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Abstract: In this note we report the synthesis of a doubly acylated cis-THF-diol product synthesised
in three steps by the stereoselective RuO4-catalysed oxidative cyclisation of 1,5-hexadiene, followed
by benzoylation and acetylation. This substance is one of the substrates chosen to probe a new
developed oxidative procedure to transform bis-acylated THF-diols into bis-acylated 1,4-diketones.
This new derivative was fully characterised by spectroscopic methods.
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1. Introduction

Oxidation methods, mediated or catalysed by transition metal oxo-species, are a
class of processes of central importance in organic synthesis [1–4]. Some of them play
an important role in industrial processes [5,6]. As part of our ongoing studies on oxida-
tive processes catalysed by transition metal oxo-species [7–10], we recently developed a
new chlorochromatoperiodate (CCP)-catalysed process that allows the synthesis of bis-α-
acyloxy-1,4- and -1,5-diketones (2, Scheme 1) through the oxidative opening of bis-acylated
2,5-dihydroxyalkyl-substituted tetrahydrofurans and tetrtahydropyrans (acylated THF-
and THP-diols, 1, Scheme 1), respectively [11]. CCP is a powerful reagent, generated by
the condensation of pyridinium chlorochromate (PCC) and periodic acid [12], capable
of oxidising THF-containing compounds of varying structural complexity [8,9]. Consid-
ering that THF- and THP-diols can be synthesised through the ruthenium- [13–17] and
osmium- [18,19] catalysed oxidative cyclization of 1,5- and 1,6-dienes (Scheme 1), respec-
tively, our process allows the regioselective bis-ketoacyloxylation of the starting diene.
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1. Introduction 
Oxidation methods, mediated or catalysed by transition metal oxo-species, are a class 

of processes of central importance in organic synthesis [1–4]. Some of them play an 
important role in industrial processes [5,6]. As part of our ongoing studies on oxidative 
processes catalysed by transition metal oxo-species [7–10], we recently developed a new 
chlorochromatoperiodate (CCP)-catalysed process that allows the synthesis of bis-α-
acyloxy-1,4- and -1,5-diketones (2, Scheme 1) through the oxidative opening of bis-
acylated 2,5-dihydroxyalkyl-substituted tetrahydrofurans and tetrtahydropyrans 
(acylated THF- and THP-diols, 1, Scheme 1), respectively [11]. CCP is a powerful reagent, 
generated by the condensation of pyridinium chlorochromate (PCC) and periodic acid 
[12], capable of oxidising THF-containing compounds of varying structural complexity 
[8,9]. Considering that THF- and THP-diols can be synthesised through the ruthenium- 
[13–17] and osmium- [18,19] catalysed oxidative cyclization of 1,5- and 1,6-dienes (Scheme 
1), respectively, our process allows the regioselective bis-ketoacyloxylation of the starting 
diene. 
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Scheme 1. CCP-catalysed synthesis of bis-α-acyloxy-1,4- and -1,5-diketones. 

The keen interest of synthetic organic chemists towards α-acyloxy ketones is 
demonstrated by the numerous methods developed to obtain these substances (see for 
example Refs. [20–24]). However, the synthesis and the chemistry of bis-α-acyloxy 
diketones such as 2 (Scheme 1) are largely unexplored. The possibility of differentiating 
the chemistry of the two α-acyloxy ketone functionalities, the timing of their synthetic 
exploitation, as well as the transformation of bis-α-acyloxy diketones into five- or six-
membered dihydroxyalkyl-substituted heterocycles, are all appealing synthetic goals. All 
of the above considerations prompted us to further investigate this transformation, with 
the aim of also broadening its scope as well as of extending our synthetic procedure to 
acid or PCC-sensitive substrates. To this end, we planned the synthesis of a set of bis-
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Scheme 1. CCP-catalysed synthesis of bis-α-acyloxy-1,4- and -1,5-diketones.

The keen interest of synthetic organic chemists towards α-acyloxy ketones is demon-
strated by the numerous methods developed to obtain these substances (see for example
Refs. [20–24]). However, the synthesis and the chemistry of bis-α-acyloxy diketones such as
2 (Scheme 1) are largely unexplored. The possibility of differentiating the chemistry of the
two α-acyloxy ketone functionalities, the timing of their synthetic exploitation, as well as
the transformation of bis-α-acyloxy diketones into five- or six-membered dihydroxyalkyl-
substituted heterocycles, are all appealing synthetic goals. All of the above considerations
prompted us to further investigate this transformation, with the aim of also broadening its
scope as well as of extending our synthetic procedure to acid or PCC-sensitive substrates.
To this end, we planned the synthesis of a set of bis-acylated/bis-protected THF-diols
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possessing diverse acyl- or hydroxyl-protecting groups, able to be selectively removed. We
report here the synthesis of one of these substances, namely the title compound, that was
synthesised by the RuO4-catalysed stereoselective oxidative cyclisation of commercially
available 1,5-hexadiene, followed by the transformation of the alcohol functions into acetate
and benzoate groups.

