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Abstract: We have presented in this paper a new cluster Ansatz for the wave opera-

tor for open-shell and/or quasidegenerate states, which takes care of strong relaxation

and correlation effects in a compact and efficient manner. This Ansatz allows con-

traction among the various cluster operators via spectator orbitals, accompanied by

suitable combinatorial factors. Since both the orbital and the correlation relaxations

are treated on the same footing, it allows us to develop a very useful direct method for

energy differences for open shell states relative to a closed-shell ground state, where

the total charge for the two states may differ. We have discussed a new spin-free cou-

pled cluster (CC) based direct method and illustrated its performance by evaluating

electron affinity of a neutral doublet radical. We have also indicated how the scope of

the theory can be extended to compute the state energies of simple open shell config-

urations as well. In that case, the CC equations terminate after the quartic power of

cluster operators – exactly as in the closed-shell situation, which is not the case for the

current methods.
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1 Introduction

Inspired by the pre-eminent success of the single reference coupled cluster (SRCC) theory for

closed-shells [1-3] , several methodologies have been put forward for open-shell states which are

either of single configuration type or which possess pronounced multi-reference (MR) character

[4-12]. For the CC theory based on simple open-shell configurations (OSCC), the most common

choice for the wave operator has been a simple exponential [13-18] exactly analogous to what is

used in the SRCC theory. The more general MRCC developments, however, are not necessarily

based on the use of a single exponential, and alternative forms of the wave operator based on

normal ordered exponentials or using multiple exponentials have been proposed. Two general

approaches have been followed for the MRCC developments. One of them is the valence-universal

(VU) method [4, 9], tailored to treat energy differences of states with different degrees of ionization

relative to a closed-shell ground state [4-12]. While the method of [4, 5] used ordinary exponential,

the later theories generally use a normal ordered exponential [6-8,12]. These are explicitly spin-

free, but require hierarchical generation of cluster amplitudes of various valence ranks. The other

approach, leading to the valence-specific (VS) methods [10, 11], generate state-energies per se

directly – without solving a hierarchy. They use an Ansatz where different exponentials acting

on different model space functions. In contrast to the VUCC methods, the cluster amplitudes in

these methods have to be generally defined in terms of spin-orbitals. This leads to spin-broken

solutions [12] for the non-singlet states. This difficulty also showed up in OSCC theories which

used only excitation operators without involving the spectators. In this case also, one has to

necessarily use the spin-orbitals in defining the cluster operators [13-15]. An advantage however,

of this Ansatz is that it retains the compactness and simplicity of the closed-shell SRCC method

in generating CC equations which are at most quartic in cluster amplitudes.

A way out of the spin-contamination problem is to use a symmetry-adapted CC expansion, but

the spin-adapted expressions will be unwieldy [19]. A partial resolution of the spin-contamination

problem is to employ constraints on the expectation value of the S2 operator [20]. The first

explicitly spin-free OSCC method was suggested by Janssen and Schaefer [16]. They emphasized

that, to maintain exact spin symmetry and to span the full spin-space, one would have to use

spin-free operators in the cluster Ansatz and, would generally have to include excitation operators

involving spectator scatterings of the electrons occupying active orbitals. This feature has since

been explored in the later spin-free developments of OSCC theory [17, 18], where simple open-

shell singlets, doublets, and triplets have been treated on the same footing. All these theories

make explicit use of spin-free generators (generically denoted for now on by the symbols Ej
i with

orbital labels i and j) in the representation of H and Ω. For a general discussion of the spin-free

formulation of the MRCC methods, we refer to Ref.[21].
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All the formalisms using operators with spectators in an exponential representation for Ω have

the disadvantage of using non-commuting cluster operators, leading to rather complex set of CC

equations, containing up to octic powers of cluster amplitudes for single and double excitations [16-

18]. To avoid this complication, another spin-free formulation, was suggested from our laboratory

[22]. This uses a cluster Ansatz which is neither a simple exponential as in [4, 5], or the more widely

used normal ordered exponential [6-8,12] for open-shells. This Ansatz allows for contractions

among cluster operators via the spectator orbitals. The combinatoric factors associated with a

composite obtained from such contractions involving n cluster operators are not usually (n!)−1, but

depends on the number of ways these operators can be contracted using spectators, where these

cluster operators appear contracted among themselves in all possible order. As is well-known, one

can generate methods for energy differences relative to the energy E0 of the closed-shell ground

state (taken as the vacuum) using a factorization Ansatz involving wave-operator components

ΩC and ΩV for core and valence respectively, from the Bloch equation involving the transformed

hamiltonian H = (Ω−1
C HΩC−E0), with ΩC = exp(T ) where T is the cluster operator of the ground

state. This idea was explored in Ref. [22] to generate a set of compact spin-free CC equations

for electron detachment energies with respect to a closed-shell reference state. The preliminary

treatment described in [22] demonstrated that the Ansatz leads to CC equations which are much

less unwieldy as compared with the formulations described in [16-18]. It was also demonstrated

that the method leads to very good IP values for core ionizations, which is dominated by large

orbital relaxation effects.

Recently we have formulated a general version of the above method where the compactness of

the CC equations was explicitly shown by working out the formal structure of the resulting CC

equations for energy differences involving states of either simple open-shell nature or of arbitrary

complexity. A succinct account of the formulation is about to appear in [23]. In the present paper,

we discuss the method in some detail, and illustrate its performance by computing the electron

affinity of OH radical, viewed as an IP of the OH− anion at the radical geometry.

