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Abstract: Nowadays, there is considerable interest in finding out about antioxidants that 

are consumed in the habitual diet. It is known that polyphenols are involved in reducing the 

risk of diseases associated with oxidative stress. The in vitro antioxidant activity of the 

principal wine polyphenolic compounds (catechins, procyanidins, anthocyanins and 

pyranoanthocyanins) was studied in this work. Four distinct methods were used to assess 

the antioxidant capacity of the tested compounds: inhibition of peroxynitrite mediated 

tyrosine nitration, TEAC (Trolox equivalent antioxidant capacity assay), FRAP (Ferric 

reducing/antioxidant power assay) and TBARS (thiobarbituric acid reactive substances) 

methods. In general, it could be concluded that procyanidins were, among the in vitro 

tested groups, the ones which showed more antioxidant capacity using the four different 

methods, followed by anthocyanins and pyranoanthocyanins. On the basis of the simple 

regression testing, there was a statistically significant relationship between these different 

methods used in aqueous phase (r > 0.92). However, no correlation was found between the 

results obtained in lipid media with the TBARS method and those obtained in the aqueous 

media (peroxynitrite scavenging activity, TEAC and FRAP methods). 
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1. Introduction  

Reactive nitrogen and oxygen species (RNS, ROS) have been intensively studied in recent years 

with regard to their relevant physiological and pathological importance connected also with oxidative 

stress. Antioxidant compounds are able to neutralize the excess of ROS or RNS and, as a consequence 

of this activity, it has been suggested that they play an important role in prevention of many diseases, 

e.g. atherosclerosis, cardiovascular and neurological diseases and cancer [1–3]. The interest in 

searching for antioxidants that can be consumed in the habitual diet has increased considerably in the 

last years. Polyphenolic compounds have shown strong antioxidant effects [4–6] and so it has been 

suggested that they are responsible for reducing the risk of diseases associated with oxidative stress. 

Flavonoids, a family of polyphenolic compounds, are an important group of antioxidants present in 

vegetables and fruits and other products made from these, such as wine, beer or juice. Catechins, 

anthocyanins and procyanidins are an interesting class of flavonoids ubiquitously found in food. 

Catechins and procyanidins (Figure 1), found in some fruits, such as plum and apple, as well as in tea 

and red wine [7], have versatile biological effects such as anticancer, antiallergy and antioxidant 

activities [8]. The main dietary sources of anthocyanin (Figure 1), pigments responsible for the red-

blue color, include red-colored fruits, vegetables and red wine. They have shown ability to prevent 

lipid oxidation and scavenging activity against free radicals [9]. During red wine ageing, there is a loss 

of anthocyanins and, it appears, other pigments, anthocyanin-derived pigments, which are denominated 

pyranoanthocyanins. Some of these pigments are formed through the interaction of the original 

anthocyanins with pyruvic acid, and their structures (Figure 1) are based on the anthocyanin-3-

glucosides with additional C3O2 between position C4 and the 5-hydroxyl group of the molecule [10]. 

The biological properties of these compounds have been little studied. 

It has been proposed that regular consumption of red wine in moderate amounts reduces the risk of 

coronary heart disease via protection of LDL against oxidative damage and via inhibition of platelet 

aggregation [11]. 

There are different methods to evaluate the in vitro antioxidant capacity of isolated compounds, 

mixtures of compounds, biological fluids and tissues which involve different mechanisms of 

determination of antioxidant activity, for example: chemical methods based on scavenging of ROS or 

RNS such as peroxynitrite [12], the hydroxyl radical and superoxide [13]. Other methods measure the 

disappearance of free radicals using spectrophotometry, such as ABTS•+ (2,2´-azinobis-(3-ethyl-benzo-

thiazoline-6-sulphonate) cation radical) [14] or DPPH (2,2-diphenyl-1-picrylhydrazyl) [15]. Other 

assays to determine the total antioxidant power include techniques such as the ferric 

reducing/antioxidant power method [16] or use the in situ electrochemically generated bromine [17]. 

