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Abstract: Intratumoral heterogeneity and clonal evolution are pivotal in the progression
and metastasis of melanoma. However, when combined with variable tumor cellularity,
intratumoral heterogeneity limits the sensitivity and accuracy of uncovering a cancer’s
clonal evolution. In this study, we combined fluorescence-activated cell sorting (FACS) with
whole-exome sequencing (WES) to investigate the clonal composition and evolutionary
patterns in seven melanoma biopsies obtained from three patients, each having both pri-
mary site and metastatic samples. We employed a multiparameter ploidy sorting approach
to isolate tumor populations based on DNA ploidy and melanoma biomarkers (SOX10
or 5100), enabling us to investigate clonal evolution with high resolution. Our approach
increased the mean tumor purity from 70% (range 19-88%) in unsorted material to 91%
(range 87-96%) post-sorting. Our findings revealed significant inter- and intratumor het-
erogeneity, with one patient exhibiting two genomically distinct clonal tumor populations
within a single primary site biopsy, each giving rise to different metastases. Our findings
highlight the critical role of intratumoral heterogeneity and clonal evolution in melanoma,
especially when analyzing tumor trajectories. The unique combination of multiparameter
FACS and WES provides a powerful method for identifying clonal populations and recon-
structing clonal evolution. This study provides valuable insights into the clonal architecture
of melanoma and lays the groundwork for future research with larger patient groups.

Keywords: FACS; WES; melanoma; bioinformatics; omics data

1. Introduction

The genomic landscape of melanoma features numerous genomic alterations with
key driver mutations in genes, such as BRAF (45%), NRAS (17%), and KIT (9%), leading
to dysregulated cell growth and survival pathways [1,2]. Detecting BRAF mutation is
vital in advanced melanoma patients for the effective use of BRAF-MEK inhibitors. De-
spite their success, long-term survival rates remain relatively low [3,4]: only 22% and
19% of the patients treated with first-line BRAF-MEK inhibitors reached 3-year survival
and 4-year survival, respectively [3]. Immune checkpoint inhibitors (ICIs) represent a
breakthrough in the treatment of melanoma, with long-term responses and even cure in
patients with metastatic disease. Thus, ICIs have become the standard of care in BRAF
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wild-type melanoma and in BRAF mutated melanoma after resistance to BRAF inhibitors.
Additional mutated driver genes in melanoma other than BRAF, such as NF1 and NRAS,
might also impact the treatment choice [5]. As genomic analysis of known cancer genes
has become standard practice, typically employing Next-Generation Sequencing (NGS)
with small gene or hotspot panels, sufficient tumor material and a tumor cell fraction of
15-20% are needed for reliable mutation detection. However, these routine assays fall short
in capturing the clonal composition and intratumoral heterogeneity (ITH) of the tumor.
Large-scale research studies performing deep exome or genome sequencing of melanoma
biopsies have tried to fill this gap and determine the genomic landscape as well as the
evolutionary patterns [6-8]. While they have provided fundamental insights into the com-
plex mutational landscape, these studies have only focused on the analysis of single tumor
biopsies. Subclonal architecture in single biopsies can nowadays be inferred by applying
computational approaches to data from bulk DNA sequencing [9]. However, to infer the
evolutionary relationship between different sites of a tumor, multiple biopsies from the
same patient are required. The few relevant melanoma studies to date were mainly per-
formed with material from autopsies [10-12]. Recently, Spain and colleagues conducted the
largest intrapatient analysis of melanoma so far by profiling 573 samples from 14 late-stage
melanoma patients who had died despite ICI treatment [13,14]. Interestingly, their study
suggested that metastatic cells can start seeding and evolving clonally during the early
stage of disease [14]. Although their findings are based on ICI-treated patients, they further
emphasize the importance of intratumoral heterogeneity, both between different body sites
and within single biopsies, in understanding clinically relevant evolutionary patterns.
While these studies were fundamental for understanding the clonal evolutionary
landscape in melanoma, they required resource-intensive techniques, extensive bioinfor-
matic analyses, and substantial tumor tissue typically available only from autopsies. Small
biopsy specimens in routine diagnostics do not permit multi-region genomic analysis or
macrodissection of tumor regions of interest, but necessitate a more efficient approach to
analyze the remaining diagnostic material, including those with low tumor cell content.
We and others have previously shown that DNA content-based flow sorting
can identify and sort distinct tumor populations from small biopsies before genomic
profiling [15,16]. This approach allowed for the detection of mutations with low variant
allele frequency (VAF) otherwise hidden by normal cell contamination and successfully
identified specific (private) mutations within distinct tumor populations [15,16]. Since
up to 50% of the tumors can be diploid, additional flow-sorting markers are required to
differentiate between diploid normal and diploid tumor cells [15,16]. In routine melanoma
diagnostics, SOX10 and 5100 are commonly used biomarkers for melanoma via immunohis-
tochemistry [17,18]. Here, we developed a refined ploidy-based flow-sorting method that
enriches SOX10- or S100-labelled tumor nuclei before genomic profiling. We applied this
approach to seven biopsies from three patients with cutaneous melanoma collected for rou-
tine diagnostics. This multiparameter ploidy sorting approach followed by whole exome
sequencing (WES) on the eight resulting tumor populations allowed us to reconstruct the
evolutionary trajectories of these tumors at high resolution across time and different sites.

