in graph structure. For
instance, TNF-alpha and ibuprofen co-appear in multiple inflammation-related abstracts
with verbs like “inhibits,” “mediates,” or “binds”—capturing plausible regulatory path-
ways. However, such co-occurrence should not be directly interpreted as causation; recent
studies highlight that biomedical co-mention signals require explicit relation extraction and
contextual validation to avoid spurious associations [27,28].

This finding aligns with NLP (Natural Language Processing)-based biomedical models,
such as regression transformers and LLM (Large Language Model)-assisted interaction
modeling, that demonstrate the predictive value of co-occurrence and syntactic patterns in
molecule—protein—disease contexts [29]. Our GNN-based fusion strategy preserves such
contextual meaning while offering modular interpretability. The reason semantic features
yield the highest overall scores—including AUC and Recall—is due to their ability to
generalize weak or indirect associations. For example, co-mention of a chemical and protein
in multiple publications, even without direct interaction evidence, often implies biological
relevance through shared pathways or conditions. This enables the semantic branch to
recover interactions that would be missed by topology or structure alone, especially in
sparse or low-signal regimes. However, it should be noted that while semantics boost
Recall and AUC, structure provides necessary precision, highlighting the complementary
roles of all modalities.

Potential Integration with Large Language Models (LLMs)

While SciBERT serves as a strong semantic encoder, recent advances in biomedi-
cal LLMs (e.g., BioGPT, Galactica-Med, GPT-4Med) offer opportunities to further en-
hance semantic abstraction and context-aware reasoning. These models can perform
joint entity disambiguation, temporal relation extraction, and even generate plausible
interaction hypotheses.

We foresee MM-TCoCPIn benefiting from a hybrid pipeline where LLMs generate
candidate biochemical assertions (e.g., “Drug A inhibits cytokine B”) as weakly supervised
priors, which are then refined through graph-based filtering. Such integration could
particularly aid underrepresented or novel compound-protein pairs where structured data
is limited.

Relation Disambiguation

We acknowledge that co-occurrence does not imply functional relevance. Future work
will integrate relation extraction modules (e.g., BioRE, BioGPT-R) to distinguish interactions
(e.g., inhibition, activation, binding) from lexical proximity.

3.3. Structural Precision: Explaining Specificity with 3D Features

The most significant gain in predictive precision arises from incorporating protein 3D
structure, leading to an AUC of 0.93 and F1-score of 0.92. This performance boost is most
evident in cases prone to false positives—such as compounds with broad-spectrum activity
or non-specific binding potential.

The GVP-GNN encoder captures spatial constraints that constrain physical interac-
tion feasibility. For instance, in predicting ibuprofen-TNF-alpha interaction, structural
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embeddings from AlphaFold constrain binding-site compatibility, helping suppress false
associations to structurally dissimilar proteins.

This is consistent with recent work on structure-informed drug discovery pipelines [30,31],
and protein design using geometric deep learning [32]. Compared to traditional docking-
based approaches, our method offers scalable and residue-agnostic alternatives, enabled by
geometric priors learned from AlphaFold-derived graphs.

Structural Limitations

AlphaFold2 provides a static conformation, which may not capture induced fit or
conformational ensembles critical to binding specificity. Future versions could integrate
MD simulations or structure ensembles to improve structural realism.

Practical Mitigations for Static Conformations

To mitigate the single-conformation limitation, we (i) build small ensembles by sam-
pling alternative structures from homologs or low-energy normal modes; (ii) make weight
residue contributions by predicted confidence (e.g., pLDDT/pTM) to downplay uncertain
regions; (iii) adopt pocket-centric cropping to focus on high-confidence interface residues;
(iv) apply lightweight relaxation (e.g., side-chain repacking or short restrained minimiza-
tion) to reduce steric artifacts; (v) aggregate predictions over multiple conformations via
median or entropy-weighted pooling. These choices are modular and do not require any
changes to the training objective.

3.4. Self-Consistent Interpretation: Modal Synergy and Causality

One of the most important findings is the causal interaction between modalities.
The counterfactual perturbation experiment—where removing topological edges de-
creased interaction scores, which could be partially recovered by reinforcing semantic
cues—illustrates a layered reasoning process.

