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Abstract: Pyrazoles have potential applications in the agrochemical and medicinal chemistry industries
as pesticides, anti-inflammatory medications, and antitumor drugs. Fluorinated fused-ring pyrazoles
may also possess medicinally useful properties. Herein, we report the acid-catalyzed synthesis of a
new tricyclic, trifluoromethylated indenopyrazole, 3-methyl-1-(4-(trifluoromethyl)phenyl)indeno[1,2-
c]pyrazol-4(1H)-one, from 2-acetyl-1,3-indanedione and 4-trifluoromethylphenylhydrazine. This iso-
meric pyrazole was obtained in yields ranging from 4–24%. NMR spectroscopic characterization and
elemental analysis support the structural assignment, identity, and purity of the product.

Keywords: indenopyrazole; 2-acetyl-1,3-indanedione; 4-trifluoromethylphenylhydrazine

1. Introduction

While the preparation of heteroaromatic species such as pyrazoles is well documented,
the synthesis and bioactivity studies of fused-ring pyrazoles remain a vibrant area of
research with many compounds of this type finding use in the treatment of diseases [1–8].
In addition, fluorine substitution has been extensively investigated in drug research for its
ability to enhance biological activity and increase chemical or metabolic stability [9–11].

Triketones also possess useful medicinal properties, such as antibiotic activity [12].
Fused-ring triketones, such as 2-acetyl-1,3-indanedione, serve as a useful scaffold upon
which highly functionalized, tricyclic N-aryl pyrazoles may be built [3,13]. Earlier ef-
forts showed that the acid-catalyzed condensation of 2-trifluoroacetyl-1,3-indanedione (A)
with phenylhydrazine provided the 3-trifluoromethyl fused-ring pyrazole B as the sole
regioisomer in 70% yield. See Figure 1 [3].
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Figure 1. 3-trifluoromethylindenopyrazole synthesis. 

The product regiochemistry of the reaction depicted above is noteworthy, given that 
many investigations of pyrazole product formation have shown that conventional and 
microwave-mediated condensations between 1,3-diketones and hydrazines typically 
yield two regioisomers as shown in Figure 2, often in unequal proportions [13,14]. 
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Figure 1. 3-trifluoromethylindenopyrazole synthesis.

The product regiochemistry of the reaction depicted above is noteworthy, given that
many investigations of pyrazole product formation have shown that conventional and
microwave-mediated condensations between 1,3-diketones and hydrazines typically yield
two regioisomers as shown in Figure 2, often in unequal proportions [13,14].
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It is surmised that a combination of steric and electronic factors conspires to affect 
the pyrazole product distribution [15]. In the case of compound A, the greater electrophilic 
character of the trifluoroacetyl group relative to the topologically constrained indanedi-
one ring system carbonyl likely contributes to the initial nucleophilic attack by the hydra-
zine, which ultimately leads to the observed regiochemistry of compound B. 

Correspondingly, a non-fluorinated analog of compound A, 2-acetyl-1,3-indanedi-
one (compound 1), was selected to examine whether the pyrazole isomeric product selec-
tivity would be similar to that observed in the 3-trifluoromethyl indenopyrazole synthe-
sis. Compound 1 contains the 2-COCH3 group, which is sterically slightly smaller than the 
-COCF3 group, but because the methyl group is an inductive electron donor, the carbonyl 
would have a smaller partial positive charge and perhaps not be as prone to nucleophilic 
attack by the arylhydrazine. It was thus anticipated that the condensation of 2-acetyl-1,3-
indanedione with 4-trifluoromethylphenylhydrazine would yield a mixture of pyrazole 
isomeric products. 

2. Results 
The regioisomeric pyrazoles 3-methyl-1-(4-(trifluoromethyl)phenyl)indeno[1,2-c]py-

razol-4(1H)-one (1a) and 3-methyl-2-(4-(trifluoromethyl)phenyl)indeno[1,2-c]pyrazol-
4(2H)-one (1b) were prepared according to Scheme 1. Three runs were conducted to com-
pare conventional reflux, microwave, and microwave-sonication methods for effective-
ness. 
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and 3-methyl-2-(4-(trifluoromethyl)phenyl)indeno[1,2-c]pyrazol-4(2H)-one (1b). 

