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Abstract: Xanthones and benzothiazoles are important classes of heterocyclic compounds with
versatile biological activities. Herein, we describe a straightforward and scalable synthesis of
5-chloro-6-oxo-6H-xantheno[4,3-d]thiazole-2-carbonitrile, a thiazole-fused xanthone, via a six-step
approach, using Appel’s salt for the synthesis of the thiazole ring. The thiazole-fused xanthone was
fully characterized employing 1H and 13C NMR spectra, using direct and long-range heteronuclear
correlation experiments (HMBC and HMQC).
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1. Introduction

Many compounds based on the tricyclic planar chromophore framework, fully or
partially consisting of anthraquinone [1], xanthone [2], or acridine [3,4], show interesting
cytostatic and antitumor properties. In addition, benzothiazole moiety is present in various
natural or synthetic compounds possessing beneficial biological activities [5–7] such as
anticancer [8], anti-viral [9], etc. (Figure 1).
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Figure 1. Benzothiazole- and imidazole-fused xanthones of interest. Tautomerism of xantheno[3,4-
d]imidazol-6(1(3)H)-one.

We have been involved in the design, synthesis, and cytotoxic activity evaluation
of a series of amino-substituted xanthones with a fused imidazole moiety [10]. These
compounds have shown promising antiproliferative activity against human breast cancer
cells. While exploring the structure–activity relationships of this class of compounds, we
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have found that imidazole tautomerism is crucial for improving antiproliferative activity.
Prompted by the considerations mentioned above, we decided to examine these two
scaffolds further, and we herein describe the design of 5-chloro-6-oxo-6H-xantheno[4,3-
d]thiazole-2-carbonitrile. In this compound, the imidazole ring of xantheno[3,4-d]imidazol-
6(1(3)H)-one derivative has been replaced by the thiazole ring in order to have a better
insight into the structure–activity relationships.

2. Results and Discussion

The synthetic procedure is depicted in Scheme 1. Our efforts focused on the devel-
opment of a reliable and scalable procedure for the synthesis of xantheno[3,4-d]imidazol-
6(1(3)H)-one, using simple starting materials and classic chemistry reactions; thus, several
analogs could be obtained.
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110 ◦C; (d) SnCl2.2H2O; (e) Br2, CH3COOH, 80 ◦C; (f) Appel’s salt, pyridine, RT; (g) CuI, pyridine, 160 ◦C.

Commercially available ethyl salicylate (1) was used as a starting material which, upon
treatment with 2,4-dichloronitrobenzene (2), resulted in a mixture of isomeric esters 3 and 4
(23% and 64%, respectively), which were separated by column chromatography [11]. Each
ester was identified by 1H NMR and 13C NMR spectra, using both direct and long-range
heteronuclear correlation experiments (HMQC and HMBC). The structural identification
was based on the observation that C-1′ of compound 3 exhibits a 2J coupling with two
aromatic protons (i.e., H-2′ and H-6′) whilst C-1′ of compound 4 exhibits a 2J coupling only
with H-6′ (Scheme S1, Supplementary Material). Ester 4 was then saponified under mild
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conditions, and the resulting carboxylic acid was cyclized to the corresponding xanthone
6 upon treatment with PPA. Reduction of the nitro derivative 6 to the aniline 7, followed
by bromination upon treatment with Br2 in acetic acid, resulted in the bromoxanthone
8. The next step concerns the preparation of 5-chloro-6-oxo-6H-xantheno[4,3-d]thiazole-2-
carbonitrile (10). For this purpose, 8 was reacted with Appel’s salt [12–14] to provide the
N-arylimino-1,2,3-dithiazole 9, which was heated at 160 ◦C, using CuI as a catalyst, with
Start E Milestone MW apparatus.