2. Results
2.1. Patients

We performed a comprehensive search of the biobank at the Institute of Pathology
Basel to identify cutaneous melanoma cases with multiple biopsies from the same patient
with at least one biopsy per patient from a metastatic site and the primary site. In order
to determine the clonal composition of the biopsies with the highest possible resolution
using a multiparameter ploidy sorting approach (see next section), we focused on fresh-
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frozen bioptic tumor material with a diameter of at least 5 mm. For this study, we selected
three patients whose biopsies fulfilled the aforementioned criteria. The average age of the
patients was 72.3 (range 63-89), and all patients were female and had been diagnosed with
Stage IV melanoma. The composition of the cohort, including its pathological annotation,
is summarized in Table 1. Briefly, Patient 1 was diagnosed with malignant melanoma at the
age of 63 with a primary tumor on the left thigh. Lymph node metastasis and subcutaneous
recurrence of the primary tumor were detected in the same year, and a skin metastasis the
year after. Over the subsequent two decades, the patient experienced recurrences at the
primary site as well as several distant metastases. For Patients 2 and 3, biopsy material from
the primary site and the metastasis, collected in the same year as the primary tumor, were
included in this study. No additional information regarding metastases or recurrences in
subsequent years was reported in the clinical records of these two patients. Of note, at the
time the specified biopsies were taken from Patients 1 and 2, routine DNA flow cytometry
analyses were performed on native material in at least one biopsy to determine the so-called
DNA index. In our study, historical DNA index information is available for the metastasis
collected from Patient 1 (DNA index 1.4, i.e., ploidy of 2.8), and for both biopsies from
Patient 2 (each with a DNA index of 0.9, i.e., ploidy of 1.8), as shown in Table 1.

Table 1. Clinical and pathological characteristics. The order of biopsies follows the clinical history.

Age at the Time

Patient of Biopsy Sex Drug Treatment Biopsies (Site) Pathology Biopsy ID
63 No drug treatment Left thigh Primary nodular melanoma pT4a na*
64 low dose Interferon Lymph node left Lymph node metastasis (1 out of IMT2
alpha 2b groin 11 positive)
1 64 Female low d;ﬁf }};;(E'feron Sl;}ftce u’ilesff trklur.lgliry Subcutaneous local recurrence 1PST
low dose Interferon Subcutaneous in transit metastasis
65 loha 2b Subcutis left thigh  left thigh. Flow cytometry DNA 1IMT1
alpha index: 1.4.
. Lymph node metastasis (3 out of
89 na Lymp};)r:i(ﬁi e right 17 positive), right axilla. Flow 2MT
2 Female cytometry DNA index: 0.9.
. . Local subcutaneous recurrence
89 na Right axilla Flow cytometry DNA index: 0.9. 2PST
65 No drug treatment Abdomen Primary nodular melanoma pT4a 3PST
3 Fermal Neoadjuvant
emale ** : . :
65 chemotherapy **, Breast Subcutaneous in transit metastasis 3MT

Interferon-alpha and
Interleukin 2

left breast.

* Tumor biopsy not available at University Hospital of Basel. ** Dacarbazin, Cisplatin, Vinblastine.

