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Abstract: Cow mastitis is a major challenge in dairy farming, significantly affecting both
milk quality and cow health. Cytochalasin B (CB) is a fungal toxin and an actin cytoskeleton
depolymerizing agent that exhibits anti-inflammatory and antitumor properties; however,
its mechanism in cow mastitis remains unclear. In this study, we systematically evaluated

the effects of CB on mastitis using an LPS-induced inflammation model in bovine mam-

ﬁ';,ejﬁtf;’sr mary epithelial cells (MAC-T) and a mouse mastitis model. The techniques employed
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) immunofluorescence (IF), and immunohistochemistry (IHC). The results demonstrated that
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Bovine mastitis is one of the most common diseases in the global dairy industry, posing
10.3390/ijms26073029

a serious threat to cow health and the quality of dairy products. According to estimates by
Copyright: ©2025 by the authors. the Food and Agriculture Organization of the United Nations (FAO, 2020), mastitis causes
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annual economic losses amounting to billions of dollars worldwide due to reduced milk
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o yield, increased treatment costs, and expenses associated with culling cows [1]. Pathogenic
distributed under the terms and

conditions of the Creative Commons microbial infections are the primary cause of mastitis, with lipopolysaccharide (LPS) from

Attribution (CC BY) license Gram-negative bacteria playing a critical role in triggering the disease by eliciting a robust
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bovine mastitis, the increasing prevalence of antibiotic-resistant strains and concerns over
antibiotic residues have prompted researchers to explore novel therapeutic strategies.

Cytochalasin B (CB) is a mycotoxin derived from Fusarium species, with a molecular
weight of approximately 479.6 Da. As an actin depolymerizer, CB specifically binds to
the growing ends of actin filaments, preventing the polymerization of actin monomers
and disrupting the dynamic equilibrium of the cytoskeleton [4]. Recent studies have
demonstrated that CB possesses significant anti-inflammatory and antitumor properties.
Regarding its anti-inflammatory effects, CB attenuates inflammation by inhibiting the
migration of inflammatory cells and reducing the release of inflammatory mediators;
for example, it plays a crucial role in modulating macrophage-mediated inflammatory
responses [5]. Concerning its antitumor activity, CB disrupts the cytoskeletal framework
of tumor cells, thereby suppressing their proliferation and invasiveness; for instance, in
gliomas, CB induces apoptosis in tumor cells [6], and in hepatocellular carcinoma (HCC), it
shows promise as a potential therapeutic agent against this highly invasive tumor [7].

The actin cytoskeleton plays a pivotal role in regulating immune function by orches-
trating fundamental cellular processes such as proliferation, differentiation, apoptosis,
migration, and signal transduction [8]. Research has shown that remodeling of the actin
cytoskeleton is essential not only for the function of immune cells—such as T lymphocytes,
B lymphocytes, and macrophages—but also for the broader regulation of the immune
system [9]. In the context of inflammation, the pro-inflammatory factor LPS induces dy-
namic cytoskeletal changes through activation of the PI3K signaling pathway [10,11]. This
process relies on actin polymerization mediated by the actin-related protein 2/3 (ARP2/3)
complex, which directly affects the migratory and phagocytic capabilities of inflammatory
cells, thereby intensifying the inflammatory response [12].

The ARP2/3 complex plays a key role in LPS-induced inflammatory responses. Com-
posed of ARP2, ARP3, and five subunits (ARPC1, ARPC2, ARPC3, ARPC4, and ARPC5),
this complex is stably assembled, with ARPC4 being crucial for maintaining its struc-
tural integrity and stability through specific interactions with ARPC3 [13,14]. During
inflammation, the ARP2/3 complex, activated by neuronal Wiskott-Aldrich syndrome
protein (N-WASP), promotes the formation of branched actin structures, thereby enhancing
the migratory and phagocytic capabilities of inflammatory cells [12]. Moreover, studies
have observed that during bacterial invasion, the expression levels of ARPC3 and ARPC4
increase significantly, and inhibiting their expression can effectively mitigate the host’s
inflammatory response [15].

