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Abstract: Among the methods used for the synthesis of functionalized heterocyclic compounds,
photochemistry has gained immense popularity due to the reactivity of intermediates in photoinduced
reactions. In this study, we report on the effect of diaryl disulfides as hydrogen atom transfer catalysts
on the photoinduced transformations of pyrazolo[1,2-a]pyrazolones. After excitation with visible
light, these compounds are susceptible to C–N bond cleavage, followed by intermolecular hydrogen
atom abstraction. By modifying the reaction conditions, we have developed two novel methods for
the synthesis of highly substituted pyrazoles.
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1. Introduction

Pyrazoles belong to a group of five-membered heterocyclic organic compounds. They
serve as important building blocks in medicinal substances and pesticides [1,2]. Many
pharmacologically active compounds, exhibiting antitumor or anti-inflammatory effects,
contain a pyrazole scaffold [3–5]. Among them, Crizotinib is already available on the
market [6]. Numerous methodologies for the synthesis and derivatization of pyrazoles have
been reported and they continue to be developed [7]. For instance, we recently disclosed
a photoredox-catalyzed oxidation of N1-substituted pyrazolidin-3-ones to azomethine
imines [8], as well as the photoinduced selective preparation of highly functionalized
pyrazoles from pyrazolo[1,2-a]pyrazolones (Scheme 1) [9]. In this study, we focused on
the C7–N8 homolytic bond cleavage of pyrazolo[1,2-a]pyrazolones, which occurs upon the
irradiation of the substrates with a 400 nm light source. This process involves intramolecular
hydrogen atom transfer (HAT), leading to the formation of an aldehyde functionality
(Scheme 1, highlighted in red), which we confirmed through deuterium labeling [9].

Photoinduced reactions have become increasingly common for the preparation of
heterocyclic compounds, as they enable specific radical pathways that are challenging to
achieve with conventional methods [10]. Furthermore, they are generally regarded as more
environmentally friendly, especially when no external photocatalyst is required [11,12].
In this study, we will focus on HAT reactions, which frequently occur in photoinduced
reactions. These reactions typically take place in the presence of a HAT catalyst that
facilitates a simultaneous transfer of a proton and an electron from the orbital of one
molecule to another [13]. This unique mechanism of action allows for oxidations and
reductions that would otherwise require a strong oxidizing or reducing agent (Scheme 2).
Most HAT catalysts are sulfur-centered free radical compounds, typically prepared in situ
from thiols or their oxidized forms, disulfides [14].
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Herein we report a continuation of our study on the reactions of pyrazolo[1,2-a]py-

razolones 1 under light irradiation [9]. Specifically, we aimed to improve the method for 

the preparation of pyrazoles 2 by introducing a HAT catalyst to the reaction mixture, en-

abling the intermolecular HAT process to occur. As one of the most commonly used HAT 

catalysts, we selected thiophenols and diaryl disulfides. The irradiation of compound 1a 

in DCM at 450 nm resulted in the formation of 2a as reported previously [9]. After 4 h of 

irradiation, a 24% NMR yield of 2a was determined (Table 1, entry 1). The addition of 

increasing amounts of thiophenol increased the reaction rate but led to the formation of 

3a as the major product (Table 1, entries 2 and 3). Since the formation of this product has 

not been reported previously, we further optimized the reaction conditions for its prepa-

ration. Diaryl disulfides proved to be more efficient at catalyzing the reaction than thio-

phenol, with 4,4’-dichlorodiphenyl disulfide being the optimal catalyst (Table 1, entry 8), 

providing the highest yield of 3a with minimal formation of aldehyde 2a. With the optimal 

catalyst determined, the optimization of the solvent was carried out (Table 1, entries 8–

Scheme 1. Irradiation of pyrazolo[1,2-a]pyrazolones can lead to ring opening, which either produces
an unsaturated amide (highlighted in purple), an amide, an ester or carboxylic acid (highlighted in
blue), or an aldehyde (highlighted in red) [9].
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Scheme 2. Thiols as HAT catalysts for the initiation or termination of a reaction [14]. They are often
paired with a photocatalyst that oxidizes a thiolate anion (a) or reduces a thiyl radical (b).