Compound 1a was satisfactorily characterized by 1H and 13C nuclear magnetic reso-
nance, mass spectrometry, and elemental analysis. All preparative methods and charac-
terization data are reported in the experimental section. 1H and 13C NMR spectra, as well 
as the EI mass spectrum, are available as supplemental materials. The preparation, isola-
tion, and characterization of 1b were reported previously, but the characterization data 
for 1b are provided in ref 16 and in the experimental section [16]. 

3. Discussion 
3.1. Synthesis and Purification 

As indicated earlier, three runs of the reaction in Scheme 1 were conducted. The de-
tails for each run are provided in the experimental section. Run 1, a conventional reflux 
conducted in ethanol, was analyzed by thin-layer chromatography to assess reaction com-
pletion after 48 h. Table 1 provides Rf values for the crude reaction mixture eluted with 
CH2Cl2 and 30:70 v:v EtOAc:Hexane. 

Figure 2. Pyrazole Regioisomers.

It is surmised that a combination of steric and electronic factors conspires to affect the
pyrazole product distribution [15]. In the case of compound A, the greater electrophilic
character of the trifluoroacetyl group relative to the topologically constrained indanedione
ring system carbonyl likely contributes to the initial nucleophilic attack by the hydrazine,
which ultimately leads to the observed regiochemistry of compound B.

Correspondingly, a non-fluorinated analog of compound A, 2-acetyl-1,3-indanedione
(compound 1), was selected to examine whether the pyrazole isomeric product selectiv-
ity would be similar to that observed in the 3-trifluoromethyl indenopyrazole synthesis.
Compound 1 contains the 2-COCH3 group, which is sterically slightly smaller than the
-COCF3 group, but because the methyl group is an inductive electron donor, the carbonyl
would have a smaller partial positive charge and perhaps not be as prone to nucleophilic
attack by the arylhydrazine. It was thus anticipated that the condensation of 2-acetyl-1,3-
indanedione with 4-trifluoromethylphenylhydrazine would yield a mixture of pyrazole
isomeric products.

2. Results

The regioisomeric pyrazoles 3-methyl-1-(4-(trifluoromethyl)phenyl)indeno[1,2-c]pyrazol-
4(1H)-one (1a) and 3-methyl-2-(4-(trifluoromethyl)phenyl)indeno[1,2-c]pyrazol-4(2H)-one (1b)
were prepared according to Scheme 1. Three runs were conducted to compare conventional
reflux, microwave, and microwave-sonication methods for effectiveness.
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Scheme 1. Synthesis of 3-methyl-1-(4-(trifluoromethyl)phenyl)indeno[1,2-c]pyrazol-4(1H)-one
(1a) and 3-methyl-2-(4-(trifluoromethyl)phenyl)indeno[1,2-c]pyrazol-4(2H)-one (1b).

Compound 1a was satisfactorily characterized by 1H and 13C nuclear magnetic reso-
nance, mass spectrometry, and elemental analysis. All preparative methods and characteri-
zation data are reported in the experimental section. 1H and 13C NMR spectra, as well as
the EI mass spectrum, are available as Supplemental Materials. The preparation, isolation,
and characterization of 1b were reported previously, but the characterization data for 1b
are provided in ref. [16] and in the experimental section [16].

3. Discussion
3.1. Synthesis and Purification

As indicated earlier, three runs of the reaction in Scheme 1 were conducted. The
details for each run are provided in the experimental section. Run 1, a conventional
reflux conducted in ethanol, was analyzed by thin-layer chromatography to assess reaction
completion after 48 h. Table 1 provides Rf values for the crude reaction mixture eluted with
CH2Cl2 and 30:70 v:v EtOAc:Hexane.
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Table 1. Measured TLC Rf values for conventional run 1 crude reaction mixture.