Furthermore, additional critical factors are involved in the molecular mechanisms
underlying inflammation. For example, fever—a hallmark of inflammation—is primarily
driven by interleukin-1f (IL-13), whose production depends on the activation of the NLRP3
inflammasome [16]. However, excessive activation of the NLRP3 inflammasome can lead
to tissue damage and immune dysfunction, contributing to the onset and progression
of inflammatory diseases such as mastitis [17,18]. Heat shock protein HSP70, which
functions as a molecular chaperone, interacts with the NLRP3 inflammasome and acts as a
negative regulator of its activation. Additionally, HSP70 helps maintain cellular function by
participating in clathrin (CLTC)-mediated endocytosis via N-WASP [19,20]. Notably, HSP70
plays dual roles in inflammation: while its elevated expression can suppress apoptosis and
enhance host immune responses [21], HSP70 induced by the heat shock response following
pro-inflammatory stimuli may exert cytotoxic effects, exacerbating tissue damage [22].

Previous studies by our team have identified a potential interaction mechanism be-
tween ARPC3/4 and HSP70 in an LTA-induced bovine mastitis inflammation model [23].
Building on these findings, the current study employs cytochalasin B (CB) as a potential anti-
inflammatory agent, using LPS to establish inflammatory models in MAC-T cells and mice.
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This research investigates the anti-inflammatory mechanisms of CB from two perspectives:
first, CB may modulate cytoskeletal rearrangement by inhibiting the expression of ARPC3,
ARPC4, and HSP70, thereby alleviating LPS-induced inflammation in bovine mammary
epithelial cells; second, CB may disrupt the interaction between HSP70 and the NLRP3
inflammasome, blocking its activation and subsequently attenuating the LPS-induced in-
flammatory response. Overall, this study aims to provide novel mechanistic insights and
potential intervention strategies for the treatment of bovine mastitis.

2. Results

2.1. Expression of Inflammatory Cytokines and Activation of the NLRP3 Inflammasome in Bovine
Mastitis Tissue

To assess the immune environment in bovine mammary tissue, qPCR and Western
blot were used to evaluate the expression of IL-1 and TNF-«, as well as the activation of
the NLRP3 inflammasome, in tissues from healthy cows (control) and those with clinical
(CM) and subclinical mastitis (SCM). Compared with the control group, both the CM and
SCM groups showed significantly elevated levels of IL-13, TNF-o, and NLRP3 (Figure 1).
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Figure 1. The expression of inflammatory cytokines and the activation of inflammasome in dairy cow
mastitis tissue. (A) qPCR was used to detect the expression of inflammatory cytokines and NLRP3
inflammasome mRNA levels. (B—-E) Western blot was used to detect the expression of inflammatory
cytokines and NLRP3 inflammasome protein levels. *, p < 0.05; **, p < 0.01.

2.2. Increased Apoptosis in Bovine Mastitis Tissue

Given that inflammation is typically accompanied by enhanced apoptosis, qPCR and
Western blot were used to measure the expression of Bax, Bcl-2, Caspase 3, and Caspase 7 in
mammary tissues from the control, CM, and SCM groups. The results revealed that, relative
to the control group, Bcl-2 expression was significantly decreased, while the Bax, Caspase 3,
and Caspase 7 levels were markedly increased in both the CM and SCM groups (Figure 2).
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Figure 2. The apoptosis of inflammatory cells in dairy cow mammary gland was increased. (A) The
mRNA levels of Caspase 3, Caspase 7, Bax, and Bcl-2 were detected by qPCR. (B-F) Western blot was
used to detect the expression of Caspase 3, Caspase 7, Bax, and Bcl-2. *, p < 0.05; **, p < 0.01.