The results in the measurement of antioxidant capacity depend on the method used. This is because a 

single method can not give a comprehensive prediction of antioxidant efficacy of the different 

compounds [18]. 
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The purpose of the present study was 2-fold: 1) to evaluate the in vitro antioxidant activity of 

catechins, procyanidins, anthocyanins and pyranoanthocyanins from wine by four methods based on 

different mechanisms 2) to investigate statistically the inter-relationship between the in vitro methods 

used. 

 

2. Results and Discussion 

Four in vitro methods based on different mechanisms of determination of the antioxidant capacity 

were used to test polyphenolic compounds. The inter-relationships between these methods were 

examined for all the tested compounds. The first method, peroxynitrite scavenging activity, was based 

on automated measurement of the inhibition of peroxynitrite mediated tyrosine nitration by the tested 

natural compounds. The next, the TEAC assay, was used for measuring the capacity of tested 

compounds to scavenge the stable cation radical ABTS•+ compared to Trolox C, a water soluble 

analogue of vitamin E. The FRAP assay, based on the reduction of a ferric-tripyridyltriazine complex 

to its ferrous, colored form was used to assess the total reducing power of antioxidants. The last, 

TBARS, was based on determination of the inhibition of peroxidation of the phosphatidylcholine 

substrate induced by the ascorbate/iron complex in lipid phase system. 

The remarkable antioxidant activities of catechins, procyanidins, anthocyanins and 

pyranoanthocyanins in these different systems were analyzed and the results are presented in Table 1. 

TBARS data for anthocyanins and pyranoanthocyanins are not presented in this table. IC50’s could not 

be determined since they present a maximum of absorbance around 520 nm, very close to the 

wavelength fixed for the measurement in this antioxidant method. It was, therefore, necessary to find a 

blank for these color compounds to avoid the interference caused by the color of the tested compounds. 

The blank should represent 100% inhibition of the sample in the assay, defined as baseline 

peroxidation of phosphatidylcholine without added iron/ascorbate. In these cases, due to the chemical 

properties of the studied pigments, it was impossible to find an adequate blank. These compounds in 

the acid mixture of the reaction, without FeIII  and ascorbate, present a red-pink color. Nevertheless, 

when FeIII  was added it resulted in unstable products which presented even less color than the blank. It 

is known that anthocyanins in acid medium are in a flavylium form and develop red-blue color and that 

in the presence of metal ions (such as FeIII) they are able to form chelates and this could be the cause of 

the change in color. 

The aqueous phase antioxidant activity of the studied catechins and procyanidins increased from 

monomer to trimer (Figure 2). The most active of all the compounds tested in the aqueous phase 

systems were the trimer (Ec-Ec-cat). The TEAC value of catechin was approximately doubled in dimer 

and threefold in trimer. Procyanidin dimers differ in their catechin moieties and the kind of interflavan 

linkages between them. We analyzed five different dimers, all of them belonging to the B series, linked 

4-8 or 4-6. The antioxidant activities of catechin and epicatechin were not significantly different in the 

three aqueous methods however the activity of dimer Ec-Ec was significantly higher than the activity 

of dimer cat-cat. A similar effect was observed for cat-Ec and Ec-cat dimers, which showed higher 

activity than dimer cat-cat in these three aqueous methods. The linkage between positions 4 and 8 in 

procyanidins (Ec 4-8 cat) significantly increase antioxidant efficiency in aqueous phase assays with 

respect to 4 and 6 linkage (Ec 4-6 cat). In the lipid phase system the trend of decreasing antioxidant 

activity with polymerization was found in contrast to the antioxidant activity studied in aqueous phase, 
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which increased from monomer to trimer. Galloylation reduced the ability to prevent peroxidation of 

phosphatidylcholine vesicles. 

 
Figure 1. Structures of catechins, procyanidinds, anthocyanins and pyranoanthocyanins. Glu, 

glucoside; Rut, rutinoside. 
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Nonetheless, in the aqueous phase methods, galloylation resulted in a significant increase of 

antioxidant activity. Hydroxylation of catechin to gallocatechin did not show a considerable effect in 

the   inhibition  of  tyrosine   nitration,  however,  it  presented  a  significant   increase  in   antioxidant 

effectiveness in the TEAC and FRAP assays, in contrast to the lipid phase where the antiradical 

activity was significantly reduced. The antioxidant activity of the tested series of polyphenolic 

compounds correlated with the number of aromatic hydroxyl groups in the aqueous phase assays. 

