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Abstract: The reaction of 3,5-dichloro-4H-1,2,6-thiadiazin-4-one with (R) and (S)-1,3-
dimethylpiperazines (1 equiv), in THF, at ca. 20 ◦C gives (R) and (S)-3-chloro-5-(2,4-dimethylpiperazin-1-
yl)-4H-1,2,6-thiadiazin-4-ones in 70% and 68% yields, respectively. The new compounds were
fully characterized.
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1. Introduction

Piperazines are important saturated nitrogen containing heterocycles and appear in a number of
clinically used pharmaceuticals [1]. Among the nitrogen-containing heterocycles, piperazines rank as
third in the most frequently used U.S. FDA-approved drugs [2], while other uses include the production
of polyamide plastics and in the capture of CO2 [3]. Examples of piperazine-containing drugs include
the antibiotic ciprofloxacin, the erectile dysfunction drug sildenafil, and the anti-cancer BCR-ABL and
src tyrosine kinase inhibitor bosutinib (SKI-606) [4] (Figure 1).

  

Molbank 2020, 2020, x; doi: FOR PEER REVIEW www.mdpi.com/journal/molbank 

Communication 

Synthesis of (R) and (S)-3-Chloro-5-(2,4-
dimethylpiperazin-1-yl)-4H-1,2,6-thiadiazin-4-one 
Andreas S. Kalogirou 1,* Christopher R. M. Asquith 2 and Panayiotis A. Koutentis 3 

1 Department of Life Sciences, School of Sciences, European University Cyprus, 6 Diogenis Str., Engomi, P. 
O. Box 22006, 1516 Nicosia, Cyprus 

2 Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel 
Hill, NC 27599, USA; chris.asquith@unc.edu 

3 Department of Chemistry, University of Cyprus, P. O. Box 20537, 1678 Nicosia, Cyprus; koutenti@ucy.ac.cy 
* Correspondence: A.Kalogirou@euc.ac.cy; Tel.: +357-22559655 

Received: 4 May 2020; Accepted: 25 May 2020; Published: 1 June 2020 

Abstract: The reaction of 3,5-dichloro-4H-1,2,6-thiadiazin-4-one with (R) and (S)-1,3-
dimethylpiperazine (1 equiv), in THF, at ca. 20 °C gives (R) and (S)-3-chloro-5-(2,4-
dimethylpiperazin-1-yl)-4H-1,2,6-thiadiazin-4-ones in 70% and 68% yields, respectively. The new 
compounds were fully characterized. 

Keywords: substitution; heterocycle; thiadiazine; piperazine; chirality 

 

1. Introduction 

Piperazines are important saturated nitrogen containing heterocycles and appear in a number 
of clinically used pharmaceuticals [1]. Among the nitrogen-containing heterocycles, piperazines rank 
as third in the most frequently used U.S. FDA-approved drugs [2], while other uses include the 
production of polyamide plastics and in the capture of CO2 [3]. Examples of piperazine-containing 
drugs include the antibiotic ciprofloxacin, the erectile dysfunction drug sildenafil, and the anti-cancer 
BCR-ABL and src tyrosine kinase inhibitor bosutinib (SKI-606) [4] (Figure 1). 
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Figure 1. Piperazine-containing drugs. 

The incorporation of an asymmetric 3-methyl substituent to the piperazine moiety can improve 
the biological activity of a compound and enhance its physicochemical characteristics. There are 
many examples in the literature of 3-methylpiperazines exhibiting anti-cancer activity [5], or acting 
as antiplatelet agents [6], among others. 

The introduction of 3-methylpiperazine in the design of kinase inhibitors offers another route to 
enhance potency on target and selectivity. While the main purpose of the added methyl group is to 
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The incorporation of an asymmetric 3-methyl substituent to the piperazine moiety can improve
the biological activity of a compound and enhance its physicochemical characteristics. There are
many examples in the literature of 3-methylpiperazines exhibiting anti-cancer activity [5], or acting as
antiplatelet agents [6], among others.