2.3. Enhanced Expression of ARPC3, ARPC4, and HSP70 in Bovine Mastitis Tissue

To examine changes in ARPC3, ARPC4, and HSP70 expression in bovine mastitis,
gPCR and Western blot were used to determine the levels of ARPC3, ARPC4, HSP70A1A,
and HSP70A1L in tissues from healthy cows (control) and cows with CM and SCM. Both
mRNA and protein levels of these markers were significantly elevated in the CM and SCM
groups compared with the control group (Figure 3).
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Figure 3. The expression of ARPC3, ARPC4, and HSP70 in mastitis tissues of dairy cows was
enhanced. (A) The mRNA levels of ARPC3, ARPC4, HSP70A1A, and HSP70A1L were detected by
qPCR. (B-F) Western blot was used to detect the expression of ARPC3, ARPC4, HSP70A1A, and
HSP70A1L. *, p < 0.05; **, p < 0.01.

2.4. CB Inhibits LPS-Induced Expression of Inflammatory Cytokines and Activation of the NLRP3
Inflammasome in MAC-T Cells

CB has been shown to have potent anti-inflammatory effects. To investigate its impact

on LPS-induced inflammatory responses in MAC-T cells, qPCR and Western blot were used

to assess the mRNA and protein expression of IL-13, TNF-«, and the NLRP3 inflammasome.

The LPS + CB group exhibited significantly lower levels of these inflammatory markers

compared with the LPS group (Figure 4).
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Figure 4. CB inhibited LPS-induced expression of inflammatory cytokines and activation of NLRP3
inflammasome in MAC-T cells. (A) qPCR was used to detect the expression of inflammatory cytokines
IL-1B, TNF-«, and NLRP3 inflammasome mRNA levels. (B-E) Western blot was used to detect the
expression of inflammatory cytokines IL-13, TNF-«, and NLRP3 inflammasome protein levels. (F) IF
was used to detect the expression of inflammatory cytokines IL-1f3, TNF-¢, and NLRP3 inflammasome
protein. Scale bar: 90 um (white line segment). *, p < 0.05; **, p < 0.01.

2.5. CB Inhibits LPS-Induced Apoptosis in MAC-T Cells

To explore the role of CB in regulating apoptosis in LPS-stimulated MAC-T cells, qPCR,
Western blot, and immunofluorescence (IF) were employed to detect apoptosis-related
proteins. The LPS + CB group showed a significant increase in Bcl-2 expression and a
significant decrease in Bax, Caspase 3, and Caspase 7 expression compared with the LPS
group (Figure 5).
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Figure 5. CB inhibited LPS-induced apoptosis of MAC-T cells. (A) The mRNA levels of Caspase
3, Caspase 7, Bax, and Bcl-2 were detected by qPCR. (B-F) Western blot was used to detect the
expression of Caspase 3, Caspase 7, Bax, and Bcl-2. (G) The expression of Caspase 3, Caspase 7, Bax,
and Bcl-2 protein was detected by IF. Scale bar: 90 pm (white line segment). *, p < 0.05; **, p < 0.01.

2.6. CB Inhibits LPS-Induced Expression of ARPC3, ARPC4, and HSP70 in MAC-T Cells

To further elucidate the anti-inflammatory mechanism of CB, qPCR, Western blot, and
IF were used to examine the expression of ARPC3, ARPC4, HSP70A1A, and HSP70A1L in
MAC-T cells. The results demonstrated that the LPS + CB group had a significantly lower
expression of these markers compared with the LPS group, indicating that CB effectively
suppresses their LPS-induced expression (Figure 6).