Entry
Possible

Intermediate &
Pyrazole Structures

Rf
(CH2Cl2)

Rf
(EtOAc/Hexane)

Relative Spot Size/
Color

(1 = Largest; 6 = Smallest)

1/2
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As Table 1 shows, the crude reaction mixture contains multiple intermediate and
product species formed during the reaction while the starting materials were fully depleted.
Based on the spot color on the developed TLC plate, the medium-intensity orange and
intense yellow-orange compounds (entries 1/2) were assessed to be regioisomeric arylhy-
drazone intermediates. This color range and intensity are consistent with the arylhydrazone
intermediates reported previously. [15] Entry 3, which we assessed to be the major pyrazole
isomer (1b), was by far the largest diameter spot but more brownish in appearance. Entry 4,
the minor pyrazole (1a) was much less intense but had a similar brown appearance. Entries
5/6, assessed to be the regioisomeric pyrazol-ols, were the smallest spots and the least
intense with a slight brown coloration.

Following the TLC analysis of Run 1, the solvent was removed under reduced pressure.
After workup, the crude product mixture (0.484 g, 71% mass balance) was subjected to the
first chromatographic separation, which provided three major fractions containing mixtures
of compounds 1/2, 3/4, and 5/6, respectively. Each major fraction was then combined,
concentrated to dryness, and weighed: compounds 1/2 (0.122g, 18% yield), the pyrazole
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isomers (compounds 3/4) (0.320 g, 47% yield), and compounds 5/6 (0.020 g, 3% yield).
No further attempts were made to isolate the intermediates 1, 2, 5, and 6. The fraction
containing the pyrazole isomers was then analyzed by gas chromatography (Figure 3).
Based on the areas of the two eluent peaks, 1b constituted 85.4% of the pyrazole isomeric
mixture (0.273 g), while 1a comprised 14.6% of the pyrazole mixture (0.047 g). From these
data, a 1b:1a ratio of 5.9:1 was determined.
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To isolate the individual pyrazoles, a second column chromatographic separation was
undertaken using a 10–30% gradient elution of EtOAc/hexane. The second column afforded
the pyrazole isomers in two separate fractions: 1b—0.270 g; 1a—0.046 g. Each pyrazole
isomer was then recrystallized twice from hot ethanol to give pyrazole 1b (0.236 g, 36%) and
pyrazole 1a (0.026 g, 4%) for an overall moderate yield of 40% with a final 1b:1a ratio of 9:1.
The unsatisfactory yield of 1a was thus attributed, in part, to the necessity of performing two
chromatographic separations and mechanical loss from two recrystallizations to achieve
isomeric purity.

To examine whether a microwave-mediated process would change the product dis-
tribution, run 2 was conducted in ethanol at 80 ◦C for a period of 1 h on the variable
power mode. The overall yield was only 30%, possibly a result of the lowered reactant
concentration compared to run 1 and the brief reaction time (1 h). However, the 1b:1a ratio
was determined to be 4:1, a slight decrease from the initial 5.9:1 ratio found for run 1. At
present, it is unclear whether the microwave-mediated process contributed to the change
in product distribution. The use of tandem radial chromatography afforded satisfactory
separation of the hydrazone intermediates (compounds 1 and 2) as the major fractions
(0.205 g combined mass), pyrazole isomers 1a (0.020 g), and 1b (0.078 g) as well as the
pyrazol-ol intermediates (0.033 g). The pyrazole isomers did not require further purification
by recrystallization, thus minimizing mechanical product loss.

For run 3, the microwave reaction time was extended to 2 h on the variable power
mode and the volume of ethanol lowered to one-third of that used in run 2. Following
µ-wave irradiation at 80 ◦C, the sample was sonicated at 60 ◦C for an additional hour.
Tandem radial chromatography was employed to isolate the isomeric pyrazole products in
a pure form (74% yield). Additional fractions collected were the hydrazone intermediates
(compounds 1 and 2 (0.032 g combined mass)) and the pyrazol-ol intermediates 5 and 6
(0.015 g combined mass). It is clear from the small quantities of the intermediates remaining
that the microwave-sonication method was more effective than either the conventional
reflux or the 1 h microwave-only method in the formation of these fused-ring pyrazoles.
These modifications led to a 2.47-fold increase in the product yield over that obtained in
run 2. Additionally notable was the reduction in the 1b:1a ratio to 2.1:1.