2.2. Multiparameter Ploidy Sorting for Detection and Isolation of Tumor Populations

To isolate and genomically profile clonal tumor populations, we applied a multipa-
rameter ploidy sorting approach followed by WES of all fresh-frozen tumors (Figure 1A,
Supplementary Figure S1A,B). This procedure included isolating nuclei from the tumors
and flow sorting them by ploidy (using DAPI staining) and markers of tumor origin
(SOX10 or S100). This was done to separate tumor populations based on DNA ploidy and
to increase tumor purity, respectively. We validated the effectiveness of this approach in
distinguishing between SOX10-positive and SOX10-negative nuclei, as well as identifying
differences in ploidy, using cell lines (Supplementary Figure S2A-D).
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Figure 1. Genomic profiling of flow-sorted tumor populations. (A) Schematic overview of the
different required steps. 1. Representative melanoma biopsy. 2. Tumor cells were sorted according to
Sox10 and 5100 positivity /negativity and ploidy (DAPI). 3. Tumor cell populations were collected.
4. Subsequent mutational profiling of tumor populations by WES. Figure created with BioRender.com.
(B) Bar plot showing tumor purity for each sample before (as determined by FACS) and after FACS
sorting (inferred from WES data). (C) Figure showing the two distinct tumor populations of Patient 1:
1PST1 (2N+, orange) and 1PST2 (AN+, blue) in the primary site biopsy of Patient 1 and the tumor
populations IMT1 (AN+, green) and 1IMT2 (AN+, purple) in the skin and lymph node metastases,
respectively. PST = primary site tumor, MT = metastasis tumor. Sorting of the biopsies was performed
according to anti-SOX10 positivity (y-axis) and DAPI content (x-axis).

We applied the aforementioned multiparameter ploidy sorting approach to the seven
fresh-frozen biopsies listed in Table 1. Two out of the three primary site tumors were
monogenomic, meaning that only tumor cells of a single ploidy were present. The primary
site tumor biopsy of Patient 1, however, was polygenomic, as evidenced by the presence of
two distinct tumor populations with different ploidies (2.8 and 4.0). Across all biopsies, the
ploidies ranged from 1.9 to 4.0. Importantly, the ploidy calculation from the multiparameter
ploidy sorting approach was consistent with the ploidy (DNA index) measured at the time
of diagnosis for the three biopsies that had this information available (see Tables 1 and 2).
Of note, our multiparameter ploidy sorting approach increased the mean tumor purity from
70% (range 19-88%) of unsorted material to 91% (range 87-96%) after sorting (Figure 1B,
Table 2).
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Table 2. Characteristics of sorted tumor populations.
Patient ID Biopsy Population ID Ploidy (FACS) Sl;trl::ri; ?;f;gg) SI(:‘:tl;er ﬁNﬂE;)
Primary site 1PST1 1.7 19% 88%
. 1PST2 2.7 41% 95%
Skin metastasis 1IMT1 2.6 80% 91%
Lymph node metastasis 1IMT2 2.7 40% 93%
Primary site 2PST 1.9 80% 88%
2 Lymph node metastasis 2MT 1.9 88% 96%
Primary site 3PST 3.0 87% 91%
3 Breast metastasis 3MT 3.1 78% 87%

2.3. Genomic Profiling of Sorted Tumor Populations in Three Melanoma Patients

Four sorted tumor populations from the primary sites, and four sorted populations
from the metastases of three patients were subjected to WES. A matched germline control
was used for each patient. Among the three patients, Patient 1 had two tumor populations in
a primary site biopsy (1PST1 and 1PST2), and unique single populations in one skin (IMT1)
and one lymph node (IMT2) metastasis (Figure 1C). The number of synonymous and
non-synonymous somatic mutations ranged from 363 in the primary site tumor population
of Patient 3 (3PST) to 2173 in one of the two tumor populations of the primary site tumor
biopsy from Patient 1 (1PST1) (see Supplementary Figure S3 and Supplementary Table S1).
For Patients 1 and 2, the majority of the mutations were shared by all tumor populations
(Patient 1: 63.3%, 1513/2427; Patient 2: 92.8%, 995/1072). In contrast, the metastatic tumor
population of Patient 3 (3MT) exhibited a high proportion of private mutations (69.8%,
813/1164). The average tumor mutational burden (TMB) across tumor populations was
15.62 mutations/Mb (range 3.9-23.3). The highest TMB values were observed in Patient 1
(19.8-23.3 mutations/Mb), followed by the biopsies of Patient 2 (11 and 11.7 mutations/Mb).
Patient 3 showed significantly higher TMB values in the metastatic tumor population than
in the primary site tumor population (13.1 vs. 3.9 mutations/Mb).