The introduction of 3-methylpiperazine in the design of kinase inhibitors offers another route to
enhance potency on target and selectivity. While the main purpose of the added methyl group is to
act as a steric handle to increase the torsion between adjacent ring systems on the solvent front of the
ATP-binding pocket, it can also be used to probe a pocket in the active site. The 3-methylpiperazine has
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similar properties and uses to the 3-methylmorpholine substituent commonly used in kinase inhibitor
design [7].

There are numerous examples of compounds where the 3-methylpiperazine substituent has had a
pronounced effect on the overall profile of the compound (Figure 2) [5,8,9]. In the case of Talmapimod
(SCIO-469), the incorporation of a 3-methylpiperazine into the structure helped reduce the metabolism
of an adjacent benzyl group [8]. While in the case of a PAK4 inhibitor program that investigated
compounds 1-3, the methyl group on the 3-methylpiperazine helped improve the compounds’
selectivity towards PAK4 over closely related PAK1 [5]. In a similar manner, the introduction of the
gem-dimethylpiperazine moiety in a PI3K program (compound 4) enabled selectivity over family
members for the PI3Kδ isoform [9,10].

The methyl group of the 3-methylpiperazine can also be used to probe narrow-band activity
profiles in any medicinal chemistry program. This methyl scanning method was applied by Berlex
Biosciences to screen an ADP receptor (P2Y12) antagonist hit [6]. The introduction of a methyl group is
not always beneficial and the precise stereochemistry can be critical. While the steric effects can be
achieved by other methods, the methyl group remains the most muted modification that provides
substantial compound property improvements with a limited impact on ligand efficiency.
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Our interest in the 1,3-dimethylpiperazine moiety is part of our ongoing effort to investigate
the biological activity of novel 1,2,6-thiadiazines. Non-S-oxidized 1,2,6-thiadiazines are relatively
unexplored heterocycles that have applications as organic photovoltaics (OPVs) [11], liquid crystals [12],
plant protectants [13–17], and potential anticancer agents [18]. The chemistry of non-S-oxidized
1,2,6-thiadiazines has recently been reviewed [19]. Currently, we are developing a series of new
1,2,6-thiadiazine building blocks to expand our library of drug-like compounds with potential
kinome selectivity profiles. For this work, we investigated the 3-methylmorpholine moiety as a
substituent on 4H-1,2,6-thiadiazin-4-one [7]. In continuation of this work, we decided to investigate
the 1,3-dimethylpiperazine moiety, which we planned to introduce by a selective nucleophilic
displacement of one chloride of dichlorothiadiazinone 5 by (R) and (S)-1,3-dimethylpiperazine to yield



Molbank 2020, 2020, M1139 3 of 6

3-methylmorpholine-substituted thiadiazines 6a and 6b, respectively (Scheme 1). This displacement
can occur under mild conditions owing to the electrophilic nature of the starting thiadiazine.
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2. Results and Discussion

We reacted 3,5-dichloro-4H-1,2,6-thiadiazin-4-one (5) [20] with 1 equiv. of 1,3-dimethylpiperazines
in anhydrous tetrahydrofuran (THF), at 20 ◦C. The dibasic nature of piperazines means that no extra base
or excess of piperazine reagent is required. Dilution of the reaction mixture with dichloromethane (DCM)
saturated in ammonia, followed by column chromatography, led to the isolation of the desired products
6a and 6b as yellow oils in 70% and 68% yields, respectively (Scheme 2, see Supplementary Materials
for NMR spectra). Compared to the analogous 3-methylmorpholine derivatives [7], the 1H NMR
spectra of the products 6a and 6b display increased line broadening, which can be attributed to
decreased free rotation of the piperazine ring owing to a greater electron release into the thiadiazine.
Similar hindered rotation phenomena of thiadiazines bound to secondary cyclic amines have been
reported [21]. The optical rotation data showed that the two products were indeed enantiomers
([α]20