Different results were found in the lipid phase system where the trend of a decrease in the antioxidant 

efficiency with the number of aromatic hydroxyl groups was observed. These differences between 

aqueous and lipid phase methods are in agreement with previously published data [19], where the 

results between the aqueous (TEAC method) and lipid phase system (TBARS method) for catechins 

and procyanidins were compared. Nevertheless, the present work provides more information about 

these features, since two more antioxidant methods (FRAP and peroxynitrite scavenging activity) were 

used to analyze the antioxidant capacity of these compounds. According to Auroma [20], the use of 

more than one method is recommended in the study of antioxidant capacity, because it is clear that no 

single method can give a comprehensive prediction of antioxidant efficacy. 

Figure 2. Influence of polymerisation of catechins on antioxidant activities in aqueous phase systems; 
peroxynitrite scavenging activity (�), TEAC (�), FRAP ( ). Values are expressed relative to catechin 

activity. Each value represents the mean and standard deviation of three determinations. 
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hydroxyl group in the B ring enhanced the activity, as delphinidin-3-monoglucoside with hydroxyl 

groups in the 3´-, 4´-, and 5´-positions was significantly more effective than cyanidin-3-rutinoside with 

hydroxyl groups in 3´- and 4´-positions. Moreover, in this study, different glycosylation patterns may 

have modified the antioxidant and antiradical activities of the anthocyanins. Kähkönen et al., showed 

that delphinidin and cyanidin-3-rutinoside are less active in the DPPH scavenging activity than the 

corresponding monoglucosides, although this effect is very much dependent on the method used [9]. 

For the FRAP and TEAC assays the methoxylation of hydroxyl groups in 5´ (petunidin-3-

monoglucoside) or 3´ and 5´ positions (malvidin-3-monoglucoside) significantly reduced the 

antioxidant activity. However, the antioxidant activity showed by malvidin-3-monoglucoside in 

peroxynitrite mediated tyrosine nitration was the same as that of delphinidin-3-monoglucoside and 

cyanidin-3-rutinoside activities. The activity of anthocyanins in preventing tyrosine nitration decreased 

in the following order: cyanidin-3-rutinoside > malvidin-3-monoglucoside ≈ delphinidin-3-

monoglucoside > petunidin-3-monoglucoside. Significant differences were not found between 

delphinidin-3-monoglucoside, cyanidin-3-rutinoside and malvidin-3-monoglucoside, but significant 

differences were found between the above mentioned compounds and petunidin-3-monoglucoside. 

Once more, these results show the importance of the substitution groups in the B ring of the 

anthocyanin molecules. Tsuda et al. [21] demonstrated the mechanisms which pelargonidin, 

anthocyanidin with one hydroxyl group on the B ring, scavenge the ONOO–. First, pelargonidin is 

broken by the radical and p-hydroxybenzoic acid is then formed. Later, this acid reacts with ONOO–, 

which results in the formation of 4-hydroxy-3-nitrobenzoic acid. It is probable that the different results 

among the glucosides of anthocyanidins are due, on the one hand, to different mechanisms from 

pelargonidin to protect against the peroxynitrite-mediated nitration of tyrosine [21] and on the other 

hand that the different acids formed by the reaction between the anthocyanins and the radical present 

different affinities to ONOO–. 

Anthocyanins may exist in a variety of protonated, deprotonated, hydrated, and isomeric forms and 

the relative proportion of these molecules is strongly dependent on pH. These forms may play an 

important role in the antioxidant activity. Moreover, the peroxynitrite anion (ONOO–) and its conjugate 

acid (HOONO) could have different reactivities [22] and the relative proportion is too strongly 

dependent on pH (pKa = 6.8). Inhibitions of tyrosine nitration were measured at pH 6.0 (≈ 15% of 

peroxynitrite was in the anionic form) (Table 1) and a comparative study at physiological pH (7.4) was 

performed to be more representative of biological conditions. The peroxynitrite scavenging activity of 

anthocyanins at pH 7.4 (≈ 80% of peroxynitrite was in the anionic form) decreased in the following 

order: cyanidin-3-rutinoside > malvidin-3-monoglucoside ≈ delphinidin-3-monoglucoside > petunidin-

3-monoglucoside (data not shown). 