A specific analysis of known cancer driver genes revealed NRAS as the most frequently
mutated gene (6/8 tumor populations), followed by KMT2D (5/8 tumor populations) and
COL5A1 (5/8 tumor populations). All of these mutations were detected in only two patients
(P1 and P2). Most driver mutations (71.4%, 10/14) were clonal in primary site tumors and
the metastases (Figure 2A). Patient 1 harbored truncal mutations in KIT, MECOM, NRAS,
KMT2D, and TP53 in all four of their profiled tumor populations. Patient 3 had truncal
mutations in BRAF (V600E) and PPP6C. NF1 mutations were only detected in the biopsies
of Patient 2. All of the patients presented a high number of truncal mutations, except for
two driver mutations in Patient 1. The COL5A1 mutation was absent in the metastatic
tumor population (1IMT2), while the CTNNBI mutation was present exclusively in the
metastatic tumor population (Figure 2A).

Phylogenetic analysis revealed a significant number of shared mutations among the tu-
mor populations of Patients 1 and 2 originating from a common ancestor. Interestingly, this
analysis indicates that in Patient 1, there was an early divergence of the 1IMT2 population
(lymph node metastasis). In contrast, the IMT1 population (skin metastasis), diagnosed
one year after the lymph node metastasis, is more closely related to 1PST2 (the primary
site tumor population with a similar ploidy), suggesting a later stage of divergence. The
two tumor populations in Patient 2, consisting of the primary site tumor (2PST) and the
lymph node metastasis (2MT), were detected in the same year, shared a high number
of mutations, and were of the same ploidy. In contrast, the metastatic tumor popula-
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tion of Patient 3 (3MT) exhibited a large number of private mutations (Figure 2B, right
phylogenetic tree).

Additionally, mutational signature analysis indicated that most tumor populations
were dominated by UV light signatures (SBS7a and SBS7b). The exception was the breast
metastasis from Patient 3 (3MT) which showed a high percentage of signatures related to
platinum chemotherapy (SBS31 and SBS32) and alkylating agents (SBS11), likely reflecting
the effects of the neoadjuvant chemotherapy treatment before the metastasis emerged.
These findings imply that the high number of private mutations in the metastasis in Patient 3
may have been caused and selected for by neoadjuvant chemotherapy (Figure 2C).

Analysis of CNVs in all tumor populations revealed a high level of concordance
between the tumor populations within the same patient (Figure 2D). Consistent with the
mutational profiling results, the CNV profile in Patient 1 showed that the metastatic tumor
population (IMT1) is more closely related to the primary site tumor populations (1PST1
and 1PST?2) than 1IMT2 (lymph node metastasis). In Patient 3, three genomic loci—9p21
(CDKN2A and MTAP), 11q13 (OVOL1), and 11p15 (HRAS)—were homozygously deleted in
the primary site tumor population (3PST) but not in the metastatic tumor population (3MT).
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Figure 2. (A) Non-synonymous mutation plot showing the presence and distribution of genetic
alterations in the eight sorted tumor populations. The genes were selected from the Bailey et al.
dataset that represents the cancer driver genes in skin melanomas. The diagonal bar indicates that the
mutation is clonal. (B) Phylogenetic trees display the number of synonymous and non-synonymous
mutations of each patient (Patients 1-3 from left to right). The size of the trunk and the branches are
proportional to the number of mutations. (C) Mutational signatures landscape of eight melanoma
samples highlighting the most representative signatures (others = signature contribution < 5%).
(D) Heatmap illustrating the copy number variation profile of all samples. PST = primary site tumor
population, MT = metastatic tumor population.
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2.4. Analysis of Sorted Tumor Populations Reveals Distinct Clonal Origins of Metastases