Improvements observed in the overall yield of compound 1a appear to be due in part
to modifications in the µ-wave reaction conditions, the continuation of the reaction under
sonication conditions, and the radial chromatographic method used to isolate the pyrazole
products. These improvements point to the value of combining µ-wave irradiative and
sonication methods to mediate the preparation of pyrazoles. Future studies are warranted
to expand the scope of arylhydrazine and other bifunctional nucleophile condensations
with 2-acetyl-1,3-indanedione.
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3.2. Spectral Characterization

With the target compound 1a isolated, key resonances in the 1H, 13C, and 19F NMR
spectra were used to establish product identity. Figure 4 shows the chemical shift assign-
ments for 1a and 1b that support the product structures. See Supplementary Materials.
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The 19F nuclear magnetic resonances observed for 1a and 1b at −60.06 and −61.00 ppm,
respectively, are consistent with a -CF3 group attached to an aromatic ring, which generally
varies from −60–−64 ppm [17]. That there is only a modest 19F chemical shift variation
between the pyrazole isomers is also consistent with the fact that the electronic environ-
ments the CF3 groups encounter are very similar. Evidence in the 13C NMR of aromatic
trifluoromethyl group presence for 1a was confirmed by CF3 (C1) resonance centered at
122.8 ppm, which appeared as a quartet with a 1JC-F = 285 Hz, as well as a C-CF3 (C2)
resonance centered at 128.8 ppm, which appeared as a quartet with a 2JC-F = 32 Hz. For 1b,
the CF3 (C1) resonance centered at 124.2 ppm appeared as a quartet with a 1JC-F = 272 Hz,
as well as a C-CF3 (C2) resonance centered at 129.2 ppm, which appeared as a quartet with
a 2JC-F = 32 Hz. The carbonyl carbon (C3) chemical shifts at 183.0 ppm (1a) and 183.5 ppm
(1b) are consistent with a ketone conjugated with an aromatic ring. The pyrazolic CH3
(H4) singlet at 2.29 ppm for 1a is slightly upfield relative to the CH3 (H4) singlet for 1b at
2.48 ppm. The downfield shift of 1b’s H4 proton signal may be due in part to the extended
conjugation and, therefore, deshielding imparted by the α,β unsaturated ketone structural
feature circled in green in Figure 4. This extended conjugation may also influence the C4
carbon resonance of 1b (12.7 ppm), which is downfield relative to 1a’s C4 carbon resonance
at 12.2 ppm. These chemical shift differences, while small, provide a rationale for the
regioisomeric pyrazole assignments.

4. Materials and Methods
4.1. Instrumentation

IR spectra were collected on a Thermo Scientific Nicolet iS5 FT-IR spectrometer (iD5
ATR) with a resolution of 2 cm−1. NMR spectra were collected on a Bruker Avance 300 NMR
spectrometer operating at 300.13 MHz for 1H, 282.40 MHz for 19F, and 75.47 MHz for 13C
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with d6-DMSO as solvent. Hexafluorobenzene served as an internal standard for 19F NMR
chemical shifts. Mass spectral data were collected on a Shimadzu QP 2010S GC-MS in-
strument. Melting points were obtained on an SRS Digimelt MPA160 apparatus and are
uncorrected. Reaction temperatures were maintained using a J-Kem® 410 temperature
controller. Microwave reactions were carried out in a CEM Discover® microwave reactor
using the variable power mode. Sonications were performed using a Branson 1800 soni-
cator operating at 40 Hz. Combustion analysis was conducted by Atlantic Microlab, Inc.,
Norcross, GA, USA.

