Molbank 2005, M409

http://www.mdpi.net/molbank/

4-Methyl-*N*-(2,2,4,4-tetrachloro-5-methyl-3-oxo-8-oxabicyclo[3.2.1.]oct-6-en-1-ylmethyl)-benzenesulfonamide

Holger Meining and Baldur Föhlisch*

Institut für Organische Chemie der Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany Fax: (+ 49) 711/6854269; e-mail: <u>baldur.foehlisch@oc.uni-stuttgart.de</u>

Received: 8 March 2004 / Accepted: 17 March 2004 / Published: 1 August 2005

Keywords: cycloaddition, ketones, sulfonamides, heterocycles

A mixture of **1** [1] (2.65 g, 10 mmol) and pentachloroacetone [2] (3.23 g, 14 mmol) was cooled in an ice bath. With magnetic stirring, a 2-molar solution of sodium 2,2,2-trifluoroethoxide in 2,2,2-trifluoroethanol [3] (7 mL, 14 mmol) was added dropwise, over 15 min. Stirring was continued for 15 min at 0 °C and then at room temperature for 2–3 hours[4]. The mixture was allowed to stir for a further 2 hours. The heterogeneous mixture was poured on saturated brine (20 mL). The precipitate was dissolved by adding a little of dichloromethane and water, and the organic layer was separated. The aqueous layer was acidified with hydrochlorid acid to pH 4–5 and then extracted with dichloromethane (4 ´ 20 mL). The combined dichloromethane solutions were washed with satured brine (20 mL) and dried overnight with magnesium sulfate. After filtration, the solution was concentrated in a rotary evaporator. The remaining yellow mass was recrystallized from dry ethanol (60 mL) to yield 4.01 g (87%) of **2** as a colourless crystalline solid.

Melting Point: 177-178 °C.

TLC (silica, hexane/*tert*-butylmethyl ether (1:1 v/v): A light-blue spot emerged after spraying the sheet with vanillin/sulfuric acid reagent followed by heating with a hot-air gun; $R_f = 0.31$. The starting material (1) showed a red-brown spot at $R_f = 0.38$.

¹H-NMR (250 MHz, CDCl₃): δ = 1.75 (s, 3 H, 5-CH₃); 2.45 (s, 3 H, CH₃C₆H₄SO₂); ABX sub-spectrum (8 AB-lines, X part as a broad m) with δ_A = 3.89, δ_B = 3.58, δ_X = 4.88, J_{AB} = (-) 13.9 Hz, J_{AX} =10.1 Hz, J_{BX} = 3.3 Hz, 3 H, diastereotopic CH₂-NH); 6.34 (s, 2 H, H-7 + H-6); AA'BB' sub-spectrum with δ_A = 7.76, δ_B = 7.35, J_{AB} = 8.2 Hz (H-2/6 and H-3/5 from CH₃C₆H₄SO₂).

¹H-NMR (250 MHz, DMSO-d6): δ = 1.65 (s, 3 H, 5-CH₃); 2.39 (s, 3 H, CH₃C₆H₄SO₂); ABX sub-spectrum (8 AB-lines, 4 lines of the X part) with δ_{A} = 3.63, δ_{B} = 3.44, δ_{X} = 8.06, J_{AB} = (-)14.4 Hz, J_{AX} = 7.5 Hz, J_{BX} = 5.7 Hz, 3 H, diastereotopic CH₂-NH); 6.46 (d, J = 5.8 Hz, 1 H, H-7); 6.66 (d, J = 5.8

Hz, 1 H, H-6); AA'BB' sub-spectrum with $\delta_A = 7.76$, $\delta_B = 7.36$, $J_{AB} = 8.0$ Hz (H-2/6 and H-3/5 from CH₃C₆*H*₄SO₂).

¹³C-NMR/DEPT (62.9 MHz, DMSO-d6): δ=16.2 (+, 5-CH₃); 20.9 (+, $CH_3C_6H_4SO_2$); 41.9 (-, CH_2 -N); 84.7 (C_q, C-4); 87.1 (C_q, C-2); 91.2 (C_q, C-5); 92.7 (C_q, C-1); 126.35 (+, C-2/6 from CH₃C₆H₄SO₂-); 129.65 (+, C-3/5 from CH₃C₆H₄SO₂); 134.6 (+, C-6); 137.6 (C_q, C-4 from CH₃C₆H₄SO₂); 138.0 (+, C-7); 142.85 (C_q, C-1 from CH₃C₆H₄SO₂); 185.3 (C_q, C-3).

IR (CHCl₃ film, cm⁻¹): 3400 (N-H); 3110, 2960 (C-H); 1773, 1745 (C=O); 1600 (C=C); 1495 (NH); 1340, 1165 cm⁻¹ (SO₂).

Elemental Analysis: Calculated for C₁₆H₁₅C₁₄NO₄S (459.2): C, 41.85%; H, 3.29%; Cl, 30.88%; N, 3.05%; S, 6.98%. Found: C, 41.59%; H, 3.23%; Cl, 30.75%; N, 2.91%; S: 7.03%.

References

1. Meining, H.; Föhlisch, B. Molbank 2005, M408.

2. Bugrova, L. V.; Rudnev, G. K.; Kristich, A. I.; Radchenko, V. I.; Mishchenko, L. F. *Zh. Prikl. Khim.* (Leningrad) **1973**, *46*, 1529–1533; *J. Appl. Chem. USSR* **1973**, *2*, 1627–1631.

3. a) Föhlisch, B.; Gehrlach, E.; Herter, R. *Angew. Chem.* 1982, *94*, 144; *Angew. Chem. Suppl.* 1982, *94*, 241; *Angew. Chem., Int. Ed. Engl.* 1982, *21*, 137. b) Sendelbach, S.; Schwetzler-Raschke, R.; Radl, A.; Kaiser, R.; Henle, G. H.; Korfant, H.; Reiner, S.; Föhlisch, B. *J. Org. Chem.* 1999, *64*, 3398–3408.
4. If 1 has not disappeared after that time (check by TLC), more pentachloroacetone (0.7–1.2 g, 3–5 mmol) was added, and the base solution in such amount that a test with wet pH indicator paper showed an alkaline reaction.

Sample Availability: Available from MDPI.

© 2005 MDPI. All rights reserved.