2.7. CB’s Effects on LPS-Induced Pathological Damage and Inflammatory Responses in Mouse
Mastitis Tissue

To further investigate the anti-inflammatory effects of CB, mouse mammary tissues
were subjected to HE staining, immunohistochemistry (IHC), and IF to observe IL-13,
TNEF-«, and NLRP3. LPS treatment disrupted tissue structure, as evidenced by increased
stroma thickness, rupture, and even atrophy and necrosis of glandular alveoli, along with
the detachment of mammary epithelial cells and extensive inflammatory cell infiltration.
However, CB treatment markedly ameliorated these pathological changes. Additionally,
qPCR and Western blot confirmed that LPS significantly increased IL-1f3, TNF-«, and
NLRP3 expression in mouse mammary tissues compared with the control group, while
CB treatment mitigated these effects (Figure 7). These findings confirm the successful
establishment of the mouse mastitis model and demonstrate that CB alleviates mastitis by
inhibiting inflammatory cytokine production.
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Figure 6. CB inhibited LPS-induced expression of ARPC3, ARPC4, and HSP70 in MAC-T cells.
(A) The expression of ARPC3, ARPC4, HSP70A1A, and HSP70A1L mRNA levels was detected by
qPCR. (B-F) Western blot was used to detect the expression of ARPC3, ARPC4, HSP70A1A, and
HSP70A1L. (G) The expression of ARPC3, ARPC4, HSP70A1A, and HSP70A1L protein was detected
by IF. Scale bar: 90 um (white line segment). *, p < 0.05; **, p < 0.01.
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Figure 7. The effect of CB on the pathological damage of mammary gland in mice with LPS-
induced mastitis and the effect of CB on the expression of inflammatory cytokines and the activation
of NLRP3 inflammasome in mice with LPS-induced mastitis. (A) qPCR was used to detect the
expression of inflammatory cytokines IL-1f3, TNF-«, and NLRP3 inflammasome mRNA levels.
(B-E) Western blot was used to detect the expression of inflammatory cytokines IL-13, TNF-¢, and
NLRP3 inflammasome protein levels. (F) HE was used to observe the effect of CB on the pathological
damage of mammary gland tissue in mice with LPS-induced mastitis. Scale bar: 100 um (black line
segment). (G,H) IHC and IF were used to detect the expression of inflammatory cytokines IL-13,
TNF-«, and NLRP3 inflammasome protein. Scale bar: 90 um (white line segment),100 um (black line
segment). **, p < 0.01.

2.8. CB Inhibits LPS-Induced Apoptosis in Mouse Mammary Cells

To further explore CB’s regulatory effects on apoptosis in inflammatory conditions,
qPCR, Western blot, IHC, and IF were used to assess apoptosis-related protein expression
in mouse mammary cells. The LPS + CB group showed a significant increase in Bcl-2
expression and significant decreases in Bax, Caspase 3, and Caspase 7 expression compared
with the LPS group (Figure 8).
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Figure 8. CB inhibits LPS-induced apoptosis of mouse mammary gland cells. (A) The mRNA levels of
Caspase 3, Caspase 7, Bax, and Bcl-2 in mouse mammary gland were detected by qPCR. (B-F) Western
blot was used to detect the expression of Caspase 3, Caspase 7, Bax, and Bcl-2 protein in breast tissue
of mice. (G) IHC was used to detect the expression of Caspase 3, Caspase 7, Bax, and Bcl-2 protein in
mouse breast tissue. Scale bar: 100 um (black line segment). (H) IF was used to detect the expression
of Caspase 3, Caspase 7, Bax, and Bcl-2 protein in mouse breast tissue. Scale bar: 90 um (white line
segment). *, p < 0.05; **, p < 0.01.

2.9. CB Inhibits LPS-Induced Expression of ARPC3, ARPC4, and HSP70 in Mouse
Mammary Tissue

To further elucidate the anti-inflammatory mechanism of CB, qPCR, Western blot, IHC,
and IF were used to measure the expression of ARPC3, ARPC4, HSP70A1A, and HSP70A1L
in mouse mammary tissues. The LPS + CB group exhibited significantly lower levels of
these proteins compared with the LPS group, indicating that CB effectively inhibits their
LPS-induced expression (Figure 9).
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Figure 9. CB inhibited LPS-induced expression of ARPC3, ARPC4, and HSP70 in mouse mammary
gland. (A) qPCR was used to detect the expression of ARPC3, ARPC4, HSP70A1A, and HSP70A1L
mRNA in mouse breast tissue. (B-F) Western blot was used to detect the expression of ARPC3,
ARPC4, HSP70A1A, and HSP70A1L protein in mouse breast tissue. (G) IHC was used to detect
the expression of ARPC3, ARPC4, HSP70A1A, and HSP70A1L proteins. Scale bar: 100 um (black
line segment). (H) IF was used to detect the protein expression of ARPC3, ARPC4, HSP70A1A, and
HSP70A1L. Scale bar: 90 um (white line segment). **, p < 0.01.
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3. Discussion