4.2. Chemicals

All chemicals were obtained from Sigma-Aldrich and used as purchased unless other-
wise indicated. Thin layer chromatography was accomplished on precut SiO2 plates, using
both CH2Cl2 and a 30:70 mixture of EtOAc/Hexane (v:v) as the eluting solvent or solvent
mixture. Column chromatography was accomplished using a 130–270 mesh silica gel (Sigma-
Aldrich, St. Louis, MO, USA) in a 2” diameter Kontes glass column. Radial chromatography
was accomplished on a ChromatotronTM (Harrison Research, Palo Alto, CA, USA) using
4 mm silica gel/gypsum plates (Analtech, Newark, DE, USA). A gradient elution (20–60%
EtOAc/Hexane (v:v)) was employed for radial chromatographic separations.

4.3. Methods for the Preparation and Isolation of
3-Methyl-1-(4-(trifluoromethyl)phenyl)indeno[1,2-c]pyrazol-4(1H)-one (1a)
4.3.1. Run 1

A 50 mL round-bottom flask equipped with a magnetic stirrer was charged with
25 mL ethanol, 2-acetyl-1,3-indanedione (2 mmol), and 4-trifluoromethylphenylhydrazine
(2 mmol). Then, 1 drop of concentrated sulfuric acid was added while stirring. A reflux
condenser was affixed, and the reaction mixture was refluxed at 78 ◦C for 48 h. The resulting
solution was analyzed by TLC, evaporated to dryness under reduced pressure and the
solid residue was neutralized with 15 mL of saturated Na2CO3. This solution was extracted
with 3 × 5 mL of CH2Cl2, and the organic layer was dried over Na2SO4. The solvent
was evaporated under reduced pressure to obtain 0.484 g (71% mass balance) of solid
products and intermediates. The pyrazole mixture was purified by column chromatography
(2× columns): 1st column using CH2Cl2 as the mobile phase, followed by a 2nd column
using a gradient elution of 10–30% ethyl acetate/hexane.

3-methyl-1-(4-(trifluoromethyl)phenyl)indeno[1,2-c]pyrazol-4(1H)-one (1a) This com-
pound was obtained as golden-brown crystals (ethanol), 0.026 g (4% yield), m.p. 154–156 ◦C.
FT-IR (ATR): 1708 cm−1 (C=O), 1321 cm−1 (Ar-CF3). NMR: 1H δ 2.29 (3H, s), 7.26 (1H, d,
3JH-H =7.50 Hz), 7.35–7.59 (3H, m), 7.91–7.98 (4H, m). 13C δ 12.2, 120.6, 122.6, 122.8 (CF3, q,
1JC-F = 285 Hz), 124.1, 124.6, 125.1, 128.8 (C-CF3, q, 2JC-F = 32 Hz), 130.5, 131.8, 133.7, 134.4,
135.5, 139.9, 141.3, 146.7, 157.1, 183.0. 19F δ −60.06 (s, 3F). MS: m/z 328 (100%, M+), 327
(40%, M − H+), 259 (5%, M − CF3

+). Analysis calculated for C18H11F3N2O: C, 65.85, H,
3.38, N, 8.53. Found: C, 65.96, H, 3.43, N, 8.46 (See Supplementary Materials).

3-methyl-2-(4-(trifluoromethyl)phenyl)indeno[1,2-c]pyrazol-4(2H)-one (1b) This com-
pound was obtained as brown crystals (ethanol), 0.236 g (36% yield), m.p. 149–152 ◦C.
Physical and spectroscopic data for this compound were previously reported in the lit-
erature. [16] FT-IR (ATR): 1705 cm−1 (C=O), 1318 cm−1 (Ar-CF3). NMR: 1H δ 2.48 (3H,
s), 7.20–7.59 (4H, m), 7.69–7.98 (4H, m). 13C δ 12.7, 121.1, 123.1, 124.1, 124.2 (CF3, q,
1JC-F = 272 Hz), 124.6, 125.5, 127.0, 127.5, 127.6, 129.2 (C-CF3, q, 2JC-F = 32 Hz), 130.9, 132.3,
134.2, 140.3, 147.2, 157.6, 183.5. 19F δ −61.00 (s, 3F). MS: m/z 328 (50%, M+), 327 (100%, M
− H+), 259 (15%, M − CF3

+). Analysis calculated for C18H11F3N2O: C, 65.85, H, 3.38, N,
8.53. Found: C, 66.08, H, 3.42, N, 8.33 (See Supplementary Materials).