Imino compound 9 and thiazole compound 10 were isolated in pure forms by column
chromatography. Their structure was unambiguously established by 1H and 13C NMR spec-
tra, using both direct and long-range heteronuclear correlation experiments (HMBC and
HMQC). Structural discrimination of the two compounds resulted from the characteristic
chemical shifts of H-2 and H-4, respectively, in the 1H NMR spectra. More specifically, 1H
NMR spectra of compound 10 showed a typical singlet at 8.40 ppm assigned to H-4, while
in the case of compound 9, H-2 is shifted upfield by 0.48 ppm to 7.92 ppm. This may be
attributed to the dithiazole group attached to the xanthone moiety. The characteristic signal
of nitrile group at 112.89 ppm is also observed in the 13C NMR spectrum of compound 10,
whilst, in the case of compound 9, we observe two peaks at 147.05 ppm and 165.65 ppm
for C-5′ and C-4′, respectively. The HRMS of 10 was also obtained to further confirm the
proposed structure determined by NMR spectra.

2.1. General

All commercially available reagents and solvents were purchased from Alfa Aesar
(Ward Hill, Massachusetts, MA, USA) and used without any further purification. Melting
points were determined on Büchi apparatus and were uncorrected. 1H NMR spectra and
2-D spectra were recorded on a Bruker Avance 400 instrument, whereas 13C NMR spectra
were recorded on a Bruker AC 200 spectrometer (Bruker BioSpin GmbH—Rheinstetten,
Germany). Spectra were obtained with samples dissolved in CDCl3 or DMSO-d6 and were
referenced to TMS (d scale). Assignments of 1H and 13C NMR signals were unambiguously
achieved with the help of D/H exchange and 2D techniques: COSY, NOESY, HMQC, and
HMBC experiments. Flash chromatography was performed on Merck silica gel (40–63 µm)
with the indicated solvent system using gradients of increasing polarity in most cases
(Merck KGaA—Darmstadt, Germany). The reactions were monitored by analytical thin-
layer chromatography (Merck pre-coated silica gel 60 F254 TLC plates, 0.25-mm layer
thickness). Mass spectra were recorded on a UPLC Triple TOF-MS ((UPLC: Acquity
of Waters (Milford, MA 01757, USA), SCIEX Triple TOF-MS 5600+ (Framingham, MA
01701, USA)).

2.1.1. Synthesis of Ethyl 2-(5-Chloro-2-nitrophenoxy)benzoate (4)

A suspension of ethyl salicylate (33.37 g, 201 mmol, 1), 2,4-dichloronitrobenzene
(38.4 g, 200 mmol, 2), K2CO3 (27.74 g, 201 mmol), and Cu2O (2.85 g, 20.1 mmol) in dry
DMF (50 mL) was heated at 110 ◦C for 8 h, under an argon atmosphere. After completion
of the reaction, the mixture was vacuum evaporated, the residue was dissolved in CH2Cl2,
and the filtrate was concentrated in vacuo. The residue was dissolved in CH2Cl2, washed
with water, dried (Na2SO4), and evaporated to dryness. Flash chromatography on silica gel
using a mixture of cyclohexane/EtOAc 100:5 as the eluent provided the title compounds 3
and 4 (23% and 64%, respectively).