Bovine mastitis is a major challenge in the dairy industry, severely affecting milk
quality and cow health while incurring significant economic losses. Traditionally treated
with antibiotics, mastitis management faces issues such as adverse side effects and growing
antibiotic resistance, prompting the search for alternative therapies [24,25]. This study
systematically investigates the mechanism of cytochalasin B (CB) in LPS-induced mastitis
through both in vitro and in vivo experiments. Our results demonstrate that CB signifi-
cantly alleviates mastitis symptoms by suppressing inflammatory responses, inhibiting
apoptosis, and downregulating key molecules including ARPC3, ARPC4, and HSP70,
thereby providing a theoretical basis for its potential therapeutic application.

Initially, we assessed the expression of inflammatory cytokines IL-1f3, TNF-«, and
the activation of the NLRP3 inflammasome in bovine mammary tissues using qPCR and
Western blot. Both mRNA and protein levels of these factors were significantly elevated
in tissues from cows with clinical (CM) and subclinical mastitis (SCM) compared with
healthy controls. This observation aligns with previous research demonstrating that LPS,
a critical pathogenic component of Gram-negative bacteria, activates immune regulatory
pathways and the NLRP3 inflammasome, thereby promoting IL-1§3 release and exacerbating
inflammatory damage [26-28]. Notably, CB treatment in MAC-T cells and mouse mastitis
models markedly reduced the expression of IL-13, TNF-«, and NLRP3, indicating potent
anti-inflammatory effects similar to those observed with other natural compounds such as
allicin and lentinan [29,30].

Inflammation is frequently accompanied by increased apoptosis, a phenomenon par-
ticularly evident in mastitis pathology [31,32]. Our study found that pro-apoptotic proteins
Bax, Caspase 3, and Caspase 7 were significantly upregulated, while the anti-apoptotic pro-
tein Bcl-2 was downregulated in the CM and SCM groups, indicating heightened apoptosis.
In both LPS-induced MAC-T cells and mouse models, CB treatment reversed these changes
by upregulating Bcl-2 and downregulating Bax, Caspase 3, and Caspase 7. As an actin
depolymerizer, CB may protect cells by disrupting cytoskeletal structures and blocking
apoptotic signaling pathways, a mechanism consistent with reports in other inflammatory
conditions [33].

To further elucidate CB’s anti-inflammatory mechanism, we examined the expression
of ARPC3, ARPC4, and HSP70. Our data revealed that the ARPC3, ARPC4, and HSP70
levels were significantly elevated in the CM and SCM groups but markedly reduced in
CB-treated MAC-T cells and mouse models. ARPC3 and ARPC4 are critical components
of the ARP2/3 complex, which regulates actin polymerization and cytoskeletal rearrange-
ment, processes that facilitate the migration and phagocytic activity of inflammatory
cells [12,34,35]. By downregulating ARPC3 and ARPC4, CB likely disrupts cytoskeletal re-
arrangement, thereby reducing inflammatory cell migration and attenuating inflammation.

HSP70, a molecular chaperone, plays a complex role in inflammation regulation by
interacting with the NLRP3 inflammasome. Although generally considered a negative reg-
ulator of NLRP3 activation [19], HSP70 overexpression following pro-inflammatory stimuli
can have cytotoxic effects, contributing to apoptosis in endotoxin-exposed cells [36,37]. In
our study, CB reduced HSP70 expression, which may decrease its interaction with NLRP3
and further inhibit inflammasome activation. This finding supports the notion that CB
exerts its anti-inflammatory effects, at least in part, through the HSP70-NLRP3 axis.

In summary, CB significantly mitigates inflammatory damage in LPS-induced mastitis
models by suppressing inflammatory cytokine production, inhibiting apoptosis, and down-
regulating ARPC3, ARPC4, and HSP70 expression. Its mechanism involves disrupting
cytoskeletal rearrangement and blocking NLRP3 inflammasome activation. As a natural
product, CB may offer advantages over traditional antibiotics, including lower toxicity and
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reduced residue risks, aligning with current trends in mastitis treatment research. However,
further studies are needed to clarify CB’s specific molecular targets and dose-response
relationships, and to optimize its application conditions for translational use in bovine
mastitis therapy.