In order to study the clonal evolution within and between the biopsies, we calcu-
lated the cancer cell fractions (CCFs) for synonymous and non-synonymous single nu-
cleotide variants (SNVs) using ABSOLUTE [19]. All SNVs were further sub-classified in
different clusters according to the similarity of the CCF using PhylogicNDT v.1.0. Clonal
(CCF > 0.9) and subclonal mutations (CCF < 0.9) were used to generate a clonal evolution
tree (Figure 3A and Supplementary Figure 54). For Patient 1, we had access to one primary
site tumor biopsy and two metastases. Our multiparameter ploidy sorting approach re-
vealed two distinct tumor populations (1PST1 and 1PST2) within the primary site biopsy,
providing a unique opportunity to study clonal evolution of different tumor populations
within the same biopsy and across metastatic sites in the same patient. In this patient,
clonality analysis indicated tumor evolution involving the spread of clones from 1PST1 and
1PST2 to different metastatic sites. We observed that cluster 2 (light blue) with 298 clonal
mutations was present in both primary site tumor populations (1PST1 and 1PST2) and the
skin metastasis (1MT1), but was absent in the lymph node metastasis (IMT2). In contrast,
cluster 4 (black) with 199 clonal mutations was present in only one of the two primary
site tumor populations (1PST1) and in the lymph node metastasis (IMT2), but absent in
both the other primary site tumor population (1PST2) and in the skin metastasis (IMT1).
The same pattern was observed for clusters 5 and 6, with 34 and 227 subclonal mutations,
respectively (Figure 3A). These findings suggest that each of the metastases originated
from a different tumor population of the primary site: the lymph node metastasis (1IMT2)
from the 1PST1 population, and the skin metastasis (1IMT1) from the 1PST2 primary site
tumor population (Figure 3A). Similarly, Pearson correlation analysis of the CNVs yielded
comparable results (Figure 3B): 1MT1 had a higher correlation (R = 0.99) with 1PST2,
while IMT?2 exhibited a higher correlation (R = 0.66) with 1PST1 (Figure 3B). In Patient
2, the CCF cluster analysis identified a large cluster (Cluster 1) with 832 clonal mutations
(Supplementary Figure S4), as well as a metastasis-specific cluster (Cluster 6) with only
14 subclonal mutations. In contrast, Patient 3 exhibited a common cluster (Cluster 1) with
330 clonal mutations. Notably, one cluster (Cluster 4) with 10 subclonal mutations was
completely absent in the metastasis, while another cluster (Cluster 2), with nine mutations,
was clonal (CCF = 1) in the metastatic tumor population.
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Figure 3. (A) Phylogenetic tree built on SNVs of Patient 1 shows the best solution for the evolutionary

relationship between clones with different clusters of mutations where each node (numbered) is a
cluster of mutations, and each cluster is represented by a different color. Numbers on each branch
show the number of mutations distinguishing a cluster. Potential driver genes mutated in the distinction
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between a clone and the previous are indicated close to the corresponding branch. Solid branches
show clusters of mutations that are clonal in at least one sample. Trace plots showing the cancer cell
fraction (CCF) for each mutational cluster in each patient sample specific for each of the two main
trajectories shown in the phylogenetic tree. Ribbons show the 95% confidence interval, and the
centers of bands show the mean cluster CCF estimate. (B) Heatmap showing the Pearson’s corre-
lation coefficient between each tumor biopsy. The asterisks indicate a p value lower than 0.0001.
PST = primary site tumor, MT = metastasis tumor.

3. Discussion

The advent of NGS technologies has significantly advanced our understanding of
intratumoral heterogeneity in cancer. However, most studies with these technologies
typically analyze bulk tissue samples, i.e., a mix of tumor and stromal components. This
complexity necessitates extensive bioinformatic analyses to deconvolute and interpret the
clonal composition of those tumors [20,21].

In this study, we employed a novel customized approach that combines FACS with
WES to investigate the clonal composition and evolutionary trajectory of melanoma in three
patients, each with biopsies from primary site tumors and metastases. Our multiparameter
ploidy sorting approach enabled us to separate melanoma tumor populations based on
DNA ploidy (DAPI) and specific melanoma biomarkers (SOX10 and S100) [17,22]. This
allowed for a high-resolution analysis of intratumoral heterogeneity and clonal evolution.
Our findings uncovered unique evolutionary patterns in each patient. In Patient 1, we
identified two genomically distinct tumor populations within the primary site biopsy, each
giving rise to a different metastatic clone. This finding demonstrated the capability of our
approach to decipher clonal origins and the mechanisms that drive metastasis.

While FACS and NGS are well-established techniques, their combined application
in our study represents a unique research approach. Although multiparameter sorting
based on ploidy and tumor markers has been applied to other cancer types, this study
marks the first instance of its use in melanoma [23]. Historically, DNA ploidy analysis was
used in cancer diagnostics, particularly in solid tumors, but its application in melanoma
remains rare [24]. By combining this approach with genomics, we effectively addressed the
challenge of tumor purity in small biopsies, thereby producing high-quality sequencing
data. For instance, although Patient 1 lacked a normal FFPE or fresh-frozen biopsy as a
germline control, isolating diploid, SOX10-negative cells from the bulk tumor tissue using
FACS allowed us to recover the non-tumoral cell population from the tumor sample. This
approach improved the purity of both the tumor and non-tumoral populations, thereby
allowing for more effective calling of somatic alterations and improving the overall accuracy
of the analysis. We confirmed the absence of tumor cell contamination in those populations
by using specific bioinformatic software (DeTiN) [25] (Supplementary Figure S1C). Other
technologies, such as single-cell RNA (scRNAseq) sequencing, have been used to determine
the intratumoral heterogeneity of melanoma [26]. However, the high costs and technical
challenges, such as artefacts introduced by the need to amplify the genome from very
low amounts of DNA from a single cell, have restricted the use of single-cell sequencing
mainly to scRNA-seq for transcriptional expression profiling rather than to single cell DNA
sequencing (scDNA-seq) for mutational profiling. Despite these limitations, our approach
may be combined with future advancements in scDNA-seq technologies to reduce costs by
focusing sequencing efforts on cells of interest only, such as SOX10-positive melanoma cells.