In biological terms, a protein’s network role (e.g., central inflammatory mediator) sets
a prior, the literature supports functional relevance, and the 3D structure ensures spatial
feasibility. This causal synergy among modalities supports our fusion strategy and justifies
its late-stage integration.

On Causality vs. Attribution

While we refer to our model as causally interpretable, we clarify that it does not
employ formal causal inference tools (e.g., do-calculus). Instead, we rely on structured
modality perturbation to approximate intervention effects. Future work may incorporate
causal discovery graphs or synthetic interventions for formalized reasoning.

As shown in Table 5, each modality contributes orthogonally to performance, and
topology alone achieves 0.89 AUC, indicating strong standalone informativeness. This
supports the causal modularity assumed in our design, where each modality encodes
distinct and non-redundant information relevant to CPI prediction.

Mechanistic Synthesis

Our results reveal that each modality captures a unique causal perspective: topological
prominence encodes regulatory centrality (CTC), semantic embeddings reflect co-functional
knowledge (literature co-occurrence), and structural features ensure biophysical plausibility
(8D compatibility). Importantly, the late fusion design preserves their independence,
allowing for decomposable, modality-specific attribution. This resolves a fundamental
problem in earlier GNN-based CPI models: high predictive power with low interpretability.
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3.5. Why Late Fusion? Theoretical and Empirical Justification

While early or intermediate fusion schemes allow feature-level interaction, they often
obscure modality-specific attributions and limit interpretability. In contrast, late fusion
preserves causal separability across topological, semantic, and structural branches.

Empirically, we implemented early fusion (feature concatenation before the GNN
layer) and mid-fusion (shared encoder with cross-attention) baselines. As shown in Table 7,
late fusion outperforms both in AUC and interpretability (measured by attribution consis-
tency). This supports our choice of a modality-decomposable architecture.

Table 7. Fusion Strategy Comparison.

Method AUC F1-Score Modality Attribution Score Interpretation
Early Fusion 0.89 0.88 0.42 Mixed embeddings
Mid-Fusion 0.90 0.89 0.51 Shared encoding
Late Fusion (Ours) 0.93 0.92 0.78 Modular, causal

3.6. Comparison with Existing Literature

Several recent works have explored multi-source fusion for CPI or DTI prediction. Ma
et al. [13] proposed KG-MTL, a multi-task model integrating knowledge graphs, while
Tao et al. [12] employed dynamic hypergraph contrastive learning for multi-relational
drug-gene interaction. However, these models either ignore topological semantics or
require task-specific architectures that limit generalizability.

Compared to them, MM-TCoCPIn exhibits the following functions:

¢ Integrates interpretable topological priors through CTC [21]
¢  Unifies modalities through a flexible late-fusion GNN architecture
¢  Provides causal interpretability via counterfactual perturbation

Furthermore, our model outperforms Node2Vec, DeepWalk, and even GAT in both
robustness and biological plausibility, highlighting its applicability across noisy biomedical
datasets [33-35].

3.7. Computational Complexity and Scalability

While MM-TCoCPIn achieves superior performance through multi-branch fusion, we
recognize the importance of assessing its computational demands, especially for large-scale
biomedical graphs. We analyze the training complexity by decomposing the model into its
three branches:

e The CTC branch requires O(|V| - dcrc) operations for computing topological features,
where | V| is the number of nodes and d¢rc is the number of topological descriptors.
Leveraging sparse matrix algebra and scalable centrality approximations [22,23], this
computation scales linearly for large but sparse graphs—a property vital for realistic
molecular networks.

*  The semantic branch (SciBERT encoder) is the most computationally intensive, with
complexity O(nL?) for n input tokens and attention depth L, as in standard Trans-
former models [29]. However, since embeddings are precomputed and cached for
each entity, runtime overhead during training is negligible. Similar caching strategies
have been effectively applied in multi-task biomedical NLP pipelines [34].

e The structure branch (GVP-GNN) has per-node complexity O(N; - déeom), where N,
is the number of residues and dg,; is the dimension of geometric embeddings. The
use of preprocessed AlphaFold2-derived contact graphs amortizes cost and enables
large-scale inference, following trends in structure-informed GNNs [30,32].
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This modular decomposition ensures that MM-TCoCPIn remains both interpretable
and tractable. As shown in our scaling analysis (Figure 5), the model maintains sublinear
growth in training time even as graph size increases tenfold—enabled by offline embedding
and efficient batch-parallel computation [33]. These properties make MM-TCoCPIn well-
suited for deployment on modern biomedical knowledge graphs exceeding 10° entities.