4. Materials and Methods
4.1. Cell Culture and Treatment

Bovine mammary epithelial (MAC-T) cells were obtained from the Chinese Academy
of Agricultural Sciences. The cells were cultured in DMEM/F12 medium supplemented
(Gibco, Grand Island, NY, USA) with 10% fetal bovine serum (Invigentech, Irvine, CA,
USA) in a 37 °C and 5% CO, incubator. They were maintained in 25 cm? culture flasks,
and experiments were initiated when cell confluence reached 60-70%. For treatment, LPS
(Sigma, St. Louis, MO, USA) was dissolved in sterile PBS (Servicebio, Wuhan, China) and
applied at a final concentration of 50 ug/mL for 24 h. Cytochalasin B (CB) was purchased
from MedChemExpress (MCE, Monmouth Junction, NJ, USA). CB was dissolved in 1 mL
of dimethyl sulfoxide (DMSO) (Servicebio, Wuhan, China) to prepare a 1 mg/mL stock
solution and used at a final concentration of 500 ng/mL. After the initial 24 h LPS treatment,
CB was added to the medium, and the cells were further incubated for an additional 24 h.

4.2. Tissue Sample Preparation

All cows were sourced from a large, standardized dairy farm in Wuzhong, Ningxia,
and were all at the same lactation stage. A resident veterinarian conducted diagnoses to
exclude other diseases. Udder health was evaluated based on criteria such as redness,
swelling, heat, and hardness, along with somatic cell count (SCC) and the Lanzhou Mastitis
Test (LMT). Healthy cows exhibited normal udder skin and milk, with SCC values between
7 x 10* and 1 x 10° cells/mL and negative LMT results. Cows with subclinical mastitis,
despite lacking overt clinical symptoms, showed abnormal milk test results with SCC
values ranging from 2 x 10° to 5 x 10° cells/mL and weakly positive LMT results (+ or
++). In contrast, cows with clinical mastitis displayed clear signs such as udder redness,
swelling, and heat, with milk showing watery consistency, clots, or blood; these cows had
SCC values between 13 x 10° and 15 x 10° cells/mL and positive LMT results (+++). We
selected three healthy Holstein cows (control group, Con, n = 3), three cows with subclinical
mastitis (subclinical group, SM, n = 3), and three cows with clinical mastitis (clinical group,
CM, n = 3) and sent them to the slaughterhouse. After slaughter, fresh udder tissue from
each group was collected under sterile conditions for research. Portions of the tissue were
cut into 1.5 cm® blocks and fixed in sterile, enzyme-free centrifuge tubes containing 4%
paraformaldehyde, while the remaining tissue was cut into 1 cm® blocks and stored in
sterile, enzyme-free cryovials at —80 °C for future use.

4.3. Animal Housing and Treatment

Fifty 8-week-old female Kunming mice and twenty-five male Kunming mice were
obtained from the Chinese Academy of Agricultural Sciences. After a 7-day acclimation
period with free access to food and water, the mice were housed at a 2:1 female-to-male
ratio for a 2-day mating period. Eighteen pregnant mice with similar physical conditions
were then selected, and following 7 days of lactation, they were randomly assigned to three
groups: control, LPS, and CB + LPS. The fourth pair of mammary glands was injected
as follows: the LPS and CB + LPS groups received a 50 pL injection of LPS solution
(200 pg/mL) to induce mastitis, while the control group was injected with an equal volume
of saline. Twenty-four hours after the LPS injection, the CB + LPS group was administered
CB (4 mg/kg). After an additional 24 h, the fourth pair of mammary gland tissues was
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collected under sterile conditions. Tissue samples were divided, with one portion cut into
1.5 cm® blocks and stored at —80 °C, and the remainder were fixed in 4% formaldehyde for
subsequent analyses. This study was approved by the Animal Protection Committee of
Gansu Agricultural University.