2 The New Ansatz for the Wave-operator and the Formulation of the CC Theory

for Energy Differences

2.1 Preliminaries

In this section we shall present the essential ingredients of the new formalism and show the

underlying simplification brought out by our choice of the new wave operator. We shall illustrate

the formalism for simple open-shell configurations.

Using the terminology of the effective hamiltonian formalism, we denote the projector onto the
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model space by P and the one for the virtual space by Q. The Bloch equation for Ω is given by

HΩP = ΩPHΩP (1)

using the ‘intermediate normalization’ convention PΩP = P . The various components of Ω are

obtained from the set of equations

QHΩP = QΩPHΩP (2)

and Heff is given by

Heff = PHΩP (3)

If instead of E, we are interested in getting energy differences ∆E relative to a closed-shell

ground state E0, then we posit the following factorized Ansatz [4, 5, 24]

Ω = ΩCΩV (4)

where ΩC is the wave-operator for the ground state Ψ0, and ΩV is the open-shell (or the ‘Valence’)

component of Ω for the state of interest Ψ:

Ψ0 = ΩCΦ0 (5)

Ψ = ΩΦ (6)

Introducing the transformed hamiltonian, H = (Ω−1
C HΩC − E0), we obtain

HΩV P = ΩV PHΩV P (7)

and

PHΩV P ≡ Heff (8)

where the energy differences ∆E are obtained by diagonalizing Heff . Since ΩV has valence de-

struction operators, ΩV Φ0 = 0, it then follows that the same Ω generates from Φ0 and Φ the

corresponding eigenstates Ψ0 and Ψ. This method for energy differences therefore belongs to VU

category [4, 5, 9].

In our applications in this paper, the space of P is spanned by a single spin-adapted reference

configuration Φ, which is not necessarily a single determinant. It then follows that

E = Heff = 〈Φ|HΩ|Φ〉 (9)

and

∆E = E − H0 = Heff = 〈Φ|HΩV |Φ〉 (10)

If we confine ourselves to just the valence sector of Fock space spanned by Φ and its virtual

complements, then the equations above refer to a specific Hilbert space sector, and is a VS theory.
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2.2 Normal ordered Vs the New Ansatz for ΩV and Ω

In the CC formulation, ΩC = exp(T ), and ΩV has to be chosen properly to get an extensive

expression for ∆E. We will, from now on, use a closed-shell function Φ0 as the vacuum to

formulate our theory. In ΩV , or in the full Ω for open-shell energies, there will be additional

cluster operators which we generically denote by S. We denote the holes by Greek letters α, β, γ

etc, and the particles by Latin letters p, q, r, etc.

For the theories for energy-differences, rather than for state-energies per se, it is important

to develop models of differential correlation. In such situations, CC theories treat the closed-

shell ground state in terms of various n hole - n particle (nh − np) cluster operators, and the

excited/ionized states of interest are described by a cluster-expanded wave-operator which include

– in addition to those pertaining to the ground state – extra valence cluster operators Se involving

excitations into or out of the partially filled ‘valence’ or ‘active’ orbitals (specially those inducing

open-shell correlation effects), and operators Sr which bring in differential correlation and orbital

relaxation effects. These latter cluster operators involve again the various n hole - n particle

excitations, but additionally have excitations out of or into valence orbitals. These are thus

valence cluster operators. An important class of valence cluster operators involves n hole - n

particle excitations in the presence of a passive scattering of electrons between the same valence

orbitals. They are cluster operators with spectator valence or active lines. The overall effective

nh−np excitation amplitudes from an open-shell configuration is thus a sum of the parent ground-

state nh−np amplitude and the additional amplitudes containing spectator valence orbitals. The

latter ones thus bring in the relaxation of the ground state excitation amplitudes to the values they

should have in the open-shell configurations, and thus bring in the differential correlation/orbital

relaxation effects. In case one starts out with the set of mean-field orbitals that are optimal

for the closed-shell ground state (i.e. the ground state Hartree-Fock (HF) orbitals), the 1h − 1p

excitations with spectator orbitals bring in orbital relaxation effects and 2h− 2p excitations with

spectator orbitals bring in the dominant differential correlation effects.

The traditional CC based correlation theories for energy differences posit on the ΩV a nor-

mal ordered exponential [4-9,12] involving the open-shell excitation operators Se and the relax-

ation/differential correlation operators Sr. The normal ordering in ΩV ∼ {exp(Se + Sr)} is per-

formed with respect to Φ0 taken as vacuum. The valence-universality of ΩV implies that ΩV is the

same for all the model spaces Sm where m runs from NV , the target NV - valence space, all the

way down to 1, the one-valence space. Owing to the normal ordering in ΩV , there is a hierarchical

decoupling of the cluster-amplitudes Se and Sr of different valence ranks [9]. The use of the closed-

shell Φ0 as the vacuum ensures that Se and Sr are spin-scalars and can be described by spin-free

unitary generators [16-18]. This makes the spin-adaptation a rather simple and straightforward

exercise.
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The advantages of the normal ordered Ansatz for Ω are, however, off-set somewhat by two

difficulties. One is that the use of a valence-universal ΩV implies solving for the cluster-amplitudes

of Se(m) and Sr(m) of all valence ranks 1 ≤ m ≤ NV , even if we are ultimately interested in the

target NV -valence situation. This is an unnecessary exercise. The other difficulty is physically

more interesting, and throws light on the limitation of a normal ordered Ansatz for ΩV to tackle

relaxation and differential correlation effects. The normal ordering in ΩV prevents contractions

between all the S operators. As a result, the powers Sk from ΩV involving valence excitations

with more than m orbitals for an m-valence model space Sm automatically gives zero. However,

the various nh− np cluster operator Tn have all powers active in ΩC (with 1 ≤ n ≤ NC , with NC

electrons in Φ0); so that nh−np Srs should be present in the same powers. If we denote by (n)S(l)
r

an arbitrary nh−np excitation with l spectator orbitals, then it is physically reasonable to demand

that the effective nh−np excitation operators in ΩV for the open-shell situation for the m-valence