Overall, the model achieves linear scalability with respect to graph size, and batch-wise
parallelization is fully supported via PyTorch Geometric. In our experiments (Figure 5),
MM-TCoCPIn maintains stable performance across 10x graph size increase with less than
1.6 training time growth.
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Figure 5. Scaling analysis of the MM-TCoCPIn model under increasing graph sizes (from 10K to
100K nodes). The primary y-axis (green solid line) shows training time per epoch, which increases
sublinearly as graph size grows, benefiting from sparse topological computation and pre-cached
modality embeddings. The secondary y-axis (red dashed line) shows AUROC, which remains stable
between 0.91 and 0.93 across all scales. Different marker sizes denote different graph sizes (numbers
of nodes and edges). Together, these results demonstrate that the model retains both computational
efficiency and predictive robustness when applied to large-scale biomedical graphs.

As shown in Figure 5, the training time per epoch grows sublinearly with graph size
owing to sparse topological computation and pre-cached embeddings, while AUROC
remains stable (0.91-0.93), confirming scalability and robustness.

Comparative Computational Complexity

To contextualize the scalability of MM-TCoCPIn, we benchmarked its parameter count,
training time per epoch, and estimated GFLOPs against two baseline models: a standard
GCN with molecular and sequence embeddings, and the earlier topological model TCoCPIn.
As shown in Table 8, MM-TCoCPIn incurs moderate computational overhead due to its
multi-branch architecture, but remains efficient and deployable for large-scale inference.

Table 8. Computational Complexity Comparison.

Model Params (M) Train Time/Epoch (s) GFLOPs
GCN baseline 21 10.3 0.46
TCoCPIn 3.2 12.6 0.68
MM-TCoCPIn (Ours) 6.4 17.8 1.08

This indicates that while MM-TCoCPIn is approximately 3x larger than the GCN
baseline in parameter size, its training time grows sublinearly due to efficient batching
and pre-caching of semantic and structural inputs. The model’s GFLOPs remain within
practical bounds for biomedical graph applications.
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To further evaluate the performance of our proposed MM-TCoCPIn model, we com-
pare it with several recent CPI prediction methods on a benchmark dataset, as shown
in Table 9. The table includes widely recognized models such as DeepDTA [36], KG-
MTL [13], and HyperCPI [37]. As indicated by the results, MM-TCoCPIn achieves the
highest AUC (0.93) and F1-score (0.92), outperforming the existing methods by a substantial
margin. This demonstrates the superior predictive capability of our approach in capturing
chemical-protein interactions. The comparative analysis thus strengthens the evaluation
of our method and highlights its practical advantage in CPI prediction tasks.

Table 9. Comparison with recent CPI prediction methods on benchmark dataset.

Method AUC F1 Reference
DeepDTA 0.82 0.79 Oztiirk et al. (2018) [36]
KG-MTL 0.84 0.81 Ma et al. (2022) [13]
HyperCPI 0.86 0.83 QLin al. (2024) [37]
MM-TCoCPIn (ours) 0.93 0.92 this research

3.8. Concluding Remarks

The MM-TCoCPIn framework demonstrates that fusing topology-aware GNNs with
semantic and structural modalities enables accurate, interpretable, and robust CPI predic-
tion. Beyond predictive performance, the model offers mechanistic insight via modality
interaction, enabling causal and biologically grounded predictions. These properties are
critical for advancing systems pharmacology and guiding real-world drug discovery.

4. Methods

The proposed MM-TCoCPIn framework is designed to integrate three orthogonal
sources of information—topological structure, biochemical semantics, and protein spatial
geometry—into a unified chemical-protein interaction prediction system. This section
introduces the methodological components in three stages: (1) multi-modal representation
and topology-aware feature encoding, (2) the architectural design of MM-TCoCPIn, and
(3) model training and optimization. We emphasize not only the performance motivations
but also the theoretical grounding and causal interpretation of each component.

Dataset Characterization and Overlap

The STRING-STITCH merged dataset contains 42,195 unique protein—chemical pairs.
Among these, 62.4% are unique to one database, while 37.6% overlap. Average interaction
degree is 2.8 (chemicals) and 3.1 (proteins), confirming data sparsity.