4.4. RNA Extraction, cDNA Synthesis, and gPCR

Total RNA was isolated from cells and tissues using TRNzol Universal Reagent (G3013,
Servicebio, Wuhan, China) according to the manufacturer’s protocol. RNA concentration
and purity were measured with a NanoDrop ND-1000 spectrophotometer (Thermo Fisher,
San Diego, CA, USA); only samples with an OD260/280 ratio between 1.8 and 2.0 were
used. cDNA was synthesized from total RNA using the Evo M-MLV Reverse Transcription
Kit (AG11732, Accurate Biotechnology, Changsha, China). Gene expression was quantified
with SYBR Green Pro Taq HS Premix (AG11746, Accurate Biotechnology, Changsha, China),
using {3-actin as the internal reference gene. Relative expression levels were calculated

using the 27A2CT method. mRNA-specific primer sequences are listed in Table 1.

Table 1. The information of all primers.

Species Gene GenBank NO. Sequence (5'-3) Length
GCCACCTTTTGACAGTGATGAG
IL-13 NM_008361.4 135
ATGTGCTGCTGCGAGATTTG
AAACCACCAAGTGGAGGAGC
TNF-o NM_013693.3 120
ACAAGGTACAACCCATCGGC
ATTACCCGCCCGAGAAAGG
NLRP3 NM_145827 .4 83
CATGAGTGTGGCTAGATCCAAG
CACTAAAGTGCCCGAGCTGA
BAX NM_007527.4 96
CAGCCACCCTGGTCTTGG
GAACTGGGGGAGGATTGTGG
Bcl-2 NM_009741.5 194
GCATGCTGGGGCCATATAGT
GGAGCAGCTTTGTGTGTGTG
Caspase 3 NM_009810.3 242
M AGCCTCCACCGGTATCTTCT
ouse
GAGGAGGACCACAGCAACTC
Caspase 7 NM_007611.3 238
CGTCAATGTCGTTGATGGGC
GCCATTTATGCCAAGCCTGC
ARPC3 NM_019824.4 151
TCACAAAGCAAGTCCACCACT
CTGCCACTCTCCGCCCCTAC
ARPC4 NM_026552.3 126
TGCTACTCCTGACTTCGACCTCTG
GACAAGTGCCAGGAGGTCAT
HSP70A1A NM_005345.6 155
CCGAAGCCCCCAGCC
GACGCCAACGGTATCCTGAA
HSP70A1L NM_013558.2 176
TTGGCAGCGATTTTCTCCCT
. GGCTGTATTCCCCTCCATCG
-actin NM_007393.5 154

CCAGTTGGTAACAATGCCATGT
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Table 1. Cont.

Species Gene GenBank NO. Sequence (5'-3) Length
TCCGACGAGTTTCTGTGTGA
IL-13 NM_174093.1 206
ATACCCAAGGCCACAGGAAT
TTGTTCCTCACCCACACCAT
TNF-x NM_173966.3 239
CCAAAGTAGACCTGCCCAGA
GGCACCTTTCTTCCATGGCT
NLRP3 NM_001102219.1 219
ACCCGGTCAGAGTCCAGAAA
GAGATGAATTGGACAGTAACA
BAX NM_173894.1 118
TTGAAGTTGCCGTCAGAA
ATGACCGAGTACCTGAAC
Bcl-2 NM_001166486.1 79
CATACAGCTCCACAAAGG
AGTGGTGCTGAGGATGAC
Caspase 3 NM_001077840.1 135
Bovi ACAAAGAGCCTGGATGAA
ovine
GAAATTCAGCCTGCTTCGCC
Caspase 7 XM_002698509.6 110
CCCCCTAAAATGGGCTGTCA
TTTTCGTTGGGGTGGAGACO
ARPC3 NM_001034271.2 138
TCTCTAGGGGCAGGTCCTTI
CCGTGTCTCTGTGAAGTCGT
ARPC4 NM_001076163.1 103
ATCTAATGCCCACCCTGACC
AGTGCCAGGAGGTGATTTCC
HSP70A1A NM_203322.3 100
ATGGGGTTACACACCTGCTC
GCCAAGAACCAGGTAGCCAT
HSP70A1L NM_001167895.1 149
ATTACCTTGGGCTTGCCTCC
] CAACCGTGAGAAGATGACCCA
3-actin AY141970.1 293