2. Results and Discussion

Herein we report a continuation of our study on the reactions of pyrazolo[1,2-a]pyrazolones
1 under light irradiation [9]. Specifically, we aimed to improve the method for the prepa-
ration of pyrazoles 2 by introducing a HAT catalyst to the reaction mixture, enabling the
intermolecular HAT process to occur. As one of the most commonly used HAT catalysts,
we selected thiophenols and diaryl disulfides. The irradiation of compound 1a in DCM at
450 nm resulted in the formation of 2a as reported previously [9]. After 4 h of irradiation,
a 24% NMR yield of 2a was determined (Table 1, entry 1). The addition of increasing
amounts of thiophenol increased the reaction rate but led to the formation of 3a as the
major product (Table 1, entries 2 and 3). Since the formation of this product has not been
reported previously, we further optimized the reaction conditions for its preparation. Di-
aryl disulfides proved to be more efficient at catalyzing the reaction than thiophenol, with
4,4’-dichlorodiphenyl disulfide being the optimal catalyst (Table 1, entry 8), providing
the highest yield of 3a with minimal formation of aldehyde 2a. With the optimal cata-
lyst determined, the optimization of the solvent was carried out (Table 1, entries 8–12).
Dichloromethane was identified as the optimal solvent for the formation of 3a. Under these
optimized reaction conditions, the reaction was carried out on a 0.5 mmol scale with an
extended reaction time to ensure complete conversion of the starting material. Compound
3a was subsequently isolated in 62% yield (see Section 3).
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Table 1. Effect of reaction conditions on the photoinduced transformation of 1a in the presence of a
HAT catalyst.
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Entry Solvent HAT Catalyst (Equiv.) 2a (%) a 3a (%) a

1 b DCM / 24 /

2 DCM PhSH (0.4) 14 17

3 DCM PhSH (2.4) 4 38

4 b DCM (PhS)2 (0.1) 24 33

5 DCM (PhS)2 (0.2) 17 48

6 DCM (PhS)2 (0.4) 14 56

7 DCM (4-OMePhS)2 (0.2) 28 21

8 DCM (4-ClPhS)2 (0.2) 5 58 [62] c

9 b MeCN (4-ClPhS)2 (0.2) 8 33

10 acetone (4-ClPhS)2 (0.2) 4 53

11 b MeOH (4-ClPhS)2 (0.2) 2 17

12 b DMSO (4-ClPhS)2 (0.2) 6 13

Standard reaction conditions: 1a (0.1 mmol), solvent (anhydrous, degassed, 2.5 mL), LED450 nm, 25 ◦C, 4 h. a 1H
NMR yields were determined with 1,3,5-trimethoxybenzene as an internal standard. b Starting compound 1a was
not entirely consumed. c 1a (0.5 mmol), isolated yield.

A further increase in the amount of diphenyl disulfide to 1.2 equivalents resulted in
the formation of thioester 4a as the major product, isolated with a 50% yield, while 3a was
obtained as the minor product (Scheme 3).
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Scheme 3. Irradiation of substrate 1a in the presence of an excess of diphenyl disulfide.

When cycloadduct 1b was subjected to the optimized reaction conditions, only alde-
hyde 2b was formed, while compound 3b was not detected in the reaction mixture (Scheme 4).
The starting material 1b was consumed in a significantly shorter time than in an absence of
4,4′-dichlorodiphenyl disulfide [9]. Increasing the amount of 4,4′-dichlorodiphenyl disul-
fide to 1.2 equivalents led to the formation of thioester 4b as the major product of the
reaction (Scheme 4).
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Scheme 4. Effect of the amount of 4,4′-dichlorodiphenyl disulfide on the photoinduced transformation
of 1b.

The proposed reaction mechanism for the formation of compounds 2–4 is depicted
in Scheme 5. Diaryl disulfide dissociates under light to generate an arylthiyl radical [14].
Following the photoinduced homolytic cleavage of the N4–C5 bond of compound 1 to form
a biradical A, the hydrogen atom is abstracted by a thiyl radical, resulting in the formation
of thiol and a carbonyl radical B. The latter abstracts a hydrogen atom from the thiol to
generate the final product 2. If a large amount of disulfide is present in the reaction mixture,
the coupling of the thiyl and carbonyl radical B results in the formation of thioester 4. In
this case, the HAT catalytic cycle is not completed and an equimolar amount of diaryl
disulfide is consumed. In the second pathway, the C7–N8 bond of compound 1 undergoes
homolytic cleavage to generate a biradical C. This pathway predominates when it involves
the formation of a tertiary C-centered radical C as observed in compound 1a, rather than a
primary C-centered radical C as observed in compound 1b. The thiyl radical then abstracts
a hydrogen atom from C to form intermediate D. Finally, the intermediate D abstracts a
hydrogen atom from the thiol, resulting in the formation of the final product 3. It should be
noted that the HAT process in biradical A can occur intramolecularly to form product 2, as
demonstrated previously [9], while the formation of product 3 is only possible through an
intermolecular HAT catalysis.
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3. Materials and Methods
3.1. General Information