Sm should contain all the powers of each of (n)S(l)
r (1 ≤ l ≤ m) should be present. This is, however,

precluded by the very nature of the normal ordered ΩV . For a one-valence problem as in the IP

calculations, the amplitudes such as (sr)
pα
γα and (sr)

pqα
γδα bring in orbital relaxation and two-body

correlation relaxation effects, respectively; α is the valence hole label for a one-valence open-shell

model function Φα. Since ΩC generates all powers of T1 and T2, acting on Φα, with T1 ≡ ∑
pγ tpγE

p
γ

and T2 ≡ 1
2

∑
pqγδ tpq

γδE
pq
γδ, we need all powers of (sr)

pα
γα and (sr)

pqα
γδα amplitudes coming from ΩV to

fully take care of the orbital and pair correlation relaxation terms. However any power of {Sk
r }

with k > 1 will involve destruction of more than one valence occupancy and will thus give zero by

their action on Φα. As a result, ΩV Φα is effectively just {1 + S(1)
r }Φα, and misses the powers of

S(1)
r which are crucial when the relaxation or the differential correlations effects are large. For the

core-IP, the orbital relaxation of the neutral HF orbitals is very large [25] and the usual normal

ordered exponential based VUCC methods would fail in a significant manner.

There is an earlier MRCC formulation by Mukhopadhyay and Mukherjee [26, 27] which treats

the orbital relaxations and the correlation relaxations on the same footing as in the ground state

by invoking the Jeziorski and Monkhorst (JM) type of Ansatz for ΩV [10, 11] advocated for

their valence-specific MRCC (VS-MRCC) theories for state-energies per se. The modification

consists in merely replacing the microscopic hamiltonian H by the dressed hamiltonian H =

exp(−T )H exp(T ) − Egr, with Egr as the exact ground state energy. This so called quasi-Fock

MRCC is then a method for computing energy differences. ΩV is written as ΩV =
∑

µ exp(Sµ)|Φµ〉
〈Φµ|, as in JM formulation and each Sµ involves all n-body excitations from each Φµ which

are themselves taken as vacuum; there are thus no spectator labels. Since it is again the full

exponential exp(Sµ) which acts on each Φµ, the orbital relaxation and correlation effects are

treated to all powers. There is, however, a big price to pay. Since in general, the functions Φµ will

be spin-nonsinglets (they will be doublet functions for IP calculations, for example), the operators
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Sµ cannot easily be chosen in a manifestly spin-free form. The use of spin-orbital based amplitudes

in Sµ would not only proliferate the number of cluster amplitudes, they would also generally lead

to spin-broken solutions. It is now well-documented that, even if SµΦµ is explicitly spin-adapted,

the powers (Sµ)kΦµ are not necessarily so. Thus, in practice, though the use of exp(Sµ) solves

the problem of limited inclusion of orbital and correlation relaxation effects as compared to that

in VU-MRCC theories, the spin-orbital formulation and the consequent spin-contamination [12]

is a major deterrent for the quasi-Fock MRCC theories using the JM-type formalism.

What is obviously warranted is the flexibility in ΩV of the spin-free representation of the VU-

MRCC approach (which implies that only a singlet type vacuum has to be adopted), and at the

same time allowing the exponentiation of the S operators in contrast to a normal ordered ΩV . A

preliminary formulation to achieve these twin goals was initiated some years ago by Mukhopadhyay

et al [28]. In this method, the Sr operators were allowed to contract with the spectator lines. There

were several limitations of this formalism. The most important among them have been (a) the

potential non-termination of the MRCC equations, since the Sr operators could be joined in the

equations in a chain-like fashion up to arbitrary powers [22, 23]: In contrast the normal ordered

exponential ΩV or the closed-shell Ωs lead only to a finite power of cluster amplitudes since all

cluster operators have to be joined to H; (b) there was no way of factorizing out the Sr operators

joined to other Sr operators and not joined to H to lead to a more compact form of the MRCC

equations. This last aspect was a direct consequence of the choice of the ΩV in [28] which allowed

powers of Sr, but not with the proper factors which would have offered the factorization.

The relaxation-inducing cluster expansion formalism for ΩV we are going to discuss in this pa-

per gets rid of the above limitations by postulating an Ansatz for the ΩV which allows restricted

contractions between the S operators and affixes specific combinatoric factors with each such pow-

ers of contracted S operators. The specific choice of these combinatoric factors is very crucial for

us, since this leads to the generation of finite power series in cluster amplitudes for the associated

MRCC equations. The theory is very general with respect to the number of valence (active) elec-

trons or holes present in the model spaces. In this paper, however, we should discuss explicitly

only the one-valence case. We use a suitable closed-shell vacuum for defining our ΩC and ΩV . This

leads to a manifestly spin-free form for the cluster operators S in ΩV . A straightforward use of this

ΩV in the Bloch equation for energy-differences leads to a potentially non-terminating series of

S operators in the MRCC equations, somewhat similar to what was obtained by Mukhopadhyay

et al [28]. However, we show that the use of the specific combinatoric factors for the powers of

contracted S in ΩV leads to a set of equivalent MRCC equations where all the S operators are

connected directly to the dressed hamiltonian H. This lends a finite power-series structure to the

resultant MRCC equations. Preliminary versions of the formalism for the one-valence case has

already been published [22]. A brief account of the general versions has been published already
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[23].