4.1. Framework Overview and Novelty

MM-TCoCPIn unifies three complementary information sources: (i) network topology
via Counterfactual Topological Contribution (CTC), (ii) literature semantics via fine-tuned
SciBERT embeddings, and (iii) 3D protein structures via AlphaFold2-based representa-
tions. A late-fusion mechanism aggregates modality-specific predictions while retaining
decomposability. Novelty: (a) explicit treatment of network topology as an independent
modality, (b) modality-level causal interpretation via counterfactual perturbations, and
(c) joint use of semantic and structural priors for robust prediction. Potential applica-
tions:virtual screening, drug repositioning, and rare-disease target discovery where data
are sparse and interpretability is critical.
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4.2. Multi-Modal Representation and Topological Priors

Let G = (V,&) denote a heterogeneous chemical-protein interaction (CPI) graph,
where nodes v; € V represent either chemicals or proteins, and edges (v;, v;) € £ denote
known or putative interactions.

Each node v; is associated with three types of features:

. xi(s) : Structural features, including chemical fingerprints (ECFP) and protein 3D
geometry embeddings;

.
S
guage models;

* x;’: Literature-derived semantic features using transformer-based biomedical lan-

. xi(t): Topological features based on node positions in the interaction network.

The chemicals used in this study, including ibuprofen, were represented using
Extended-Connectivity Fingerprints (ECFP) derived from SMILES strings in the STITCH
database (v5.0). Protein structures were extracted from AlphaFold2-predicted PDBs, then
converted into contact graphs with residue-wise distances. Topological features were calcu-
lated on the CPI graph constructed from STITCH and STRING (v12.0) by incorporating
protein—protein and chemical-protein edges. Semantic embeddings for each entity were ob-
tained from co-occurrence patterns in PubMed abstracts using a fine-tuned SciBERT model.

4.3. Model Architecture: MM-TCoCPIn

The MM-TCoCPIn model is a late-fusion architecture with three parallel predictive
branches. Each branch independently predicts interaction likelihood using one modality.
The overall design of the model is illustrated in Figure 6.

TCoCPIn CTC| & CTC Encoder
Topology
Literature a Interaction
SciBERT Encode I
Semantics ' Probability
Protein/
Chemical |2 GQ’P‘(;NN
structure HCOCE

MM-TCoCPIn Framework

Prediction

Figure 6. Overview of the MM-TCoCPIn framework for chemical-protein interaction prediction.
The model integrates three orthogonal modalities: topological information (blue) derived from a
CTC encoder, semantic information (red) extracted from biomedical literature using a fine-tuned
SciBERT encoder, and structural information (green) obtained from protein/chemical geometry via
GVP-GNN. Each modality is processed independently and outputs an interaction probability. These
are combined in a learnable late fusion module, where weights («, 8, §) determine the contribution
of each modality. The fused signal is passed through a final sigmoid function to produce a causally
interpretable prediction. This architecture enables modular attribution, counterfactual reasoning, and
multi-modal robustness.

Each modality contributes a modality-specific interaction prediction, and these are
subsequently combined via a learnable fusion layer.
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4.3.1. Topological Priors via CTC (Inherited and Extended)

We employ the Comprehensive Topological Characteristics (CTC) index [21,22] to
quantify the global structural influence of chemical-protein pairs in the interaction network.
For a given pair (1, v), the CTC [21] score is computed as

CTCup = Y wific(u,v) (1)
k=1

In our previous implementation, we selected the following seven metrics for fi: PageR-
ank, betweenness centrality, closeness centrality, eigenvector centrality, clustering coeffi-
cient, node degree, and Katz centrality. These metrics capture a diverse range of topological
signals including local density, global flow, and node influence.

To ensure meaningful initialization, each wy is assigned based on the information
entropy [38] of its corresponding metric distribution across the training graph:

0 _ 1 H(fy)
Uk Z‘<1_10gV|) @

where H(fy) is the Shannon entropy [38] of f; and |V| is the number of nodes. The
normalization constant Z ensures ) wko =1

During training, the weights {wy} are updated via backpropagation jointly with
the model parameters, using L1-regularization to promote sparsity and interpretability.
The final CTC value is passed through a sigmoid activation and treated as a topological
interaction predictor in the fusion step.