TGTCACGGACGATTTCCGCTC

4.5. Western Blot

Total protein was extracted from cells and animal mammary tissues using RIPA
lysis buffer (Solarbio, Beijing, China) supplemented with PMSF at a 100:1 ratio. Protein
concentration was measured with a BCA assay (PC0020, Solarbio, Beijing, China). The
supernatant was mixed with 5 x loading buffer, heat-denatured at 98 °C for 15 min, and
stored at —80 °C. Western blotting was performed to assess the expression of IL-13, TNF-«,
NLRP3, Bax, Bcl-2, Caspase 3, Caspase 7, ARPC3, ARPC4, HSP70A1A, and HSP70A1L.
Equal amounts of protein (50 ug) were separated by SDS-PAGE and transferred to a PVDF
membrane. The membrane was washed with 1x PBST, blocked in 5% non-fat milk at room
temperature for 2 h, and then incubated overnight at 4 °C with the appropriate primary
antibody. The following day, the membrane was washed three times with PBST (10 min
each), incubated with the corresponding secondary antibody at 37 °C for 1 h, and washed
again three times with PBST. Protein bands were visualized using a chemiluminescent
solution with (3-actin as the internal control, and band intensities were quantified using
Image-J 1.52a software. The antibodies used are listed in Table 2.
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Table 2. The information of all antibodies.

Name Manufacturer Cat.NO.
IL-1B Affinity AF4006
TNF- Affinity AF7014
NLRP3 Proteintech 27458-1-AP
BAX Proteintech 50599-2-1G
Bcl-2 Proteintech 26593-1-AP
Caspase 3 Bioss bs-0081R
Caspase 7 Bioss bsm-60304R
ARPC3 Proteintech 14652-1-AP
ARPC4 Proteintech 10930-1-AP
HSP70A1A Proteintech 10995-1-AP
HSP70A1L Proteintech 13970-1-AP
B-actin Proteintech 66009-1-1G

4.6. Immunohistochemistry and Immunofluorescence Staining

Mouse mammary tissues preserved in formaldehyde were dehydrated, paraffin-
embedded, sectioned into 4 um slices, and deparaffinized using graded alcohols and xylene
before hematoxylin—eosin (HE) staining. After dehydration and coverslipping, the slides
were examined under a microscope (Axiocam 208 color, Zeiss, Oberkochen, Germany). For
immunohistochemistry (IHC), antigen retrieval was performed with heated citrate buffer
and sections were blocked with 5% BSA. The primary antibody was applied overnight at
4 °C, followed by a 1 h incubation with the secondary antibody at 37 °C, then DAB staining
and hematoxylin counterstaining were performed, after which the slides were coverslipped
for observation. For immunofluorescence (IF), MAC-T cells and mouse mammary tissue
sections were stained using a three-marker, four-color multiplex fluorescent kit (AiFang
Biological, Changsha, China) per the manufacturer’s instructions and observed with an
inverted fluorescence microscope (Revolve Omega, ApexBio, Suzhou, China).

4.7. Statistical Analysis

Western blot bands were quantified using Image]J software. Statistical analyses were
performed with SPSS 25.0, and all data are presented as mean =+ standard deviation. A
p value < 0.05 (*) was considered statistically significant, while p < 0.01 (**) was deemed
highly significant. GraphPad Prism 8.0.2 was used for data visualization.

5. Conclusions

In both the LPS-induced MAC-T cell inflammation model and the mouse mastitis
model, CB effectively inhibited inflammatory damage in vitro and in vivo. Furthermore, CB
exerts its anti-inflammatory effects by suppressing the expression of ARPC3, ARPC4, and
HSP70, thereby disrupting cytoskeletal rearrangement and blocking NLRP3 inflammasome
activation. These findings provide a novel theoretical foundation for the potential use of
CB in treating bovine mastitis.
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