We motivate towards our development with the example of the one-valence problem. Our

model function Φα = aαΦ0 is a doublet. Spectator scatterings must have to be generally included

in the spin-free choice of the cluster operators to exhaust the configurations in the Q space which

have the same orbitals but which differ in the spin functions. Thus, to incorporate the linearly

independent single excitations from a hole γ to a particle p, we need two linearly independent

amplitudes, corresponding essentially to excitations with up and down spins for orbitals γ and p.

This can be realized by choosing the two excitation operators as {Epα
γα} and {Epα

αγ}. The curly

braces denotes normal ordering with respect to closed-shell Φ0. In these operators there is a

spectator scattering involving the active orbital α in the direct and exchange modes respectively.

Another possible choice for two linearly independent excitations could have been {Ep
γ} and

{Epα
αγ}. In the present formulation we would prefer to keep the spectator scattering in the direct

term, so will use {Epα
αγ}. This choice is more convenient for treating theories for energies E and

∆E on the same footing. The single excitation like sα
γ{Eα

γ } is of the type Se, while operators

like spα
γα{Epα

γα} and spα
αγ{Epα

αγ} are of the Sr type. Since, in the theory of the energy differences,

the overall single excitation amplitude for the excitation γ → p will be dictated by suitable

combination of the closed-shell amplitude tpγ and the valence amplitudes spα
γα and spα

αγ, coming from

Ω ≡ ΩCΩV the effect of the s amplitudes is to ‘relax’ the value of the closed-shell amplitude tpγ
to the value appropriate for the doublet states. This is why we label the part of S operators

containing spectators by the symbol Sr.

As we have emphasized, the traditional normal ordered cluster Ansatz ΩV ≡ {exp(S)} [6, 7, 9]

does not use the full power of the exponential structure, when acting on the reference function Φ,

owing to its normal ordered form. For the doublet function Φα, {exp(S)} acting on Φα is essentially

{1+S}Φα. The operators {Epα
γα} and {Epα

αγ} are just single excitations, which modify the orbitals.

If we start out with the orbitals for the neutral vacuum state Φ0, these are not the best choice

for the cation described by ΩΦα. However, presence of all powers of single excitations - as in an

exponential - would have taken care of the orbital relaxation via the so-called Thouless Theorem

[29]. The normal ordered form {1 + S}Φα cannot provide such powers of excitations. Although a

simple exponential choice ΩV = exp(S) [4, 5], will provide exponentiation of S via the powers, the

factors (n!)−1 coming from the exponential are not the proper combinatoric factors (for setting a

compact power series expansion in the CC equations) when Se operators are contracted to Sr via

spectator orbitals. The correct combinatoric factors can be ascertained on physical grounds. Each

term in Ω (or ΩV ) must lead to multiple excitations via product of cluster operators such that each

distinct product excitation should appear only once with a factor 1. In case contractions between

S operators are permitted, the factor (n!)−1 imply that all the n S operators can be joined among

themselves in all possible n! ways. But it may not be possible for all n S operators to be joined
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in such a way as to lead to same product excitation.

We want to have an Ansatz for Ω which allows contractions between operators viz. spectators,

and at the same time demand that each term of the various product excitations – appearing

either uncontracted to one another under the normal order or appearing as composites after

contractions–should appear only once, as in the ordinary exponential without spectators. It then

follows that we want to have a series for Ω in normal order where the various composites, n in

number, which appear uncontracted under the normal order should appear with a factor (n!)−1,

corresponding to (n!) various different ways the composites can appear. However in case there

are contractions between n operators, but only there are fn ways of joining them, then we should

attach a weight fn
−1 to the composite to ensure that the various ways of joining the S operators

in the composite leading to the same product excitations should appear only once. We note here

that the commuting operators in exp(T ) realizes this automatically in the SRCC theory for closed-

shells. If the operators do not commute, as for Se and Sr, where Se has no spectators and Sr has

spectators, the ordinary exponential introduces unphysical weights such as (2!)−1 for quadratic

powers for the contracted composites and so on. But we can have only a composite {SeSr} and

not {SrSe}, and hence {SeSr} should appear with a factor 1.

We illustrate this with a concrete example with φα as the model function. All the possible

S operators are shown in Fig. 1 Let us consider the product excitations coming from an Se as

sα
γ{Eα

γ } and Sr as spα
γα{Epα

γα}. If we use a pure exponential for ΩV , then the product excitation

leading to double excitation γδ → αp would appear with a factor (2!)−1. The operators sα
γ{Eα

γ }
can contract with spα

γα{Epα
γα} only from the left via α. But put in the reversed order, they cannot

be contracted from the right. If we want to have each distinct type of product excitation to appear

only once, the factor with the composite obtained by joining the operators sα
γ{Eα

γ } and spα
γα{Epα

γα}
should just be 1.