4.3.2. Run 2

A 30 mL microwave vial equipped with a magnetic stirrer was charged with 12 mL
ethanol, 2-acetyl-1,3-indanedione (1 mmol), and 4-trifluoromethylphenylhydrazine (1 mmol).
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Then, 1 drop of concentrated sulfuric acid was added while stirring. The vial was capped,
placed in the microwave reactor, and irradiated for 1 h at 80 ◦C using the variable power
setting. The resulting solution was evaporated to dryness under reduced pressure and the solid
residue (mass 0.340 g, 92% mass balance) was neutralized with 15 mL of saturated Na2CO3.
This solution was extracted with 3 × 5 mL of CH2Cl2, and the organic layer was dried over
Na2SO4. The solvent was evaporated under reduced pressure, and the pyrazole mixture was
purified by tandem radial chromatography (10–30% ethyl acetate/hexane). Fractions collected,
in order of elution, were compounds 1/2 (0.205 g), 1b (0.078 g), 1a (0.020 g), and compounds
5/6 (0.033 g).

3-methyl-1-(4-(trifluoromethyl)phenyl)indeno[1,2-c]pyrazol-4(1H)-one (1a) This com-
pound was obtained as golden-brown crystals, 0.020 g (6% yield). Physical and spectro-
scopic data for this compound are consistent with that reported in run 1.

3-methyl-2-(4-(trifluoromethyl)phenyl)indeno[1,2-c]pyrazol-4(2H)-one (1b) This com-
pound was obtained as brown crystals, 0.078 g (24% yield). Physical and spectroscopic data
for this compound are consistent with that reported in the literature [16].

4.3.3. Run 3

A 10 mL microwave vial equipped with a magnetic stirrer was charged with 4 mL
of ethanol, 2-acetyl-1,3-indanedione (0.5 mmol), and 4-trifluoromethylphenylhydrazine
(0.5 mmol). Then, 1 drop of concentrated sulfuric acid was added while stirring. The
vial was capped, placed in the microwave reactor, and irradiated for 2 h at 80 ◦C using
the variable power setting. Following irradiation, the sample was sonicated at 60 ◦C for
an additional hour. The resulting solution was evaporated to dryness under reduced
pressure, and the solid residue (mass 0.178 g, 96% mass balance) was neutralized with
15 mL of saturated Na2CO3. This solution was extracted with 3 × 5 mL of CH2Cl2, and the
organic layer was dried over Na2SO4. The solvent was evaporated under reduced pressure,
and the pyrazole mixture was purified by tandem radial chromatography (10–30% ethyl
acetate/hexane). Fractions collected, in order of elution, were compounds 1/2 (0.032 g), 1b
(0.087 g), 1a (0.042 g), and compounds 5/6 (0.015 g).

3-methyl-1-(4-(trifluoromethyl)phenyl)indeno[1,2-c]pyrazol-4(1H)-one (1a) This com-
pound was obtained as golden-brown crystals, 0.042 g (24% yield). Physical and spectro-
scopic data for this compound are consistent with that reported in run 1.

3-methyl-2-(4-(trifluoromethyl)phenyl)indeno[1,2-c]pyrazol-4(2H)-one (1b) This com-
pound was obtained as brown crystals, 0.087 g (50% yield). Physical and spectroscopic data
for this compound are consistent with that reported in the literature [16].

Supplementary Materials: Figure S1: 1H NMR of 3-methyl-1-(4-(trifluoromethyl)phenyl)indeno[1,2-
c]pyrazol-4(1H)-one; Figure S2: 13C NMR of 3-methyl-1-(4-(trifluoromethyl)phenyl)indeno[1,2-c]pyrazol-
4(1H)-one; Figure S3: Mass spectrum (EI) for 3-methyl-1-(4-(trifluoromethyl)phenyl)indeno[1,2-c]pyrazol-
4(1H)-one. Figure S4: Mass spectrum (EI) for 3-methyl-2-(4-(trifluoromethyl)phenyl)indeno[1,2-c]pyrazol-
4(2H)-one.
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