The glycosylation of malvidin-3-monoglucoside to malvidin-3,5-diglucoside caused significant 

reduction of the antioxidant power in the TEAC assay, but had no significant effect on the inhibition of 

tyrosine nitration, though the FRAP value for malvidin-3,5-diglucoside was higher than for malvidin-

3-monoglucoside (Table 1). 

As it can see in table 1, the incorporation of pyruvic acid into delphinidin-3-monoglucoside and 

malvidin-3-monoglucoside caused a significant decrease in antioxidant activity in aqueous phase 

assays. These results are in agreement with previously published data [23,24]. 

The correlation coefficients between the results obtained for inhibition of tyrosine nitration, FRAP, 

TEAC and TBARS assays were examined for all the tested compounds. On the basis of simple 
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regression testing, there was a statistically significant relationship between the methods in aqueous 

phase (r > 0.92 and r2 > 0.84, p < 0.0001, n = 17) (Figure 3). However, the TBARS method results did 

not correlate with the results of the other methods. There was no statistically significant relationship 

between  TBARS and  aqueous phase  methods  at the 95% confidence  level (|r| < 0.15, n = 10). These 

 

Table 1. Antioxidant activity of catechins, procyanidins, anthocyanins and pyranoanthocyanins. Each 

value represents the mean and standard deviation of three determinations. 
 % inhibition of 

tyrosine nitration 

TEAC FRAP IC50 value (µM) 

Catechins and procyanidins     

Catechin 45.1 ± 1.6 2.85 ± 0.12 1.08 ± 0.03 3.1 ± 0.2 

Epicatechin 44.1 ± 3.7 2.93 ± 0.02 1.10 ± 0.02 3.2 ± 0.2 

Gallocatechin 44.3 ± 2.9 3.31 ± 0.09 1.74 ± 0.04 15.9 ± 3.0 

Epicatechin-3-O-gallate 66.0 ± 1.2 5.31 ± 0.38 3.10 ± 0.12 15.7 ± 2.1 

Dimer B1 (Ec 4-8 cat) 72.3 ± 3.8 6.29 ± 0.09 3.15 ± 0.03 4.6 ± 1.0 

Dimer B2 (Ec 4-8 Ec) 79.1 ± 2.3 8.36 ± 0.48 3.05 ± 0.03 3.6 ± 1.1 

Dimer B3 (cat 4-8 cat) 59.1 ± 5.0 5.59 ± 0.10 2.39 ± 0.02 4.8 ± 1.5 

Dimer B4 (cat 4-8 Ec) 63.9 ± 2.5 6.03 ± 0.25 2.75 ± 0.01 5.3 ± 1.9 

Dimer B7 (Ec 4-6 cat) 59.2 ± 1.2 4.37 ± 0.04 1.84 ± 0.03 5.1 ± 0.6 

Trimer (Ec-Ec-cat) 90.6 ± 0.9 8.60 ± 0.56 4.35 ± 0.03 6.7 ± 3.1 

Anthocyanins     

delphinidin-3-monoglucoside 45.0 ± 6.8 2.93 ± 0.05 2.05 ± 0.02 N.D. 

malvidin-3-monoglucoside 45.3 ± 4.8 2.45 ± 0.03 1.54 ± 0.02 N.D. 

petunidin-3-monoglucoside 26.2 ± 1.4 1.96 ± 0.08 1.12 ± 0.03 N.D. 

cyanidin-3-rutinoside 49.5 ± 5.4 2.77 ± 0.08 1.76 ± 0.08 N.D. 

malvidin-3,5-diglucoside 39.6 ± 3.7 1.92 ± 0.05 1.61 ± 0.01 N.D. 

Pyranoanthocyanins     

dephinidin-3-monoglucoside 

pyruvic acid adduct 

33.7 ± 1.3 2.52 ± 0.05 1.31 ± 0.08 N.D. 

malvidin-3-monoglucoside 

pyruvic acid adduct 

38.4 ± 1.0 1.02 ± 0.07 0.72 ± 0.05 N.D. 