Our study adds to the limited body of literature on melanoma evolution using paired
tumor samples from the same patient [10-12]. Earlier studies, such as that by Morita et al.
in 1998, relied on less comprehensive methods, including loss of heterozygosity (LOH)
analysis of a few selected chromosome regions and CDKN2A Sanger sequencing, and
primarily focused on clonal relationships between primary tumors and metastases [27].
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Their data suggest that heterogeneous tumor cell populations might exist from the early
stages of tumorigenesis and evolve independently. This implies that the metastatic pro-
gression of melanoma may not follow a linear progression model, although they lacked
concrete evidence to support this theory. Our study provides further evidence for this
new progression model. Unlike previous studies, we were able to separate distinct tumor
populations with different ploidies coexisting within a single primary biopsy. In a recent
study, Konig et al. demonstrated that two separate tumor populations, each exhibiting
different morphological phenotypes, of a single melanoma case had varying responses to
treatment with adaptive cell therapy involving tumor-infiltrating lymphocytes [28]. Here,
we successfully separated two populations from the same primary tumor by using FACS
without the need for macro- or microdissection, and showed that these two populations
gave rise to different metastases.

Recent large-scale genomic studies in melanoma have primarily focused on mutation
profiles predictive of response to treatments such as BRAF, NRAS, and CKIT inhibitors [29].
Our results show a high tumor mutational burden (TMB) across all patients, consistent
with the literature on cutaneous melanoma [30]. Importantly, our findings also suggest
that TMB can vary significantly between primary and metastatic sites, as observed in
Patient 3, where the metastasis exhibited a significantly higher TMB than the primary tu-
mor (13.1 vs. 3.9 mutations/Mb). Phylogenetic analysis of our cohort revealed shared and
private mutations across tumor populations, with most mutations being truncal and shared
across both primary and metastatic sites in Patients 1 and 2 [12,31]. In contrast, Patient 3
presented a high proportion of private mutations in the metastasis, likely driven by neoad-
juvant chemotherapy, as indicated by the mutational signatures associated with platinum
and alkylating agents (SBS31, SBS32, and SBS11). This further suggests that chemotherapy
treatment can significantly alter the genomic landscape of the tumor, including subclonal
mutations [32].

We also observed a new clonal evolution pattern not accounted for by traditional
linear or parallel progression models, which describe the late dissemination of the most
advanced clone or the early dissemination and separate clonal evolution of the metastasis
and primary tumor, respectively. In Patient 1, clonality analysis revealed a tumor evolution
involving the coexistence of two distinct tumor populations (1PST1 and 1PST2) in the
primary tumor and the spread of clones from those two distinct tumor populations to
different metastatic sites. Mutational and copy number variation (CNV) analyses further
supported that the majority of alterations were shared across primary site and metastatic
tumor populations, suggesting co-evolution of different clones within the primary tumor
and late dissemination of those two different clones that formed the metastases. This
highlights the importance of accounting for intratumoral heterogeneity when studying
clonal evolution in melanoma.

Our findings may have important implications for melanoma diagnostics. For in-
stance, the distinct clonal origins of metastases in Patient 1 indicate that the mutational
profiling of both primary and metastatic sites can offer a more complete understanding of
tumor heterogeneity. This approach is particularly relevant for studying the trajectories
and evolution of highly heterogeneous tumors, as the detailed insights achieved through
high-resolution methods would likely be missed with NGS analysis of unsorted bulk tumor
tissue. By combining FACS and NGS to uncover clonal diversity, researchers may gain a
better understanding of the trajectories and clonality dynamics underlying highly heteroge-
neous tumors with multiple metastases. Furthermore, our study emphasizes the potential
role of homozygous deletions in genes such as CDKN2A and MTAP at chromosome 9p21.3,
which were observed in the primary tumor of Patient 3. These genomic alterations are
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known to contribute to the progression of melanoma and other cancers and may have
diagnostic or therapeutic relevance [33-35].

