Supporting information

Novel One-Pot Synthesis of Methyl 4-Hydroxy-2-thioxo-1,2-dihydroquinoline-3-carboxylate: Synthetic and Crystallographic Studies

Sergiy M. Kovalenko ^{1,2}, Oleksandr G. Drushlyak ³, Irina S. Konovalova ⁴, Illia O. Mariutsa ³, Dmitry V. Kravchenko ⁵, Alexandre V. Ivachtchenko ² and Oleg D. Mitkin ^{2,*}

- ¹ Department of Organic Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody sq., Kharkiv 61077, Ukraine; kovalenko.sergiy.m@gmail.com
- ² ChemRar Research and Development Institute, 7 Nobel st., Innovation Center Skolkovo territory, Moscow, 143026, Russia; av@chemdiv.com
- ³ Faculty of Pharmacy, The National University of Pharmacy, 53 Pushkinska st., Kharkiv 61002, Ukraine; aldry18@hotmail.com (O.G.D.); mariutsaillia@gmail.com (I.O.M.)
- ⁴ SSI Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave, Kharkov 61001, Ukraine; sveta@xray.isc.kharkov.com
- ⁵ Chemical Diversity Research Institute, 2A Rabochaya st., Khimki, Moscow Region, 141400, Russia; dk@chemrar.ru
- * Correspondence: mod.chemdiv@gmail.com; Tel.: +7-495-995-4941

Received: 25 September 2019; Accepted: 13 October 2019; Published: 14 October 2019

SUPPLEMENTARY MATERIAL

Table of Contents

Methyl 4-hydroxy-2-thioxo-1,2-dihydroquinoline-3-carboxylate 13

Figure S1. ¹H NMR spectrum (400 MHz, DMSO-*d*₆) of methyl 4-hydroxy-2-thioxo-1,2-dihydroquinoline-3-carboxylate **13**

Figure S2. ¹³C NMR spectrum (100 MHz, DMSO-*d*₆) of methyl 4-hydroxy-2-thioxo-1,2-dihydroquinoline-3-carboxylate **13**

Figure S3. LC/MS data for methyl 4-hydroxy-2-thioxo-1,2-dihydroquinoline-3-carboxylate 13

Figure S4. UV/Vis spectrum (CH₃CN) of methyl 4-hydroxy-2-thioxo-1,2-dihydroquinoline-3-carboxylate **13 Figure S5.** IR spectrum of methyl 4-hydroxy-2-thioxo-1,2-dihydroquinoline-3-carboxylate **13** (KBr pellet)

Table S1. Coordinates (×10⁴) and equivalent isotropic thermal parameters (Å² × 10³) of atoms in structure **13 Table S2.** Bond lengths (Å) in structure **13**

Table S3. Valence angles (deg.) in structure 13

Methyl 2-(methoxycarbonothioylamino)benzoate 14

Figure S6. ¹H NMR spectrum (400 MHz, DMSO-*d*₆) of methyl 2-(methoxycarbonothioylamino)benzoate Figure S7. ¹³C NMR spectrum (100 MHz, DMSO-*d*₆) of methyl 2-(methoxycarbonothioylamino)benzoate Figure S8. LC/MS data for methyl 2-(methoxycarbonothioylamino)benzoate Figure S9. UV/Vis spectrum (CH₃CN) of methyl 2-(methoxycarbonothioylamino)benzoate Figure S10. IR spectrum of methyl 2-(methoxycarbonothioylamino)benzoate Figure S10. IR spectrum of methyl 2-(methoxycarbonothioylamino)benzoate

Table S4. Coordinates (×10⁴) and equivalent isotropic thermal parameters ($Å^2 \times 10^3$) of atoms in structure **14 Table S5.** Bond lengths (Å) in structure **14**

 Table S6.
 Valence angles (deg.) in structure 14

Methyl 4-hydroxy-2-thioxo-1,2-dihydroquinoline-3-carboxylate **13**.

Figure S1. ¹H NMR spectrum (400 MHz, DMSO-*d*₆) of methyl 4-hydroxy-2-thioxo-1,2-dihydroquinoline-3-carboxylate **13**.

Figure S2. ¹³C NMR spectrum (100 MHz, DMSO-*d*₆) of methyl 4-hydroxy-2-thioxo-1,2-dihydroquinoline-3-carboxylate **13**.

Figure S3. LC/MS data for methyl 4-hydroxy-2-thioxo-1,2-dihydroquinoline-3-carboxylate 13.

Figure S4. UV/Vis spectrum (CH₃CN) of methyl 4-hydroxy-2-thioxo-1,2-dihydroquinoline-3-carboxylate 13.