Data of ethyl 2-(3-chloro-4-nitrophenoxy)benzoate (3): Mp 76–78 ◦C (Et2O-n-hexane);
1H NMR (CDCl3, 400 MHz) δ (ppm) 1.17 (t, J = 7.1 Hz, 3H, CH2CH3), 4.25 (q, J = 7.1 Hz,
2H, CH2CH3), 6.96 (d, J = 2.0 Hz, 1H, H-2’), 6.84 (dd, J = 9.1 Hz, 2.0 Hz, 1H, H-6’), 7.16
(d, J = 8.0 Hz, 1H, H-3), 7.41 (dt, J = 8.0 Hz, 1.1Hz, 1H, H-4), 7.63 (dt, J = 8.0 Hz, 1.1 Hz,
1H, H-5), 7.98 (d, J = 9.1 Hz, 1H, H-5’), 8.06 (dd, J = 8.0 Hz, 1H, H-6); 13C NMR (CDCl3,
50 MHz) δ (ppm) 14.15 (CH2CH3), 61.45 (CH2CH3), 114.85 (C-6’), 118.85 (C-2′), 123.32 (C-3),
124.46 (C-1), 126.45 (C-4), 128.01 (C-5’), 129.74 (C-4’), 132.62 (C-6), 134.43 (C-5), 141.63 (C-3’),
152.86 (C-2), 162.16 (C-1’), 164.54 (CO).
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Data of ethyl 2-(5-chloro-2-nitrophenoxy)benzoate (4): Mp. 87–89 ◦C (Et2O-n-hexane);
1H NMR (CDCl3, 400 MHz) δ (ppm) 1.16 (t, J = 7.2 Hz, 3H, CH2CH3), 4.23 (q, J = 7.2 Hz,
2H, CH2CH3), 6.71 (d, J = 2.0 Hz, 1H, H-6’), 7.11 (dd, J = 8.9 Hz, 2.0 Hz, 1H, H-4’), 7.18
(d, J = 8.1 Hz, 1H, H-3), 7.41 (dt, J = 8.1 Hz, 1.0 Hz, 1H, H-4), 7.63 (dt, J = 8.1 Hz, 1.0 Hz, 1H,
H-5), 7.96 (d, J = 8.9 Hz, 1H, H-3’), 8.03 (dd, J = 8.1 Hz, 1H, H-6); 13C NMR (CDCl3, 50 MHz)
δ (ppm) 13.81 (CH2CH3), 61.42 (CH2CH3), 117.65 (C-6’), 122.21 (C-4′), 122.95 (C-3), 124.16
(C-1), 126.25 (C-5), 126.92 (C-2), 132.72 (C-6), 134.34 (C-4), 138.13 (C-2’), 140.20 (C-5’), 152.76
(C-1’, C-2), 164.45 (CO).

2.1.2. Synthesis of 1-Chloro-4-nitro-9H-xanthen-9-one (6)

A cold 40% NaOH solution (2 mL) was added dropwise to a suspension of 4 (1.29 g,
4 mmol) in ethanol (10 mL), and the resulting mixture was stirred at room temperature. for
30 min. After completion of the reaction, the solution was poured into ice water and acidi-
fied with 18% HCl solution (pH~2). The resulting 2-(5-chloro-2-nitrophenyloxy)benzoic
acid (5) was filtered, air-dried, and dissolved in hot polyphosphoric acid. The mixture was
heated at 110 ◦C for 1h, and upon cooling, it was poured into ice water. The precipitate
formed was filtered, air-dried, and purified by column chromatography (silica gel) using
a mixture of CH2Cl2/cyclohexane 1:4–3:1 as the eluent, to afford 0.89 g (81%) of the title
compound 6 [10]. Mp. 270 ◦C (EtOH). 1H NMR (DMSO-d6, 400 MHz) δ (ppm) 7.53 (td,
J = 8.1 Hz, 1.0 Hz, 1H, H-7), 7.62 (d, J = 8.1 Hz, 1H, H-5), 7.66 (d, J = 8.1Hz, 1H, H-2), 7.90 (dt,
J = 8.1 Hz, 1.0 Hz, 1H, H-6), 8.14 (d, J = 8.1 Hz, 1 Hz, 1H, H-8), 8.43 (d, J = 8.1 Hz, 1H, H-3);
13C NMR (DMSO-d6, 50 MHz) δ (ppm) 118.35 (C-5), 120.44 (C-9a), 122.14 (C-8a), 125.76
(C-7), 126.67 (C-8), 126.74 (C-2), 130.42 (C-3), 136.51 (C-4), 136.61 (C-6), 138.87 (C-1), 150.07
(C-4a), 154.27 (C-10a), 174.29 (C-9).