This study is, to the best of our knowledge, the first to employ flow sorting of nuclei
derived from melanoma tissues based on both ploidy and SOX10- or S100-positivity, fol-
lowed by WES of the sorted tumor populations to investigate the genomic intratumoral
heterogeneity and the evolutionary trajectory of cutaneous melanomas. The primary limita-
tion of our study is the small sample size of three patients, which restricts the generalization
of our findings. Additionally, potential technical limitations in FACS sorting and inherent
biases associated with the multiparameter ploidy approach cannot be excluded, as the
sorting process depends on the specificity of melanoma-specific markers (SOX10 or S100)
and DAPI to define the populations of interest, which were subsequently analyzed by WES.
However, the WES data of sorted populations provided evidence that our approach can
identify genomically distinct tumor populations even within a single biopsy and improves
tumor purity. Despite these limitations, we gained novel insights into the clonal dynamics
of melanoma progression, laying the foundation for future studies with larger sample sizes
and different melanoma subtypes. Ultimately, our approach offers a powerful tool for
investigating the dynamics of melanoma evolution and intratumoral heterogeneity, with
potential applications in research settings.

4. Materials and Methods
4.1. Clinical Cohort

This study was approved by the Ethics Committee of Northwestern and Central
Switzerland (EKBB, No EK47/13). Patient characteristics are given in Table 1. All sam-
ples used in this study were collected for clinical (diagnostic) purposes from patients
presenting at the University Hospital of Basel with cutaneous melanoma. Samples were
collected in liquid nitrogen and stored at —80 °C. Surplus tumor tissue is routinely col-
lected in liquid nitrogen at our institution if enough tissue from the same specimen is
available for formalin fixation and diagnostics. Samples complying with the inclusion
criteria—(i) histologically diagnosed cutaneous melanoma, (ii) multiple biopsies and/or
time points available, (iii) sufficient quality and amount of material—were carefully se-
lected and reviewed by two experienced board-certified pathologists (KG and LB). A total
of seven fresh-frozen melanoma tumor biopsies from three patients, and their matched
non-tumor biopsies (one fresh-frozen and two formalin-fixed) were collected from the
archives of the Institute of Pathology and Medical Genetics, University Hospital of Basel
(Table 1).

4.2. Nuclei Isolation and Multiparameter Flow Sorting

Nuclei were isolated from fresh-frozen tumor samples according to published
protocols [15,16,22,36-38]. Bulk DNA from formalin-fixed, paraffin-embedded (FFPE) non-
tumor samples were utilized as germline controls to identify somatic alterations through
WES. Due to the lack of a non-tumoral sample for Patient 1, we utilized the sorted diploid,
melanoma marker SOX10-negative cell populations from the primary site biopsy as a
germline control for WES. Absence of tumor contamination was demonstrated with the
DeTiN software v.1.7.5.9, as described below. Extracted nuclei were stained with DAPI
to allow DNA ploidy analysis via FACS. The melanoma markers SOX10 or S100 were
used—in addition to DAPI—as a second parameter to discriminate nuclei derived from
tumor cells (SOX10- or S100-positive) from nuclei derived from non-tumor cells (SOX10- or
5100-negative). SOX10 and S100 expression were verified by immunohistochemistry (IHC)
on corresponding FFPE tissue sections using a SOX10 antibody (monoclonal mouse IgG1,
Clone#20B7, R&D Systems, Minneapolis, MN, USA) and an S100 antibody (monoclonal



Int. J. Mol. Sci. 2025, 26, 1758

11 0f 15

mouse IgG2a, clone 4C4.9, Abnova, Taiwan, China), respectively. Isotype controls were
used to assess and correct for non-specific binding and background fluorescence. All
tumors showed a nuclear expression of SOX10, except for the breast metastasis of Patient 3.
The non-tumor FACS-sorted population that was used as a germline control for WES for
Patient 1 was SOX10-negative by FACS.

4.3. Tumor Purity and Ploidy Assessments

The ploidy (expressed as N) of each tumor population was determined via FACS
by calculating the ratio of the geometric means of the DAPI signals in the SOX10- or
5100-positive tumor populations relative to their corresponding SOX10- or S100-negative,
diploid populations, which were considered non-tumor. Tumor purity was evaluated both
pre- and post-sorting. For the unsorted material, we utilized the relative percentages of
FACS events within the analysis gates of the SOX10- or S100-positive tumor populations
(including tumor nuclei in the G2/M phase) compared to the events within the analysis
gates of the SOX10- or S100-negative diploid, normal populations. After sorting, tumor
purity was assessed computationally using FACETS v.0.5.14 [39].