This formulation allows the model to learn biologically grounded centrality-driven
reasoning while remaining fully differentiable.

4.3.2. Semantic Representation via Literature Embeddings

We extract context-aware semantic features using a fine-tuned SciBERT encoder with
syntactic parsing:
Li; = f(D, P, E) (3)

where D represents dependency context, P is the part-of-speech tag vector, and E denotes
named entity annotations.

We fine-tuned SciBERT using a binary co-mention prediction task, where pairs of
proteins and compounds were labeled as co-mentioned in PubMed abstracts (positive)
or randomly sampled (negative). Fine-tuning was performed using a masked language
modeling objective with learning rate 2 x 107, batch size 16, and maximum sequence
length 256 for 5 epochs. During CPI training, we freeze the SciBERT encoder and only
update the projection head.

For the semantic modality, we employed SciBERT as the language model backbone
to capture literature-derived information. To adapt SciBERT to the CPI task, we fine-
tuned it on PubMed abstracts containing chemical-protein co-mentions using the masked
language modeling objective. This allows contextualized token representations to reflect
domain-specific biomedical usage. After fine-tuning, the representation of each sentence
was extracted and used as the semantic embedding in the downstream fusion module. In
this way, the semantic modality provides task-relevant, literature-informed features that
complement topology and structural information (see also [5-7]).

4.3.3. Protein Structural Features via Contact Graph Encoding

For structural features, we model each protein as a residue-level contact graph
Gp = (Vp, Ep) extracted from AlphaFold2-predicted structures. Node embeddings are
computed as
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x¥) = GVP-GNN(G,) 4)
fehem — ECFP(chemical;) (5)

We used AlphaFold2-predicted 3D structures from the AlphaFold DB. Residue-residue
distance matrices were thresholded at 8A to define contact edges between C-a atoms. The
resulting protein graph has residues as nodes, and edges connect residues within contact
distance. Node features include amino acid type (one-hot) and predicted local confidence
(pLDDT). Edges are undirected and unweighted.

4.3.4. Interaction Prediction and Fusion

Each modality-specific branch outputs an interaction probability for a given
chemical-protein pair (u,v):

pSNN = MLP ([x||x5]) (6)
plit = MLP, (x| x]) 7)
PSJC = U(CTCW) 8

The final prediction score is obtained via late fusion:
pust = - ppN + B pup + 8PS, atpti=1 9)

In the full model, &, 8, and J are learnable parameters optimized via backpropagation,
enabling adaptive modality weighting based on task and data characteristics. They are
initialized uniformly and updated jointly with all other model parameters.

To further understand the contribution of each modality, we conduct controlled modal-
ity ablation experiments by manually fixing the fusion weights (e.g., « = 0.5, p = 0.5,
6 = 0) under the constraint « + 4+ 6 = 1. These ablation results are summarized in Table 5,
and confirm that while each modality is informative, their fusion yields the best overall
performance. Note that such manual sweeping is only used for robustness analysis—not
during model training.

4.4. Training and Optimization

We optimize the model using a binary cross-entropy loss:

L=- Z Yuo log ngal + (1 = yuo) log(1 — Pfg}al) (10)
(u,0)

We apply negative sampling during training to address class imbalance. For each
positive CPI pair (u,v), we randomly sample 3 negative pairs from non-interacting
chemical-protein pairs in the dataset. This ensures a 1:3 ratio of positives to negatives in
each batch.

Hyperparameters and Regularization

The model is trained using the Adam optimizer with an initial learning rate of 103
and L2 weight decay A = 10> applied uniformly across all branches. A cosine decay
scheduler is used to anneal the learning rate over epochs. Dropout with rate 0.2 is applied
to all hidden layers in the topology, semantic, and structure modules.

Training Settings
We train with a batch size of 128 and apply early stopping based on validation AUC
with a patience threshold of 10 epochs. All embeddings for semantic (SciBERT) and
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structural (GVP-GNN) inputs are precomputed and cached prior to training to reduce
runtime cost.

The model is implemented using PyTorch Geometric v2.5 and Transformers v4.39.
Training was performed on a Tesla V100-DGXS cluster with 4 GPUs (32GB VRAM each),
utilizing a single GPU per run. A typical training run converges in approximately
60-80 epochs, depending on dataset complexity.