D +65 and −64, respectively, for 6a and 6b, see Materials and Methods).
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Scheme 2. Synthesis of (R) and (S)-3-chloro-5-(2,4-dimethylpiperazin-1-yl)-4H-1,2,6-thiadiazin-4-one
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We noted that the stereochemistry of the products 6a and 6b was attributed to the enantiomeric
purity of the starting (R)- and (S)-1,3-dimethylpiperazines, [α]20

D +6.5 (c 1, CHCl3) and −6.0 (c 1, CHCl3),
respectively. To the best of our knowledge, and in particular, under the mild reaction conditions used
for the above nucleophilic substitutions, chiral 1,3-dimethylpiperazines do not epimerize.

3. Materials and Methods

The reaction mixture was monitored by thin layer chromatography (TLC) using commercial
glass-backed TLC plates (Merck Kieselgel 60 F254). The plates were observed under UV light at
254 and 365 nm. Tetrahydrofuran (THF) was distilled over CaH2 before use. The UV-vis spectrum
was obtained using a Perkin-Elmer Lambda-25 UV-vis spectrophotometer (Perkin-Elmer, Waltham,
MA, USA) and inflections are identified by the abbreviation “inf”. Optical rotation was determined
in a JASCO P-2000 polarimeter. The IR spectrum was recorded on a Shimadzu FTIR-NIR Prestige-21
spectrometer (Shimadzu, Kyoto, Japan) with the Pike Miracle Ge ATR accessory (Pike Miracle, Madison,
WI, USA) and strong, medium and weak peaks are represented by s, m and w, respectively. 1H and
13C NMR spectra were recorded on a Bruker Avance 500 machine [at 500 and 125 MHz, respectively,
(Bruker, Billerica, MA, USA)]. Deuterated solvents were used for homonuclear lock and the signals
are referenced to the deuterated solvent peaks. Attached proton test (APT) NMR studies were
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used for the assignment of the 13C peaks as CH3, CH2, CH, and Cq (quaternary). The MALDI-TOF
mass spectrum (+ve mode) was recorded on a Bruker Autoflex III Smartbeam instrument (Bruker).
3,5-Dichloro-4H-1,2,6-thiadiazin-4-one (5) was prepared according to the literature procedure [20,22].

(R)-3-Chloro-5-(2,4-dimethylpiperazin-1-yl)-4H-1,2,6-thiadiazin-4-one (6a)

To a stirred mixture of 3,5-dichloro-4H-1,2,6-thiadiazin-4-one (5) (91.5 mg, 0.500 mmol) in THF
(1 mL) at ca. 20 ◦C, was added in one portion (R)-1,3-dimethylpiperazine (57.0 mg, 0.500 mmol).
The mixture was protected with a CaCl2 drying tube and stirred at this temperature until complete
consumption of the starting material (TLC, 24 h). DCM saturated with NH3 (10 mL) was then added,
the mixture adsorbed onto silica and chromatography (DCM/t-BuOMe 50:50) gave the title compound 6a
(91.7 mg, 70%) as a yellow oil; Rf 0.48 (DCM/t-BuOMe, 50:50); [α]20