In general then, the correct combinatoric factors would appear if we assign a factor f−1 to

a composite obtained by contracting k Se operators to l Sr operators, where f is the number of

possible ways of joining them together leading to composites of same excitation. With this insight,

the contracted product excitation from sα
γ{Eα

γ } and spα
γα{Epα

γα} would have a weight of 1. Clearly

no Se operators can be joined to Sr operators from right, and all Sr operators need not all be

joined among themselves to form the composite.

To take care of the proper factors in the composites obtained via spectator contractions, we have

thus suggested recently [22] that ΩV should be taken to be of a combinatoric cluster expansion

form:

ΩV = {{exp(S)}} ≡ {{exp(Se + Sr)}} (11)

where {{· · ·}} denotes a special ordering. It allows contraction of the S operators via spectator

lines, but it assigns the appropriate combinatoric factors f−1 to each composite.
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Figure 1: The various types of S operators for the one-hole model space Φα. (a) and (b) are Se

operators, and the rest are Sr.

From now on, we shall call all composites leading to the same excitation, but having different

ordering of connectivities via spectators, as topologically equivalent. All the equivalent composites

have the same ‘topological weight’, f−1. Their overall contribution to the excitation can thus be

taken care of by considering only one of them with a factor of 1. It turns out that the classification

of the various terms in the open-shell CC equations are best done in terms of composites of

equivalent topologies.

2.3 Emergence of Strongly Connected Finite Power MRCC Equations

Let us now rewrite the left side of the eq. (7) in normal order with respect to Φ0, using the Ansatz

eq. (11) for ΩV . It is straightforward to show that the resultant terms in normal order can be

written as

HΩV = H{{exp(S)}} =
{[

H{{exp(S)}}
]
ΩV

}
(12)

where the connected composite H{{exp(S)}} is obtained by joining H with various powers of S

in all possible ways, at the same time joining Se and Sr operators among themselves in all possible



Int. J. Mol. Sci. 2002, 3 560

ways. The factors associated with the composites are according to the definition of {{exp(S)}}.
The various terms of all powers of S not joined to the composites can all be grouped again to

form ΩV . Using eq. (8), the right side of eq. (7) can be written as

ΩV PHΩV P ≡ ΩV HeffP ≡
{
ΩV

[
{{exp(S)}}Heff

]}
(13)

where
[
{{exp(S)}}Heff

]
is the composite obtained by joining powers of S with Heff in all

possible ways, at the same time appropriately joining Se and Sr among themselves. Using the

linear independence of all the operators of ΩV in a VU theory [4, 5, 9], it then follows that

{[
H{{exp(S)}}

]}
=

{[
{{exp(S)}}Heff

]}
(14)

Since all powers of S lead to excitations out of the P space, the closed (or the model space

projection) components of both sides of the equations lead to

{[
H{{exp(S)}}

]}
cl

= Heff (15)

Inspection of the left side of eq. (15) reveals very specific modes of connectivity of the various

composites appearing in it. Any S operator in a composite joined either to another S operator via

the spectator lines only, or to the H via the spectator lines only must leave some of its inactive

orbitals uncontracted, and hence cannot contribute to the closed projection. We call such type

of connectivity as ‘weak connectivity’ [22, 23]. The rest of the terms would have S operators

joined to H by at least one inactive line and, in addition may generally have contractions among

themselves via spectator lines. We call these composites ‘strongly connected’ [22, 23]. The above

argument shows that Heff is strongly connected, and thus cannot have more than the powers of

S exceeding number of lines in H.

We now regroup the various terms of eq. (14) in terms of strongly connected entities. Let

us consider the left side of eq. (14) first. Any general term of the left side will have several S

operators joined strongly to H (i.e. not just by spectator lines), in addition to connection among

themselves via the spectator lines, and additionally we have other S operators joined just to other

S operators (or to H) via the spectator lines. These latter are thus weakly connected. Several

composites will have the same strongly connected terms, but they will differ in the ways the S

operators are joined weakly to them. We denote the various strongly connected components by

Xi, where i distinguishes the various terms. All the composites with the same strongly connected

component and the same S operators joined weakly to this components in various ways leading

to same shape may be termed as weakly connected composites of same topology. Each such term

will have some Se operators joined weakly to Sr operators via spectator lines. The Sr operators

to which they are connected are either a part of Xi’s (viz. they are strongly connected to H), or
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αα

ααγ  γ  

ββ

p

γ  γ  

( a )

( b )

( c )

αα

p

γ  γ  αα

δδ

q

αα ααγ  γ  

p

δδ

q

αα

(1//2!!)

ββ

(1)

(1)

Figure 2: Connectivities of Se and Sr operators, having different factors: (a) one-body Se and

Sr, (b) two-body Se and Sr and (c) one-body Se and two Sr operators. The weight factors are

indicated in the parentheses.

they themselves are weakly connected to Xi’s. It is interesting that the contributions of all the

weakly connected composites of same topology can be written as coming from just one term in

which each weakly connected Se operator is joined to Sr operators which are strongly connected

to H, i.e. they, a part of Xi’s, and all the weakly connected Sr operators are joined from the right

to Xi’s via spectator lines only. The weight of this term is f−1 where f is the number of ways the

various weakly connected Se and Sr operators can be arranged among themselves. This is shown

in Fig. 2. The entire term on the left side of eq. (14) can then be written as
{[

H{{exp(S)}}
]}

=
{
[{exp(Se)} ]w X [{{exp(Sr)}}]w

}
(16)

where each Se operator is weakly connected to X via Sr operators in X, and they are not joined to

each other. We have made the convention of stretching them to the left of X without any change

in their contribution. This stretching is also depicted in Fig. 3(a). The two weakly connected

Sr operators appear only on the right of X. [· · ·]w denotes a term joined weakly to the rest of a

composite.
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[Se ]w

[Se ]h

Heff

( a )

( b )

+  two other terms

Figure 3: (a) Overall contribution from three diagrams of the same topology. The skeleton in the

braces is the strongly connected ‘X’ operator. (b) Moving the weakly connected Sr operator on

the left of Heff to its right, yielding the same contribution. The quantity in the braces is the

Heff .

