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Abstract: N-aminorhodanine as well as isatin are highly solicited motifs known for their wide
potential for biological activity. The objective of this work was to synthesize hybrid molecules as
kinase inhibitors from these two motifs. In order to study the reactivity of the two active centers in
aminorhodanine (N-amino group and the 5-methylene group) toward two carbonyl groups (aromatic
aldehyde and ketone of isatin), we decided to carry out a one-pot multi-component reaction by
simultaneously introducing aminorhodanine, isatin, and an aromatic aldehyde in ethanol in the
presence of AcOEt. Under these conditions, this reaction led to a single adduct. The reaction
product structure was confirmed by 1H, 13C-NMR, X-ray single crystal analysis, and high-resolution
mass HRMS analysis. As a result, the method used has been very effective and totally stereo-
and regioselective.

Keywords: N-aminorhodanine; isatin; hybrid-molecules; Knoevenagel; Schiff’s bases; multi-component
reactions

1. Introduction

The combination of two or more targeted therapeutic pharmacophores with different mechanisms
of action into a single so-called hybrid molecule is one of the alternatives of conventional treatments of
complex diseases that are multifactorial disorders involving various potential targets associated with
their pathogenesis. Among the most requested pharmacophores in recent years due to their broad
spectrum of biological activity are isatin and rhodamine, which share certain bioactivities such as
the inhibition of kinases [1–3]. This is why there is interest in combining these two pharmacophores
in hybrid molecules to study the evolution of their kinase inhibitory potency. Several numbers of
successful isatin–rhodanine examples of pharmacophore hybridization strategies for drug design,
discovery, and development have been reported [4–7]. Some of these have shown potent inhibitor
activity against the UDP-Galactopyranose mutase UGM [8], β-lactamase infectious [9], and histone
acetyltransferases [5] (a wide range of diseases).

Arylidenerhodanines, due to the Michael acceptor functionality, are often claimed as pan assay
interference compounds (PAINS) mainly in high throughput screening (HTS) campaigns [10,11].
Despite this, medicinal chemists have not lost interest in them as evidenced by numerous publications
in these last few years [12], as the relationships between the inactivity, specific activity, and artificial
activity of ligands with potential liabilities are often highly complex and difficult to unravel [13].
Therefore, such protein-ligand complex must be more rigorously evaluated using two or more
experimental methods to avoid false results.
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In light of these findings, we were interested in the design, synthesis, and evaluation of a new
series of hybrid molecules by combining the two pharmacophoric elements: N-aminorhodanine and
isatin, which are present in a number of natural and synthetic agents. In this paper, we describe
efforts toward the preparation and identification of new of isatin–aminorhodanine hybrid molecules:
(5-[(Z)-5-chloro-2-oxoindolin-3-ylidene]-3-{(E)-[(4-hydroxyphenyl)imino]methyl}-2-thioxothiazolidin-
4-one) via the one-pot multi-component reaction to later evaluate their kinase inhibitor activity.

2. Results and Discussion

Oxindolinylidene-iminorhodanine 4 was prepared as single adduct by the one-pot
multi-component reaction from 5-chloroisatin 1, N-aminorhodanine 2, 4-hydroxybenzaldehyde 3
by conventional refluxing in ethanol in the presence of sodium acetate (Scheme 1). The product was
obtained pure in 70% of yield by simple washing and filtration from ethanol.
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Scheme 1. Synthesis of 5-[(Z)-5-chloro-2-oxoindolin-3-ylidene]-3-{(E)-[(4-hydroxyphenyl)imino]methyl}-
2-thioxothiazolidin-4-one by conventional reflux.

The structure of the resulting compound was defined using 1H, 13C-NMR spectroscopy; HRMS,
and X-ray single crystal analysis (see Supplementary Materials for original spectra).

The 1H-NMR spectra showed seven aromatic hydrogens of the two benzene rings in addition to
the imine proton in the same region at 6.94–8.75 ppm. We also noted that no proton of the CH2 or NH2

group of the amino rhodanine appeared between 4 and 6 ppm, which means that aminorhodanine
undergoes an addition on these two active centers.

Single crystals of 4 suitable for X-ray diffraction [14] were grown via slow evaporation in
DMSO-cyclohexane at room temperature. All crystallographic data and refinement details are
presented in Table 1 and the X-ray diffraction structure of 4 is shown in Figure 1, which confirms that
isatin was added to the CH2 group by a Knoevenagel reaction, while the aldehyde was fixed on the
primary amine NH2 group forming a Schiff base. Through this analysis, we were also able to establish
the stereochemistry of this molecule. Figure 1 shows that the double bond between C(10) and C(11) is
of a Z-configuration, while that between N(1) and C(7) is of an E-configuration.
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Table 1. Crystal data and structure refinement details.