D +65 (c 1.0, CHCl3); (found: C,
41.57; H, 4.93; N, 21.46. C9H13ClN4OS requires C, 41.46; H, 5.03; N, 21.49%); λmax(DCM)/nm 269
(log ε 3.13), 313 (3.36), 322 (3.34), 410 (2.96); vmax/cm−1 2970w, 2941w, 2843w and 2793w (C-H), 1630s,
1495s, 1462m, 1433m, 1404w, 1383w, 1339w, 1323w, 1298m, 1281m, 1229m, 1194m, 1169w, 1146m,
1096w, 1076w, 1049m, 997w, 978w, 964w, 939w, 918w, 903m, 891m, 870m, 854m, 845m, 800m, 725m;
δH(500 MHz; CDCl3) 4.98 (1H, br s, CHN), 4.61 (1H, br s, CHN), 3.41 (1H, dd, J 11.1, 11.1, CHN),
2.98 (1H, br s, CHN), 2.82 (1H, d, J 9.2, CHN), 2.37 (4H, br s, CHN & NCH3), 2.25 (1H, br s, CHN),
1.42 (3H, d, J 6.6, CHCH3); δC(125 MHz; CDCl3) 158.7 (Cq), 152.5 (Cq), 145.2 (Cq), 59.2 (CH2N),
54.8 (CH2N), 49.0 (CHN), 45.7 (NCH3), 40.5 (CH2N), 16.1 (CHCH3); m/z (MALDI-TOF) 263 (MH++2,
31%), 261 (MH+, 77), 177 (100), 142 (21), 113 (37).

(S)-3-Chloro-5-(2,4-dimethylpiperazin-1-yl)-4H-1,2,6-thiadiazin-4-one (6b)

To a stirred mixture of 3,5-dichloro-4H-1,2,6-thiadiazin-4-one (5) (91.5 mg, 0.500 mmol) in THF
(1 mL) at ca. 20 ◦C, was added in one portion (S)-1,3-dimethylpiperazine (57.0 mg, 0.500 mmol).
The mixture was protected with a CaCl2 drying tube and stirred at this temperature until complete
consumption of the starting material (TLC, 24 h). DCM saturated with NH3 (10 mL) was then added,
the mixture adsorbed onto silica and chromatography (DCM/t-BuOMe 50:50) gave the title compound 6b
(89.2 mg, 68%) as a yellow oil; Rf 0.48 (DCM/t-BuOMe, 50:50); [α]20

D −64 (c 1.0, CHCl3); (found: C, 41.52;
H, 4.88; N, 21.33. C9H13ClN4OS requires C, 41.46; H, 5.03; N, 21.49%); λmax(DCM)/nm 270 (log ε 3.13),
313 (3.35), 321 (3.33), 410 (2.96); vmax/cm−1 2974w, 2940w, 2845w and 2795w (C-H), 1630s, 1495s, 1462m,
1433m, 1404w, 1383w, 1339w, 1323w, 1298m, 1281m, 1229m, 1194m, 1169w, 1146m, 1096w, 1076w,
1049m, 997w, 978w, 963w, 939w, 918w, 903m, 893m, 870m, 854m, 845m, 802m, 727m; δH(500 MHz;
CDCl3) 4.97 (1H, br s, CHN), 4.60 (1H, br s, CHN), 3.38 (1H, ddd, J 13.0, 13.0, 2.7, CHN), 2.95 (1H,
d, J 11.0, CHN), 2.77 (1H, d, J 11.4, CHN), 2.38 (4H, br s, CHN & NCH3), 2.21 (1H, dd, J 11.2, 11.2,
CHN), 1.40 (3H, d, J 6.8, CHCH3); δC(125 MHz; CDCl3) 158.7 (Cq), 152.5 (Cq), 145.1 (Cq), 59.4 (CH2N),
54.9 (CH2N), 49.1 (CHN), 46.0 (NCH3), 40.6 (CH2N), 16.0 (CHCH3); m/z (MALDI-TOF) 263 (MH++2,
29%), 261 (MH+, 100), 225 (30), 142 (50), 112 (10).

4. Conclusions

(R) and (S)-3-chloro-5-(2,4-dimethylpiperazin-1-yl)-4H-1,2,6-thiadiazin-4-ones were prepared
in good yields from 3,5-dichloro-4H-1,2,6-thiadiazin-4-one. These compounds can be of interest
to the medicinal and materials science sectors, this work provides a valuable route to these
intermediates. The chemistry of these two aminothiadiazines will be further investigated to assess
their potential applications.

Supplementary Materials: The following are available online, mol file, 1H and 13C NMR spectra.
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