Using entirely the same reasoning on the right side of eq. (14), we have

{[
{{exp(S)}}Heff

]}
=

{
[{exp(Se)}]w [{exp(Se)}]h Heff [{{exp(Sr)}}]w

}
(17)

where each Se in [· · ·]h above is joined entirely to the H vertex, and each Se in [· · ·]w is joined

to one or more Sr vertex which are part of Heff . The Sr operators, originally connected weakly

among themselves via spectator lines from the left of Heff are all moved to its left. This operation

keeps the contribution of these terms unchanged, when they belong to the same topology. As an

example, we have shown in Fig. 3(b) one term from eq. (17) where the Sr vertices are taken from

the left to the right of the Heff vertex.

Again since all powers of Sr in {{exp(Sr)}} are linearly independent, it follows from eqs. (14),

(16) and (17) that

{[{exp(Se)}]w X} =
{
[{exp(Se)}]w [{exp(Se)}]h Heff

}
(18)
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‘Inverting’ the ‘exponentials’ in eq. (18) leads to

{[{exp(−Se)}]h X} = Heff (19)

where each term in {exp(−Se)} is joined to the X via its H vertex, and they are not joined among

themselves. The strongly connected composite X has one set of terms Z which are ‘external’ or

‘open’ in the sense of inducing excitations to the virtual space from the model space and another

set W which is ‘closed’. Only W contributes to Heff . Denoting the external operators by the

suffix ‘ex’, and the closed ones by ‘cl’, we have, from the Q projection of eq. (19), the relation

[{[{exp(−Se)}]h [Z + W ]}]
ex

= 0 (20)

The P projection leads to

W = Xcl = Heff ≡ ∆E (21)

Eqs. (20) and (21) are respectively our stipulated CC equations the VU theory for the cluster

amplitudes for S and for Heff in the spin-free compact formulation. Each m- valence component

of eq. (20) should separately be equated to zero to generate the S(m)’s. Because of the nature of

connectivity, in an m- valence component of eq. (20) no S(l) with l > m appears, as in a normal

ordered formulation.

It is clear from our formulation that the expression on the left hand of eq. (20) is finite power

series in S, and since all S operators are strongly connected to the vertex of H. We should

emphasize again that the finite series emerges entirely due to our new Ansatz for ΩV with suitable

combinatoric weights.

2.4 Illustrative Applications to a Simple Open-shell Doublet

We will now discuss the essentials of the construction of the working equations, eq. (20) and eq.

(21), by applying it to a one-valence problem, viz. the CC formulation based on the open-shell

reference (N-1)-electron doublet Φα introduced in Sec. 2. We also truncate the rank of the T and S

operators at the two-body level. The S operators in this truncation scheme have all been already

shown in Fig. 1. The various sets of equation from eq. (14) can be diagrammatically constructed

by first constructing the strongly connected composites Z and W from H, Se, and Sr vertices, and

then connecting them by the excitation operators Se from their left via the H-vertex, omitting

connection among the Se operators. The various CC equations for the operators shown in Fig. 1

can be compactly written as

Zα
γ +

[
se

α
γ

]
h
W α

α = 0 (22)

Zαp
γβ +

[
se

α
γ

]
h
Zαp

αβ +
[
se

α
β

]
h
Zαp

γα
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+
[{

se
α
βse

α
γ

}]
h
Zαp

αα −
[
se

αp
γβ

]
h
W α

α = 0 (23)

Zαp
αβ +

[
se

α
β

]
h
Zαp

αα = 0 (24)

Zαp
βα +

[
se

α
β

]
h
Zαp

αα = 0 (25)

Zαp
αα = 0 (26)

We should mention here that the positive signs in [se
p
γ]hZ

αp
αβ originate from two (−1) factors, one

coming from {exp(−Se)} of eq. (21), and the other coming from one internal hole line joining Se

and Z. The ionization potential (IP) is given by W α
α .

3 A Compact Open-shell CC Theory for Simple Open-shell States: The Doublet

Case

In this section, we shall briefly touch upon the essential modifications necessary to convert the

formulation for energy differences described in Sec. 2 to a VS open-shell spin-free CC formalism

for state energies per se. We will not give the detailed general proof in this paper, but will just

illustrate the modification with the example of the doublet states starting from a single reference

doublet determinant Φα.

The exact wave-function Ψ in our open-shell CC theory is given by

Ψ = {{exp(S)}}Φα (27)

where {{· · ·}} again denotes the new combinatoric cluster expansion, and S contains valence

excitation and relaxation operators of exactly the same types as depicted for S in Figs. 1(a)-(e).

We do not have now any ground state cluster operators T , since this is not the theory for energy

differences. Using the same manipulations as have been indicated in Sec. 2, we may again get a set

of strongly connected composites contributing to the equations for the cluster amplitudes. For a

concrete discussion, let us call the composite {[{exp(−Se)}]h [Z + W ]} as G. The additional terms

that need be considered in the VS theory are the pure hamiltonian vertices of lower ranks that

would contribute to the CC equations corresponding to the blocks with direct spectator scatterings.