2. Results and Discussion

The oxidative cyclization of 1,5-hexadiene (3, Scheme 2) was performed according to
a highly efficient RuO4-catalysed oxidative cyclisation procedure previously developed
by Stark and co-workers [15]. The obtained THF-diol product 4 was mono-benzoylated
with BzCl in pyridine and then acetylated with Ac2O/pyridine, to give the title compound
5 which was obtained in pure form by preparative TLC (34% for three steps). Spectral
data (1H-and 13C-NMR, FT-IR, HRESIMS) for 5 (see Supplementary Materials) were in full
agreement with the reported structure.
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Scheme 2. Synthesis of (±)-((2S,5R)-5-(acetoxymethyl)tetrahydrofuran-2-yl)methyl benzoate (5).

3. Materials and Methods
3.1. General Information

All reagents were purchased in the highest commercial quality (Aldrich, Milano,
Italy) and used without further purification. Reactions were monitored by thin-layer
chromatography carried out on precoated silica gel plates (Merck 60, F254, 0.25 mm thick).
Na2SO4 was used as a drying agent for aqueous work-up. 1H-NMR experiments were
performed with a Varian Unity Inova spectrometer (Palo Alto, CA, USA) in CDCl3. Proton
chemical shifts were referenced to the residual CHCl3 signal (δ = 7.26 ppm). 13C-NMR
chemical shifts were referenced to the solvent (δ = 77.0 ppm). Abbreviations for signal
coupling are as follows: s = singlet, d = doublet, t = triplet, m = multiplet. Coupling
constants are given in Hertz. IR spectrum of 5 was recorded neat with a FT-IR Nicolet
5700 spectrophotometer and is reported in cm−1. The HRMS spectrum of 5 was recorded
by infusion on Thermo LTQ Orbitrap XL mass spectrometer (Thermo Fisher Scientific,
Waltham, MA, USA) with an electrospray source in the positive mode, using MeOH
as solvent.

3.2. Synthesis of (±)-((2S,5R)-5-(Acetoxymethyl)tetrahydrofuran-2-yl)methyl Benzoate (5)

To a suspension of sodium periodate (2.61 g, 26.8 mmol, 2.2 equiv.) absorbed on wet sil-
ica (0.64 mmol/g) in tetrahydrofuran/CH2Cl2 (9:1, 244 mL), 1,5-hexadiene (1.0 g, 12.2 mmol)
was added. The mixture was cooled to 0 ◦C and ruthenium trichloride (0.2 mol%, 244 µL
from a 0.1 M stock solution in H2O) was added dropwise to the stirred suspension. After
the complete conversion of the starting material (1 h, TLC monitoring), the reaction was
quenched by the addition of 2-propanol (excess) and the mixture was stirred for a further
5 min and then filtered through a sintered glass funnel. The solid was exhaustively washed
with EtOAc and the filtrate taken to dryness to give 1.36 g (85%) of essentially pure 4 (by
1H-NMR) [25], as a clear oil.

Benzoyl chloride (0.5 equiv., 1.64 mmol, 95 µL) was added to crude 4 (217 mg, 1.64 mmol)
dissolved in pyridine (1.5 mL) and the mixture was stirred at room temp. for 16 h. At this
stage, TLC analysis still revealed the presence of unreacted 4. To prevent the formation of
the bis-benzoylated product, the process was quenched by the addition of water (0.5 mL)
and the mixture was stirred for 15 min. and taken to dryness. The product was partitioned
between CH2Cl2 and water and the organic phase was washed with a sat. aqueous
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NaHCO3 solution and then water, dried and then evaporated to give a yellow oil (163.9 mg).
NMR analysis showed that this compound was essentially (>90%) the expected mono-
benzoylated product.

The crude obtained as above was acetylated with Ac2O/pyridine overnight and taken
to dryness to give a yellow oil. Purification by preparative TLC (silica, hexane/EtOAc, 1:1)
afforded the bis-acylated compound 5 (183 mg, 34% for three steps) as a clear oil.

5: IR (neat) vmax 1745 (s), 1720 (s), 1274 (s), 1251 (shoulder), 713 (s) cm–1; 1H-NMR
(400 MHz, CDCl3): δ8.05 (2H, d, J = 8.1), 7.55 (1H, t, J = 7.5), 7.43 (2H, t, J = 7.6), 4.44–4.37
(1H, m), 4.36–4.29 (1H, m), 4.25–4.17 (1H, m), 4.05–3.98 (1H, m), 2.12–1.99 (5H, m including
the acetate methyl singlet), 1.89–1.81 (2H, m), 1.79–1.71 (2H, m); 13C-NMR (100 MHz,
CDCl3): δ 170.9, 166.4, 133.0, 130.0, 129.6, 128.3, 77.5, 77.4, 66.6, 66.5, 27.78, 27.76, 20.8;
HRESIMS m/z: calcd. for C15H18O5Na 301.1052 [M + Na]+, found: 301.1043.

4. Conclusions

In conclusion, a new bis-acylated cis-THF-diol product was synthesised by RuO4-
catalysed oxidative cyclisation of 1,5-hexadiene followed by mono-benzoylation and acety-
lation. Further studies to test its transformation into the corresponding bis-acylated 1,4-
diketone through new oxidative cleavage protocols are in progress in our laboratories.
These results will be reported in due course.

Supplementary Materials: The following are available online, Figure S1: 1H-NMR spectrum of 5,
Figure S2: 13C-NMR spectrum of 5, Figure S3: FTIR spectrum of 5, Figure S4: HRESIMS of 5.
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