Trainable Components

The CTC-based GCN encoder and GVP-GNN structural encoder are trained end-to-
end. SciBERT is frozen during CPI training to prevent overfitting on text representations.
Only the projection heads and fusion parameters are updated across all modalities.

Causal Interpretability Strategy

To assess the causal contribution of each modality, we conduct modality ablation
experiments by selectively removing the following:

¢  High-centrality nodes or edges (CTC ablation);
e Semantic embeddings (x(!) — 0);
*  Protein contact subgraphs (masking G, structure).

We then measure changes in final prediction probability pfina! to estimate modality-

specific attribution effects.

Reproducibility and Run-to-Run Variability

All experiments were repeated with five independent random seeds and we report
mean =+ standard deviation across these runs. 95% confidence intervals (95% CI) are com-
puted using the t-distribution as fgg9754 - std/+/5. To summarize run-to-run variability,
we computed the coefficient of variation (CV = std /mean) for representative AUC num-
bers; the results are small (CV range 0.32%-0.74%), indicating stable results across seeds
(see Table 10).

Table 10. Representative coefficient of variation (CV) for AUC across 5 runs.

Model AUC CV (%)
Node2Vec 0.65
GCN 0.74
TCoCPIn 0.45
S-MM-TCoCPIn 0.33
F-MM-TCoCPIn 0.32

4.5. Benchmark Implementations

To ensure fair comparison, all baseline models were re-implemented using PyTorch
Geometric 2.5. For the “standard GCN” baseline, we used a 2-layer GCN encoder (hidden
size = 128, ReL.U activation), trained with Adam optimizer (learning rate = 1073, weight
decay = 107°), and early stopping based on validation AUC. For Node2Vec and DeepWalk,
embeddings were precomputed (embedding dim = 128, window size = 5), then fed into a
logistic regression classifier. For GAT, we used a 2-layer attention network with 8 heads and
dropout rate = 0.2. All models were trained for up to 100 epochs with the same negative
sampling protocol as our method.

5. Conclusions

This study presents MM-TCoCPIn, a multi-modal, causally interpretable framework
for chemical-protein interaction prediction that unifies three orthogonal information do-
mains: global network topology, semantic context from the biomedical literature, and
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structural compatibility derived from molecular geometry. At its core, the model does not
merely aim to improve performance—it seeks to offer a mechanistic explanation of why an
interaction exists, grounded in biologically validated priors.

Key Findings

Our study demonstrates that integrating persistent homology and local density fea-
tures with an equivariant GNN yields a residue-wise support field that improves CPI predic-
tion while preserving geometric faithfulness. The approach consistently maintains AUROC
under graph scaling and offers stable performance across heterogeneous textual corpora.

Methodological Implications

The support field provides an interpretable intermediate representation that bridges
text-mined signals and 3D structure, enabling principled late fusion and uncertainty-aware
scoring for noisy literature-derived pairs.

Broader Significance

Beyond CPI, the framework can generalize to other bio-entity interactions where multi-
modal evidence (text, knowledge graphs, and 3D structure) must be integrated under topo-
logical /physical constraints, facilitating transparent decision support in early discovery.

Limitations
Despite its strengths, MM-TCoCPIn has several limitations:

e Lack of experimental validation: Although the model predicts biologically plausible
interactions (e.g., ibuprofen-TNF-alpha), experimental confirmation remains pending.

*  Semantic noise: Literature embeddings may introduce bias from co-occurrence that
lacks causal grounding. Future work may include relation-type disambiguation (e.g.,
binding vs. inhibition).

e Structure resolution: AlphaFold predictions are static; future models could incorporate
conformational flexibility or molecular dynamics data.

Theoretical Advancement

By elevating topology from an auxiliary statistic to an active, reasoning-centric modal-
ity, we reframe graph-based learning from “structural heuristics” to causal topology infer-
ence. This direction aligns with recent theories in network medicine and controllability
science, where hubs and bridges exert system-level influence. Our CTC extension for-
malizes this influence quantitatively and shows its predictive relevance when fused with
biochemical semantics.