Figure S5. IR spectrum of methyl 4-hydroxy-2-thioxo-1,2-dihydroquinoline-3-carboxylate 13 (KBr pellet)

Atom	х	у	Z	U(eq)
S1	-1441(2)	3123(1)	5156(1)	63.8(3)
O1	6175(6)	3848(3)	8846(2)	73.0(8)
O2	2112(6)	1696(3)	7861(2)	76.3(8)
O3	-1331(6)	1331(2)	6345(2)	76.8(7)
N1	3001(6)	5222(3)	6505(3)	52.4(7)
C1	5447(7)	6066(3)	7383(3)	51.7(8)
C2	6887(8)	7368(4)	7478(3)	62.4(9)
C3	9267(8)	8184(4)	8367(3)	71.9(1)
C4	10336(8)	7743(4)	9211(3)	73.0(1)
C5	8983(8)	6473(4)	9125(3)	65.0(1)
C6	6502(7)	5602(3)	8207(3)	51.3(9)
C7	5000(7)	4266(4)	8063(3)	53.4(9)
C8	2484(7)	3450(3)	7179(3)	48.8(8)
C9	1422(7)	3938(3)	6321(3)	46.7(8)
C10	1092(8)	2094(4)	7140(3)	56.3(9)
C11	-2630(9)	-6(4)	6314(4)	89.5(1)

Table S1. Coordinates (×10⁴) and equivalent isotropic thermal parameters ($Å^2 \times 10^3$) of atoms in structure **13**.

Table S2. Bond lengths (Å) in structure 13.

S1-C9	1.671(3)
O1-C7	1.340(4)
O2-C10	1.233(4)
O3-C10	1.303(4)
O3-C11	1.449(4)
N1-C1	1.370(4)
N1-C9	1.364(4)
C1-C2	1.399(4)
C1-C6	1.398(4)
C2-C3	1.351(4)
C3-C4	1.403(5)
C4-C5	1.362(5)
C5-C6	1.408(4)
C6-C7	1.419(5)
C7-C8	1.389(4)
C8-C9	1.453(4)
C8-C10	1.474(4)

Table S3. Valence angles (deg.) in structure 13.

C11-O3-C10	117.2(3)
C9-N1-C1	127.4(3)
C2-C1-N1	122.1(3)
C6-C1-N1	118.3(3)

119.6(3)
120.5(4)
120.7(4)
119.6(4)
120.8(4)
118.8(3)
117.6(3)
123.6(3)
115.2(3)
122.3(3)
122.5(3)
119.3(3)
117.2(3)
123.4(3)
117.1(2)
128.1(3)
114.8(3)
120.1(3)
121.6(3)
118.3(3)

Figure S6. 1H NMR spectrum (400 MHz, DMSO-d6) of methyl 2-(methoxycarbonothioylamino)benzoate 14.

Figure S7. ¹³C NMR spectrum (100 MHz, DMSO-d₆) of methyl 2-(methoxycarbonothioylamino)benzoate 14.

Figure S8. LC/MS data for methyl 2-(methoxycarbonothioylamino)benzoate 14

Figure S9. UV/Vis spectrum (CH₃CN) of methyl 2-(methoxycarbonothioylamino)benzoate 14.

Figure S10. IR spectrum of methyl 2-(methoxycarbonothioylamino)benzoate 14 (KBr pellet).

Atom	x	у	Z	U(eq)
S1	1208(1)	205(3)	3774(1)	96(1)
O1	4293(3)	4132(6)	5905(3)	75(1)
O2	4110(2)	7873(5)	6427(2)	64(1)
O3	3040(3)	-1130(5)	4297(3)	71(1)
N1	2643(3)	1735(6)	5193(3)	61(1)
C1	2181(4)	3468(7)	5662(3)	52(1)
C2	1204(4)	3257(8)	5711(4)	60(1)
C3	769(4)	4949(9)	6187(4)	65(2)
C4	1295(4)	6887(8)	6641(4)	60(1)
C5	2267(4)	7115(8)	6617(3)	56(1)
C6	2719(3)	5422(7)	6138(3)	51(1)
C7	2301(4)	294(8)	4438(4)	58(1)
C8	2871(5)	-2909(9)	3538(4)	87(2)
C9	3774(4)	5681(9)	6130(3)	56(1)
C10	5124(4)	8358(8)	6423(4)	76(2)

Table S4. Coordinates (×10⁴) and equivalent isotropic thermal parameters ($Å^2 \times 10^3$) of atoms in structure **14**.

Table S5	. Bond	lengths (Å)	in structure	14.
I ubic be	· Dona		monucture	T T •

S1-C7	1.632(5)
O1-C9	1.207(5)
O2-C9	1.333(5)
O2-C10	1.449(6)
O3-C7	1.348(5)
O3-C8	1.442(5)
N1-C1	1.396(6)
N1-C7	1.344(5)
C1-C2	1.392(7)
C1-C6	1.407(6)
C2-C3	1.366(7)
C3-C4	1.381(6)
C4-C5	1.379(7)
C5-C6	1.382(6)
C6-C9	1.490(7)

 Table S6. Valence angles (deg.) in structure 14.

C9-O2-C10	116.8(4)
C7-O3-C8	119.4(4)
C7-N1-C1	131.2(4)
N1-C1-C6	119.7(5)
C2-C1-N1	121.6(4)
C2-C1-C6	118.6(4)
C3-C2-C1	120.8(5)

C2-C3-C4	120.6(5)
C5-C4-C3	119.8(5)
C4-C5-C6	120.4(5)
C1-C6-C9	120.5(4)
C5-C6-C1	119.9(5)
C5-C6-C9	119.6(4)
O3-C7-S1	124.0(4)
N1-C7-S1	128.5(4)
N1-C7-O3	107.4(4)
O1-C9-O2	121.9(5)
O1-C9-C6	126.1(5)
O2-C9-C6	111.9(4)