2.1.3. Synthesis of 4-Amino-1-chloro-9H-xanthen-9-one (7)

SnCl2.2H2O (1.23 g, 5.46 mmol) was added to a suspension of 1-chloro-4-nitro-9H-
xanthen-9-one (1 g, 3.64 mmol, 6) in HCl 36% (30 mL) at 0 ◦C, and the resulting mixture
was stirred at 60 ◦C for 1 hr. After completion of the reaction, the mixture was allowed
to cool down and poured into water. After basification (pH = 8–9) by the addition of
5% aqueous Na2CO3, the mixture was extracted with CH2Cl2 (3 × 30 mL), the combined
organic solvents washed successively with water, dried (Na2SO4), and evaporated to
dryness. Flash chromatography on silica gel using a mixture of CH2Cl2 /EtOAc 6:1-4:1 as
the eluent provided 0.68 g (76%) of the title compound 18. Mp. 219–221 ◦C (EtOAc); 1H
NMR (400 MHz, CDCl3) δ (ppm) 8.34 (dd, J = 8.0, 1.5 Hz, 1H), 7.73 (td, J = 8.0, 1.5 Hz, 1H),
7.48 (d, J = 8.0 Hz, 1H), 7.42 (t, J = 8.0, 1H), 7.19 (d, J = 8.0 Hz, 1H, H-2), 6.98 (d, J = 8.0 Hz,
1H, H-3), 4.28 (s, D2O exch., 2H, NH2); 13C NMR (151 MHz, CDCl3) δ (ppm) 176.17 (C-9),
154.68 (C-10a), 145.71 (C-4a), 135.05 (C-4), 134.58 (C-6), 127.21 (C-8), 126.61 (C-2), 124.31
(C-7), 122.54 (C-8a), 121.82 (C-1), 118.90 (C-9a), 118.16 (C-3), 117.25 (C-5).

2.1.4. Synthesis of 4-Amino-3-bromo-1-chloro-9H-xanthen-9-one (8)

A suspension of 4-amino-1-chloro-9H-xanthen-9-one (1.5 g, 6.11 mmol, 7) and bromine
(0.6 mL, 6.3 mmol) in glacial acetic acid (10 mL) was irradiated for 8 min with Start E Milestone
apparatus. The irradiation was programmed to obtain 80 ◦C. After completion of the reaction,
the mixture was poured into ice water and washed with CH2Cl2 (3 × 40 mL). The combined
organic phase was washed successively with 5% Na2CO3 solution, 5% Na2S2O3 solution,
and water, dried (Na2SO4), and evaporated to dryness. Flash chromatography on silica gel
using a mixture of cyclohexane/EtOAc 6:1-2:1 as the eluent provided 1.85 g (93%) of the
title compound 8. Mp 204–207 ◦C (EtOAc); 1H NMR (400 MHz, DMSO-d6) δ (ppm) 8.12 (d,
J = 7.9 Hz, 1H, H-8), 7.88 (t, J = 7.9Hz, 1H, H-6), 7.76 (d, J = 7.9 Hz, 1H, H-5), 7.51 (s, 1H, H-2),
7.47 (t, J = 7.9 Hz, 1H, H-7), 6.07 (s, D2O exch., 2H, NH2); 13C NMR (151 MHz, DMSO-d6) δ
(ppm) 174.96 (C-9), 154.34 (C-10a), 144.43 (C-4a), 135.95 (C-4), 135.23 (C-6), 128.76 (C-2), 125.92
(C-8), 124.64 (C-7), 121.44 (C-1, C-8a), 118.05 (C-5), 116.88 (C-9a), 109.09 (C-3).
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2.1.5. Synthesis of 3-Bromo-1-chloro-4-((4-chloro-5H-1,2,3-dithiazol-5-ylidene)amino)-9H-
xanthen-9-one (9)