The blocks Z and W are now constructed entirely from H, Se and Sr operators.

The additional terms that have to be added are, respectively, (−fp
β) and (−fp

α) for the CC

equations eq. (24) and eq. (26) corresponding to the direct spectator scatterings on top of actual

excitations (β → p) and (α → p):

Gαp
αβ − fp

β = 0 (28)

Gαp
αα − fp

α = 0 (29)
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=    0

Block IIBlock I

+

αα

p

γ  γ  

p

γ  γ  
αα αα

Figure 4: Block equation for pseudo-two-body excitations with spectator scattering line α. γ can

take on labels β and α, leading to eqs. (28) and (29).

The corresponding block structure of the diagrams are shown in Fig. 4 The minus sign on the

added terms is relative to these in eqs. (24) and (26) and is due to an ‘extra’ internal hole line in

the diagrams of eqs. (24) and (26). All the Sr operators in the modified CC equation for state

energies are joined to the H vertex, and the Se operators joined from the left are also joined to

the H vertex. The maximum power of all the S operators in each term can thus be only quartic,

exactly as in the closed-shell CC theory.

Some other considerations are warranted at this stage, if we confine ourselves to at most two-

body cluster operators. Since we do not have T operators in the VS formalism, the closed-

shell like analogue of two-hole two-particle excitations would not appear in our formalism at the

two-body truncation level. However, these are the dominant type of correlations and, in the

present formalism, would require three-body operators with direct spectators. The corresponding

amplitude spqα
γδα would explicitly ‘see’ the presence of the spectator vacant orbital α. The analogous

equation would contain, in exact analogy with the single excitations (β → p) or (α → p) in

presence of spectators, as in eqs. (28) and (29), a composite containing three-body scattering

(γδα → pqα) with the direct spectator scattering involving α, and another which would look like

a pure two-body scattering γδ → pq. This is illustrated diagrammatically in Fig. 5.

Written in terms of G, the relevant equation will look like

Gpqα
γδα − vpq

γδ = 0 (30)

This is analogous to the modified equations (28) and (29) from eq. (24) and (26) for single

excitations with spectator scattering. In case we do not want to include spqα
γδα, as in our current

application, we approximate it by tpq
γδ, i.e. the amplitude is just the same as in the closed-shell

case, with no reference to the spectator. Thus, our Ansatz for Ψ gets modified in this two-body
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p

αα

αα

δ  δ  

q

αα +

Block III Block IV

=    0

γ  γ  

p

δ  δ  

q

Figure 5: Block equation for pseudo-three-body operators: Block III contains the pseudo-three-

body operators with spectator scattering, whereas Block IV contains closed-shell two-body oper-

ators.

approximation as

Ψ = {{exp(S + T2)}}Φα (31)

with S = S1 + S2.

The idea that one may generate open-shell CC theories for state-energies per se by considering

only valence cluster operators in the wave-operator, and by clumping together in the CC equations

blocks of different possible ranks but of the same excitations with different number of direct

spectator excitations was earlier considered by Mukherjee and Zaitsevskii [30] using a normal

ordered wave-operator. The present development uses the more compact and physically more

appealing {{exp(S)}} Ansatz to take care of orbital relaxation and correlation effects.

4 Numerical Applications

We will discuss here the results obtained by this formalism to generate both the energy of the

ground state of the doublet OH radical, and its electron affinity, using the closed shell OH− as

the vacuum. The electron affinity of the radical will be computed as the first IP of the OH− at

the radical geometry.

In the VU method the IP is obtained as the difference energy directly, whereas in the VS

method the radical state energy itself is calculated. In order for us to be able to compare the

relative performance of the VS and the VU methods, the radical state energy in VU method have

also been calculated by adding explicitly the anion state energy E0 to the IP values. The Hartree-

Fock (HF) orbitals for the OH− ground state at the equilibrium geometry of the OH radical are

used in all the calculations. The equilibrium OH bond length is 1.83238 a.u.
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The relative success of the two open-shell CC-based theories as compared with the normal

ordered version is predicated by their ability to tackle with greater accuracy the orbital relaxation

effects associated with the ionization of an electron from the OH− anion, using one and two-

body cluster operators. The traditional normal ordered {exp(S)} formalism has also been used to

compute the same quantities, to see the effect of orbital relaxations in this method as compared

to our current formulation.

We have carried out our VU and VS methods with several basis sets: (i) aug-cc-pVDZ, (ii)

aug-cc-pVTZ (without the f functions) and (iii) a different cc-pVTZ (without the f functions)

with diffuse s and p functions. We use all the six cartesian components of the d orbitals.

All the doublet state energies and their corresponding IPs, with both the new VS and VU

theories, and the corresponding values of the exponential values of the {exp(S)} theories are tab-

ulated in Table 1. The VS version of the {exp(S)} theory is that of Mukherjee and Zaitsevski

[30]. Because of the unavailability of the FCI results with these basis sets, comparison with exper-

imental results are done. It is clear that the state energies as well as the EA values with the new

formulation include the relaxation as well as the differential correlation effects quite efficiently as

compared to those from {exp(S)} in both VS and VU theories.