4.4. DNA Extraction and Quantification

FACS-sorted nuclei were subjected to DNA extraction, quantification, and whole
genome amplification, as described previously [15]. DNA extraction of the sorted popula-
tions and the FFPE biopsies were performed with the Maxwell instrument according to
the standard protocols used in diagnostic routine workflow (Promega, Madison, WI, USA).
Quantification of the DNA was performed with the Qubit Fluorometer assay according to
the manufacturer’s protocol (Life Technologies, Carlsbad, CA, USA).

4.5. Library Preparation and Whole Exome Sequencing

Library preparations were performed with the SureSelect Human All Exon V6 Kit
(Agilent, Santa Clara, CA, USA) for whole exome capturing according to the manufacturer’s
guidelines. Paired-end 100 bp reads were generated on an [llumina NovaSeq 6000. Library
preparation and sequencing were conducted by CeGaT (Tiibingen, Germany).

4.6. Reads Alignment and Variant Annotation

The raw FASTQ data processing workflow was adapted from Roma et al. [40]. Briefly,
after the sequencing, reads were aligned against the reference human genome GRCh38
using the Burrows—Wheeler Aligner (BWA, v0.7.12) [41]. The DeTiN software was used to
estimate the contamination of the tumors in matched normal samples and in the diploid,
SOX10-negative cell population of the primary site biopsy of Patient 1 that was used as a
germline control due to the lack of a non-tumoral sample for this patient [25]. SNVs and
indels were called using MuTect2 (GATK 4.1.4.1) [42]. SN'Vs and indels with a VAF < 1%
or that were covered by fewer than three reads were discarded if the SNVs were found
in two or more sorted populations from the same patient, and a cut-off of two reads was
applied [16,40,43]. We further excluded variants identified in at least two of a panel of
210 non-tumor samples, including the non-tumor samples in the current study. Variant an-
notation was performed by the SnpEff software v.4.1 [44]. The heatmap of non-synonymous
mutations was generated using the R package MAFTOOLS v.2.0.16 [45] by selecting the
melanoma cancer driver genes from the Bailey et al. database [46]. A detailed listing of
all called somatic variants in the distinct tumor populations, including allelic frequency,
genomic loci, amino acid change, mutation type, and potential affiliation to a known cancer
gene set, is included in the Supplementary Data (Supplementary Table S1).
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4.7. Copy Number Alterations and Clonality Analysis

Allele-specific copy number variants (CNVs) were identified using FACETS v.0.5.14 [39],
and the log ratio relative to ploidy was used to call deletions, loss, gains, and amplifications [40].
The similarity of the CNV between the different samples was calculated by using a Pearson’s
correlation implemented in the corrplot R package v.0.95 and drawn using the ggplot R
package v. 3.5.1 [47,48]. The cancer cell fraction (CCF) of each mutation was inferred using
ABSOLUTE v1.0.6 [19]. Solutions from ABSOLUTE were manually curated to ensure the
solution matched the ploidy estimate generated by FACETS [39]. A mutation was classified
as clonal if its probability of being clonal was >50% or if the lower bound of the 95%
confidence interval of its CCF was >90%. Mutations were considered as subclonal if they did
not meet the mentioned criteria [16]. CCF histograms generated by ABSOLUTE were used
as the input to PhylogicNDT [49] to find clusters of mutations, infer subclonal populations
of cells and their phylogenetic relationships, and determine the order of occurrence of
clonal driver events. PhylogicNDT was run using the parameters “Cluster -rb -ni 1000”
to cluster and build the phylogenetic tree with 1000 iterations. Data were drawn using
ggplot2 in R version 3.6.1 [47]. Clusters with less than 5 mutations were discarded.

4.8. Phylogenetic Analysis and Mutational Signatures

A maximum parsimony tree was built for each case using binary presence/absence
matrices based on the repertoire of non-synonymous and synonymous somatic mutations,
in the biopsies of the tumors, as described by Murugaesu et al. [50]. A mutation that was
found in both or more sorted populations of a biopsy was considered as ‘trunk’. Mutations
that were detected in only one sorted population of the tumor were classified as ‘branch’
or ‘private’. Mutational signatures were calculated using Mutational Patterns v.3.16.0 [51]
by selecting mutational signatures based on the set of 60 mutational signatures from the
COSMIC database (“signatures.exome.cosmic.v3.may2019”).

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms26041758 /s1.
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