4,5-dichloro-1,2,3-dithiazolium chloride (3.8 g, 18 a mmol, Appel’s salt) and pyridine
(7.4 mL, 35 mmol) were added to a solution of 4-amino-3-bromo-1-chloro-9H-xanthen-9-
one (5.55 g, 17 mmol, 8) in anh. CH2Cl2 at room temperature. The resulting solution was
stirred at room temperature for 2 days. After completion of the reaction, the solution was
successively washed with water, dried (Na2SO4), and evaporated to dryness. The residue
was purified by column chromatography (silica gel) using a mixture of cyclohexane/EtOAc
4:1–2:1 as the eluent to provide 8.5 g (93%) of the title compound 9. Mp. 241.7–243 ◦C
(EtOAc); 1H NMR (400 MHz, DMSO-d6) δ (ppm) 8.13 (dd, J = 7.9, 1.5 Hz, 1H, H-8), 7.92 (s,
1H, H-2), 7.86 (td, J = 7.9, 1.5 Hz, 1H, H-6), 7.59 (d, J = 7.9 Hz, 1H, H-5), 7.48 (t, J = 7.9 Hz,
1H, H-7). 13C NMR (151 MHz, DMSO-d6) δ (ppm) 174.93 (C-9), 165.65 (C-5′), 154.46 (C-10a),
147.05 (C-4′), 145.94 (C-4a), 138.97 (C-4), 136.09 (C-6), 130.16 (C-2), 129.22 (C-3), 126.49 (C-8),
125.57 (C-7), 122.14 (C-8a), 119.29 (C-1), 118.86 (C-9a), 118.54 (C-5).

2.1.6. Synthesis of 5-Chloro-6-oxo-6H-xantheno[4,3-d]thiazole-2-carbonitrile (10)

A suspension of compound 9 (1.5 g, 3.26 mmol) and CuI (1.26 g, 6.6 mmol) in dry
pyridine (10 mL) was irradiated for 2 min with Start E Milestone apparatus. The irradiation
was programmed to obtain 160 ◦C. After completion of the reaction, the mixture was
vacuum evaporated, the residue was dissolved in CH2Cl2, filtered through a Celite pad,
and the filtrate was evaporated to dryness. Flash chromatography on silica gel using a
mixture of cyclohexane/EtOAc 8:1 as the eluent provided 0.78 g (77%) of the title compound
10. Mp. 275 ◦C (EtOAc); 1H NMR (400 MHz, DMSO-d6) δ (ppm) 8.40 (s, 1H, H-4), 8.18
(d, J = 7.9 Hz, 1H, H-7), 7.92 (t, J = 7.9 Hz, 1H, H-9), 7.80 (d, J = 7.9 Hz, 1H, H-10), 7.56 (t,
J = 7.9 Hz, 1H, H-8). 13C NMR (151 MHz, DMSO-d6) δ (ppm) 174.04 (C-6), 153.93 (C-10a),
151.33 (C-11a), 141.32 (C-2), 140.70 (C-4a), 138.79 (C-5), 135.67 (C-9), 132.06 (C-11b), 126.10
(C-7), 125.46 (C-8), 122.26 (C-6a), 120.23 (C-4), 118.00 (C-10), 116.10 (C-5a), 112.89 (CN).
HRMS (ESI) calculated for C15H5ClN2O2S + H+ [M + H+]: 312.9833. Found: 312.9822.

3. Conclusions

5-chloro-6-oxo-6H-xantheno[4,3-d]thiazole-2-carbonitrile, a thiazole-fused xanthone,
was synthesized. The methodology described herein comprises six steps, with a 26% overall
yield. The methodology described herein is straightforward and scalable; thus, it could be
used to synthesize several analogs of this scaffold.

Supplementary Materials: The following material is available online. Scheme S1: Structural Dis-
crimination of compounds 3 and 4; Figure S1: 1H NMR spectrum of compound 4; Figure S2: HMBC
spectrum of compound 4; Figure S3: HMQC spectrum of compound 4; Figure S4: 1H NMR spectrum
of compound 8; Figure S5: 1H NMR spectrum of compound 9; Figure S6: 1H NMR spectrum of
compound 10; Figure S7: 13C NMR spectrum of compound 8; Figure S8: 13C NMR spectrum of com-
pound 9; Figure S9: 13C NMR spectrum of compound 10; Figure S10: HMBC spectrum of compound
10; Figure S11: HMQC spectrum of compound 10; Figure S12: COSY spectrum of compound 10.
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