N.D. – Not determined. 
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results could be explained, apart from the different hydrophilic or lipophilic properties of the 

substratum used in the different methods, by the different mechanism of antioxidant action measured 

for them. 

Figure 3. Relation between antioxidant activity measurements of 17 wine polyphenols using 
different methods (peroxynitrite scavenging activity, TEAC and FRAP). 
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which showed more antioxidant capacity in the distinct aqueous methods used, followed by 

anthocyanins and pyranoanthocyanins. 

3. Experimental Section  

3.1 Chemicals and reagents 

(+)-catechin (cat), (-)-epicatechin (Ec), (-)-epicatechin-3-O-gallate, gallocatechin and malvidin-3,5-

diglucoside were obtained from Sigma-Aldrich (Steinhein, Germany). Butylated hydroxytoluene 

(BHT) was purchased from Aldrich (Milwaukee, USA), 2,2´-azinobis-(3-ethyl-benzo-thiazoline-6-

sulphonate) (ABTS), (±)-6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox C), 2,4,6-

tri(2-pyridyl)-1,3,5-pyridyltriazine (TPTZ) and trichloracetic acid (TCA) were obtained from Fluka 

Chemie (Buchs, Switzerland), thiobarbituric acid (TBA), phosphatidylcholine and myoglobin were 

obtained from Sigma (St. Louis, USA) and FeCl3 was obtained from Panreac Química SA (Barcelona, 

Spain). All other chemicals used were of analytical grade. 

3.2 Isolation and purification of procyanidins 

Procyanidin dimers B2, B3 and B4 were isolated from grape seeds; procyanidins of the B1 series 

(B1, B7 and trimer Ec-Ec-cat) were from almond fruit flesh. The procyanidins were isolated as 

previously described by Plumb et al., [25]. Purities of dimers and trimers used in this work, which were 

tested by HPLC in the photodiode apparatus, selecting 280 nm as the preferred wavelength, were 

 > 90%. 

3.3 Isolation and purification of anthocyanins 

Anthocyanins (delphinidin-3-monoglucoside, malvidin-3-monoglucoside, petunidin-3-

monoglucoside and cyanidin-3-rutinoside) were isolated from a methanol-acid red grape skin extract 

by semipreparative HPLC using a Waters 600 chromatograph. The column was Ultracarb ODS (5 µm, 

250 × 10 mm) (Phenomenex). The solvents were 5% acetic acid (A) and methanol (B) applied with the 

following gradient: from 10% to 15% B for 15 min, isocratic 15% B for 5 min, from 15% to 30% B for 

30 min, from 30% to 45% B for 10 min, from 45% to 10% B for 10 min at a flow rate of 3 ml/min. 

Detection was carried out at 520 nm.  

3.4 Pyranoanthocyanins syntheses 

Syntheses of dephinidin-3-monoglucoside pyruvic acid adduct and malvidin-3-monoglucoside 

pyruvic acid adduct were performed as previously described by Romero et al., [26]. Pyruvic acid was 

added to pure anthocyanin, dissolved in potassium hydrogen tartrate buffer containing 10% ethanol in a 

molar ratio of pyruvic acid to pure anthocyanins of 300:1. The pH was adjusted to 3.7 by addition of 

Na2CO3 and the solution was incubated at 32 °C in the dark in the presence of air. 

The purity of anthocyanins and pyranoanthocyanins was tested by HPLC using the method of de 

Pascual-Teresa et al., [27] with minor modifications. Briefly, a Hewlett-Packard 1100 HP system 

equipped with a quaternary pump and photodiode array detector was used. The column was an Aqua® 

C18, 5 µm (150 × 4.6 mm) (Phenomenex), thermostatted at 35 °C. The solvents were 0.1% 
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trifluoroacetic acid (A) and acetonitrile (B) applied with the following gradient program: isocratic 10% 

B for 5 min, from 10% to 15% for 15 min, isocratic 15% B for 5 min, from 15% to 18% B for 5 min 

and from 18% to 35% B for 20 min at a flow rate of 0.5 ml/min. The measurement was carried out 

using the photodiode detection at 520 nm as the preferred wavelength. The purities of all the 

anthocaynins and pyranoanthocyanins used in this work, were in every case higher than 94%. 