Table 1: Electron affinity study of OH radical, using different basis sets

VS theory VU theory

State Energies (a.u.) EA Values (eV)

Basis {exp(S)} {{exp(S)}} {exp(S)} {{exp(S)}} Exptl. Koopmans’

Type Value

I -75.627858 -75.621784 1.5717 1.6540 1.83a 2.9101

(-75.628059)b (-75.625033)

II -75.580422 -75.575777 1.6005 1.6608 2.9436

(-75.584965) (-75.582751)

III -75.629468 -75.623728 1.7029 1.7628 2.9612

(-75.630625) (-75.628424)

a [31] b The computed state energies are shown in parentheses.

Basis I: cc-pVTZ with diffuse s and p functions

Basis II: aug-cc-pVDZ

Basis III: aug-cc-pVTZ



Int. J. Mol. Sci. 2002, 3 568

Acknowledgements

One of us (DJ) would like to thank the Council of Scientific and Industrial Research (CSIR),

Government of India, New Delhi, for providing him a research fellowship.

References

1. Cizek, J. Adv. Chem. Phys. 1969, 14, 35.

Cizek, J.; Paldus, J.; Shavitt, I.; Phys. Rev. 1972, A5, 50.

2. Bartlett, R. J. In Modern Electronic Structure Theory; of Advanced Series in Physical Chem-

istry; Yarkony, D. R., Ed.; World Scientific Publishing: Singapore, 1995; Vol. 2.

3. Crawford, T. D.; Schaefer III, H. F. In Reviews in Computational Chemistry, Lipkowitz, K.

B.; Boyd, D. B., Ed.; Wiley-VCH, John Wiley and Sons. Inc.: New York, 2000; Vol. 14.

4. Mukherjee, D.; Moitra, R. K.; Mukhopadhyay, A. Mol. Phys. 1975, 30, 1861.

Mukherjee, D.; Moitra, R. K.; Mukhopadhyay, A. Mol. Phys. 1977, 33, 955.

Mukherjee, D. Pramana, 1979, 12, 203.

5. Haque, A.; Mukherjee, D. J. Chem. Phys. 1984, 80, 5058.

6. Lindgren, I. Int. J. Quant. Chem. 1978, S12, 33.

7. Lindgren, I.; Morrison, J. Atomic Many-Body Theory; Springer Series in Atoms and Plasmas,

1986; Vol. 3.

8. Nooijen, M.; Bartlett, R. J. J. Chem. Phys. 1997, 106, 6441.

9. For extensive surveys of the MRCC methods see, Mukherjee, D.; Pal, S. Adv. Quant. Chem.

1989, 20, 291.

10. Jeziorski, B.; Monkhorst, H. J. Phys. Rev. 1981, A24, 1668.

11. Jeziorski, B.; Paldus, J. J. Chem. Phys. 1988, 88, 5673.

ibid, 1989, 90, 2714.

12. Berkovic, S.; Kaldor, U. Chem. Phys. Lett. 1992, 199, 42.

J. Chem. Phys. 1993, 98, 3090.

13. Rittby, M.; Bartlett, R. J. J. Phys. Chem. 1988, 92, 3033.

14. Scuseria, G. E. Chem. Phys. Lett. 1991, 176, 27.

15. Lee, T. J.; Jayatilaka, D. Chem. Phys. Lett. 1993, 201, 1.

Jayatilaka, D.; Lee, T. J. J. Chem. Phys. 1993, 98, 9734.

16. Janssen, C. L.; Schaefer III, H. F. Theo. Chim. Acta. 1991, 79, 1.

17. Li, X.; Paldus, J. J. Chem. Phys. 1994, 101, 8812.

Li, X.; Paldus, J. In Modern Ideas in Coupled Cluster Methods; Ed. Bartlett, R. J., Ed.;

World Scientific: Singapore, 1997; Vol. 183.



Int. J. Mol. Sci. 2002, 3 569

18. Jeziorski, B.; Paldus, J.; Jankowski, P. Int. J. Quant. Chem. 1995, 56, 129.

19. Nakatsuji, H.; Hirao, K. J. Chem. Phys. 1978, 68, 2053.

20. Szalay, P. G.; Gauss, J. J. Chem. Phys. 1997, 107, 9028.

21. Nooijen, M.; Bartlett, R. J. J. Chem. Phys. 1996, 104, 2652.

22. Jana, D.; Bandyopadhyay, B.; Mukherjee, D. Theor. Chem. Acc., 1999, 102, 317.

23. Jana, D.; Sinha Mahapatra, U.; Mukherjee, D. Chem. Phys. Lett. 2002, 353, 100.

24. Sinha, D.; Mukhopadhyay, S.; Chaudhuri, R.; Mukherjee, D. Chem. Phys. Lett. 1989, 154,

544.

25. Cederbaum, L. S.; Domcke, W.; Schirmer, J. Phys. Rev. 1980, A22, 206.

26. Mukhopadhyay, D.; Mukherjee, D. Chem. Phys. Lett. 1989, 163, 171.

1991, 177, 441.

27. Mukhopadhyay, D.; Mukherjee, D. In Applied Many-Body Methods in Spectroscopy and

Electronic Structure; Mukherjee, D., Ed.; Plenum Press: New York, 1992; p 261.

28. Mukhopadhyay, D.; Chaudhuri, R.; Mukherjee, D. Chem. Phys. Lett. 1990, 172, 515.

29. Thouless, D. J. Nucl. Phys. 1960, 21, 225.

30. Mukherjee, D.; Zaitsevskii, A. Chem. Phys. Lett. 1995, 233, 605.

31. Celotta, R. J.; Bennett, R. A.; Hall, J. L. J. Chem. Phys. 1974, 60, 1740.