Empirical formula C18H10ClN3O3S2
Formula weight 415.87

Crystal size (mm) 0.600 × 0.150 × 0.120
Temperature (K) 150

Crystal system. space group Triclinic. P-1
Unit cell dimensions

a (Å) 5.1368(9)
b (Å) 13.808(2)
c (Å) 15.155(2)
α (◦) 77.532(5)
β (◦) 89.435(6)
γ (◦) 84.146(6)

Wavelength (Å) 0.71073
Volume (Å3) 1044.0(3)

Z. calculated density (g/cm3) 2, 1.571
θ range for data collection 3.038◦ to 27.484◦

Limiting indices −6 ≤ h ≤ 6, −17 ≤ k ≤ 17, −19 ≤ l ≤ 15
Reflections collected/total/unique 21366/4584 [R(int)a = 0.1135]

Refinement method Full-matrix least-squares on F2
Data/restraints/parameters 4584/0/283

Goodness of fit on F2 1.057
Final R indices

R1 0.0556
wR2 0.1257

R indices (all data)
R1 0.0841

wR2 0.1387Molbank 2019, 2019, x FOR PEER REVIEW 3 of 5 

 

 
  

Figure 1. General view of molecule 4 with atomic numbering. 
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Figure 1. General view of molecule 4 with atomic numbering.

3. Materials and Methods

3.1. General Information

All reagents were purchased from Acros (Geel, Belgium), Aldrich (Saint Louis, MI, USA), and
were used without further purification. Melting points were determined on a Kofler melting point
apparatus (Wagner & Munz, Munich, Germany), and were uncorrected. 1H-NMR spectra were
recorded on a BRUKER AC 300 P (300 MHz) spectrometer (Bruker, Bremen, Germany), and 13C-NMR
spectra on a BRUKER AC 300 P (75 MHz, Bruker) spectrometer. Chemical shifts were expressed in
parts per million downfield from tetramethylsilane as an internal standard. Data are given in the
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following order: δ value, multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br,
broad), number of protons, and coupling constants J is given in Hz. High-resolution mass spectra
(HMRS) were recorded on a Bruker Micro-Tof-Q II (Bruker) or on a Waters Q-Tof 2 at the CRMPO
(Centre Régional de Mesures Physiques de l’Ouest, Rennes, France) using positive ion Electro-Spray
Ionization (ESI, Waters, Manchester, UK). For the X-ray diffraction experiment, an appropriate single
crystal of the title compound was selected and x-ray-data were collected using a STOE IPDS II single
crystal X-ray diffractometer equipped with a two-dimensional image plate detector and with graphite
monochromated MoKα radiation (λ = 0.71073 Å). The SHELXS [15] program was used to solve the
structure by direct methods and the SHELXL [16] program was used for refinement through the
full-matrix least-squares method. These two programs were implemented in WinGX [17] software.
All atoms, except for the hydrogen atoms, were refined anisotropically. Hydrogen atoms were fixed
geometrically at their calculated positions. Reflections with I ≥ 2σ(I) were used in the structure
determination. Structural results are presented using the Mercury program [18].

General Procedure for Synthesis and Characterization of 4

A mixture of aminorhodanine (0.503 g, 3.4 mmol), 5-chloroisatin (0.617 g, 3.4 mmol), and of
4-hydroxybenzaldehyde (0.415 g, 3.4 mmol) in 10 mL of ethanol was refluxed for 8 h. The reaction
mixture was allowed to cool down at room temperature and the crude product was purified by
recrystallization from ethanol to furnish compound 4 (0.98 g, 70% yield) as a fair brown solid (mp >

300 ◦C). The structure of 4 was confirmed by the reported spectral analysis as follows: 1H-NMR (300
MHz, DMSO-d6) δ 11.42 (s, 1H, NH), 10.52 (s, 1H, OH), 8.73 (d, J = 11.9 Hz, 2H, =CHar, =CH), 7.82
(d, J = 8.2 Hz, 2H, =CHar), 7.46 (d, J = 7.5 Hz, 1H, =CHar), 6.96 (m, 3H, =CHar). 13C-NMR (75 MHz,
DMSO) δ 191.2, 171.7, 168.2, 163.2, 162.8, 143.8, 132.8, 132.3, 131.9, 127.5, 126.5, 124.4, 123.1, 121.5, 116.6,
and 112.6. HRMS (ESI) [M + Na]+ for: (C18H10N4O5NaS2) m/z, z = 1, calcd: 448.99848 m/z found:
448.9986 [M + K]+ (C18H10N4O5S2K) m/z, z = 1 , calcd: 464.97242 m/z found: 464.9721.

4. Conclusions

This result leads us to conclude that by using these conditions, the one-pot multi-components
reaction is totally regio-selective in favor of the Knoevenagel condensation between CH2 in
aminorhodanine with isatin and the formation of the Schiff base between NH2 of aminorhodanine and
4-hydroxybenzaldehyde and is totally stereo-selective, leading to a single stereoisomer Z-E (Figure 1).

Supplementary Materials: The following are available online: 1H, 13C-NMR and crystallographic data for 4 in
crystallographic information file (CIF) format. CCDC 1871619 also contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge via: http://www.ccdc.cam.ac.uk/conts/retrieving.html.
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