The identity of the anthocyanins and pyranoanthocyanins was confirmed by HPLC using a dual on-

line detection by diode array detector and mass spectrometry (HPLC-DAD-MS). MS spectrometry was 

performed using a Finnigan LCQ equipped with API source, using an electrospray ionization (ESI) 

interface. Both the auxiliary and the sheath gas were a mixture of nitrogen and helium at flow rates of 

1.2, and 6 L/min respectively. The capillary temperature was 195 °C and the capillary voltage was 4 V. 

The MS detector was programmed to perform a series of three consecutive scans: a full scan from 120 

to 1500 amu, an MS2 scan of the most abundant ion in the full mass and MS3 of the most abundant ion 

in the MS2. The normalized energy of collision was 45%. Spectra were recorded in the positive mode. 

3.5 Inhibition of tyrosine nitration 

 Peroxynitrite solution was prepared in accordance with the published method [28]. A volume of 8 µl 

of 2.5 mM peroxynitrite solution in 0.05 M NaOH was drawn and mixed rapidly in the injector of the 

HPLC autosampler with 42 µl 1.0 mM tyrosine solution in 0.11 M KH2PO4-Na2HPO4 buffer (pH 6.0) 

containing 40 µM of tested compound. The reaction mixture was injected directly into the HPLC 

column (Aqua® C18, 5 µm, 150 × 4.6 mm, Phenomenex), the mobile phase, in isocratic conditions, 

consisted of 90% 40 mM HCOOH and 10% CH3CN (v/v), at a flow rate of 1 ml/min. The 

chromatograms were recorded at 276 nm. The activity of the tested compounds was calculated as the 

percentage of tyrosine nitration relative to the measured peak area of 3-nitrotyrosine of the control. 

3.6 Ferric reducing/antioxidant power (FRAP) 

The FRAP assay was performed as described previously [16]. FRAP reagent was freshly prepared 

each day by mixing 10 mM TPTZ, 20 mM FeCl3 and 0.3 M acetate buffer pH 3.6 in the ratio 1:1:10 

(v/v). The absorbance of the test components was read at 593 nm (Perkin Elmer UV/VIS Lambda Bio 

20) 6 minutes after mixing at room temperature against a blank (FRAP and distilled water). For 

anthocyanins and pyranoanthocyanins an extra blank was needed. It was prepared by addition of a 

tested compound in acetate buffer (1:30, v/v). Data were expressed relative to values obtained for 

Trolox (200 µM) and expressed as Trolox equivalents. 

3.7 Trolox equivalent antioxidant capacity (TEAC) 

The assay was based on the relative ability of antioxidants to scavenge the cation radical ABTS•+ 

[14]. The radical was generated by the interaction of ABTS (0.15 mM) with the ferrylmyoglobin 

radical, generated by the activation of metmyoglobin (2.5 µM) with H2O2 (0.1 mM). The extent of 

quenching of the ABTS•+ was measured spectrophotometrically at 734 nm and compared to standard 

amounts of Trolox C. Results are expressed as TEAC value. 
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3.8 Lipid phase antioxidant activity (TBARS method) 

Phospholipid liposomes (final concentration 1 mg/mL) were suspended in 150 mM KCl containing 

0.2 mM FeCl3 and the tested compound at a range of concentrations (0–25 µM). Peroxidation was 

started as described previously [29] with ascorbate addition (final concentration 0.05 mM) in a final 

volume adjusted to 0.4 mL. Samples were incubated at 37 °C for 40 min and then the reactions were 

terminated by the addition of 0.8 ml of 20% (w/v) trichloroacetic acid (TCA)/0.4% (w/v) thiobarbituric 

acid (TBA)/0.25 N HCl and 0.01 ml of butylated hydroxytoluene dissolved in ethanol. The production 

of thiobarbituric acid reactive substances (TBARS) was measured spectrophotometrically at 535 nm 

during the 20 min of incubation at 80 °C and expressed as concentration causing 50% inhibition (IC50). 

3.9 Statistical analysis 

Data are presented as means ± standard deviations (STDEV) of the three independent experiments. 

The results were processed by using one-way variance analysis (ANOVA). Differences at p < 0.05 

were considered significant. In addition, simple regression analysis was performed to seek relationships 

between the different tests. 
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