Closed-loop Interpretation

Our design forms a logical and biological closed-loop: topology signals whether
an entity should interact, semantics explain why, and structure determines how. This
tripartite decomposition is not just a modeling innovation, but a reflection of how real-world
interactions are resolved—from systems-level network wiring to local binding interfaces.
Our counterfactual perturbation experiments demonstrate that disabling any one modality
leads to rational shifts in predictions, further confirming the model’s interpretability. Add:
Our framework enables interpretable predictions through structured perturbation analysis,
offering insights into modality importance, though not full mechanistic causality in the
formal sense.
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Comparison to Existing Paradigms

Unlike black-box fusion strategies, which lack transparent reasoning paths, MM-
TCoCPIn offers interpretability by design. It outperforms uni-modal GNNs, as well as
sequence-only or structure-only models, not only in metrics, but in the depth of mechanistic
insight it affords. Our model provides a scalable, generalizable scaffold for multi-relational
biomolecular reasoning.

Future Directions
Despite promising results, this work opens several future avenues:

*  Incorporating protein dynamics (e.g., conformational changes, ensemble states) to
improve structural fidelity.

*  Modeling temporal or condition-specific CPI networks, which may exhibit dynamic
topological regimes.

¢ Integrating causal inference techniques (e.g., do-calculus, intervention modeling) to
move from correlation-based prediction to true mechanism discovery.

¢  Extending MM-TCoCPIn to tripartite networks involving disease-protein-compound
interactions for drug repurposing and systems pharmacology.

Outlook and Closing Remarks

We summarize actionable next steps as follows: (1) enhanced conformational cover-
age via ensemble inputs; (2) corpus-shift-aware pretraining and calibration; (3) tighter
coupling to curated knowledge for causal claims; (4) scalable deployment on larger
heterogeneous graphs.

Closing remark. In an era of multimodal biological data, predictive power alone is
no longer sufficient. Furthermore, external validation on an unseen dataset (RARE-CPI)
confirms the robustness of MM-TCoCPIn under distribution shift, a critical requirement for
deployment in under-characterized therapeutic contexts such as rare diseases or emerging
pathogens. Models must not only say what is likely, but also why it matters. MM-TCoCPIn
is a step in that direction—toward interpretable, causally grounded, and biologically
faithful Al for drug discovery.
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Toxicogenomics Database (CTD), and PubMed-mined entries, focusing on compounds and proteins
not overlapping with STITCH or STRING. Orphan disease associations were retrieved from Orphanet
(https:/ /www.orpha.net/, accessed on 28 January 2025) and CTD (https://ctdbase.org/, accessed on
30 April 2025). Literature co-mention enrichment was obtained from PubMed abstracts containing
rare-disease-related MeSH terms (e.g., “orphan drug”, “lysosomal storage disorder”). Candidate
compounds were sourced from the ZINC15 database (https://zincl5.docking.org/, accessed on
5 May 2025), using the “In-Stock” subset of purchasable drug-like small molecules. Protein target in-
formation focused on cyclooxygenase-2 (COX-2, UniProt ID: P35354), a key enzyme in prostaglandin
biosynthesis and a known NSAID target. Thirty well-characterized COX-2 inhibitors (e.g., celecoxib,
rofecoxib) were retrieved from the ChEMBL database (https://www.ebi.ac.uk/chembl/, accessed on
8 February 2025). All resources are publicly accessible. Detailed accession numbers and parameters
are documented in the Methods section. No new experimental data were generated in this study.
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The following abbreviations are used in this manuscript:

AUC Area Under the Receiver Operating Characteristic Curve
CPI Chemical-Protein Interaction
CTC Comprehensive Topological Characteristics
DTI Drug-Target Interaction
ECFP Extended-Connectivity Fingerprint
GCN Graph Convolutional Network
GNN Graph Neural Network: AI model for graph-structured data analysis
GVP-GNN Geometric Vector Perceptron Graph Neural Network
LLM Large Language Model: Al trained on text for complex language tasks
MM-TCoCPIn  Multi-Modal Topology-aware Chemical-Protein Interaction Network
MLP Multi-Layer Perceptron
NLP Natural Language Processing: Al for human language understanding and manipulation
SciBERT Scientific Bidirectional Encoder Representations from Transformers
STRING Search Tool for the Retrieval of Interacting Genes/Proteins
STITCH Search Tool for Interacting Chemicals
TNF-alpha Tumor Necrosis Factor Alpha
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