Reactions were carried out in vials of borosilicate glass in a custom-made photoreactor
equipped with a cooling block. Vials were placed about 2 mm above the LEDs (ProLight
Opto, PM2B-3-LBS-SD, blue, wavelength of peak intensity 445–455 nm, 39.8–51.7 lm) with
no filter applied. The NMR spectra were recorded in deuterated solvents with Me4Si as the
internal standard on a Bruker Avance III UltraShield 500 plus instrument (Bruker, Billerica,
MA, USA) at 500 MHz for 1H and at 126 MHz for 13C nuclei, respectively, or on a Bruker
Ascend neo NMR 600 instrument (Bruker, Billerica, MA, USA) at 600 MHz for 1H and at
151 MHz for 13C nuclei, respectively. Data for 1H NMR are reported as chemical shifts (δ)
in ppm, multiplicity (bs = broad singlet, s = singlet, d = doublet, t = triplet, q = quartet,
m = multiplet), coupling constant, integration, and attribution information. Data for 13C
are reported as chemical shift (δ) in ppm. Mass spectra were recorded on an Agilent 6224
Accurate Mass TOF LC/MS spectrometer (Agilent Technologies, Santa Clara, CA, USA)
and IR spectra on a Bruker FTIR Alpha Platinum spectrophotometer (Bruker, Billerica,
MA, USA). Melting points were determined on a Kofler hot-stage microscope. Column
chromatography (CC) was performed on silica gel (particle size: 35–70 µm, Sigma-Aldrich,
St. Louis, MO, USA). Commercially available compounds were used without further
purification. Compounds 1a and 1b were prepared according to the established procedures
in the literature [9].

3.2. Synthesis

General procedure: An 8 mL vial was charged with 1 (0.5 mmol), the corresponding
disulfide, and anhydrous DCM (2.5 mL) and sealed off with a screw cap with a septum. The
solution was degassed using three freeze–pump–thaw cycles. The solution was illuminated
under nitrogen atmosphere at 25 ◦C with LED450 nm for 4 h unless stated otherwise. The
solvent was then removed under reduced pressure and products 2, 3 or 4 were isolated by
column chromatography (EA/PE).

Methyl 3-(4-chlorophenyl)-1-(3-methylbutanoyl)-1H-pyrazole-4-carboxylate (3a). Prepared ac-
cording to general procedure from 1a (161 mg, 0.5 mmol) and 4,4′-dichlorodiphenyl disul-
fide (29 mg, 0.2 equiv.), 16 h irradiation; CC (EA/PE, 1:6; RF = 0.35); 99 mg (62%); colorless
oil; νmaks/cm−1 (ATR) 2958w, 1730s, 1393m, 1158s, 1130s, 1091s, 774s; δH (500 MHz; CDCl3;
Me4Si) 8.79 (s, 1H, 5-H), 7.80 (d, J = 8.5 Hz, 2H, Ar), 7.42 (d, J = 8.5 Hz, 2H, Ar), 3.82 (s, 3H,
CO2Me), 3.07 (d, J = 7.0 Hz, 2H, CH2), 2.40–2.27 (m, 1H, Me2CH), 1.05 (d, J = 6.7 Hz, 6H,
Me2CH); δC (126 MHz; CDCl3; Me4Si) 171.3, 162.7, 154.1, 135.5, 133.8, 130.7, 129.6, 128.3,
115.2, 51.9, 42.4, 25.2, 22.5; HRMS (ESI) m/z calculated for: C16H18ClN2O3 [MH]+: 321.1000;
found: 321.0999.
Methyl 5-(4-chlorophenyl)-1-(2-methyl-4-oxo-4-(phenylthio)butan-2-yl)-1H-pyrazole-4-carboxylate
(4a). Prepared according to general procedure from 1a (161 mg, 0.5 mmol) and diphenyl
disulfide (131 mg, 1.2 equiv.); CC (EA/PE, 1:4; RF = 0.30); 107 mg (50%); colorless oil;
νmaks/cm−1 (ATR) 2986w, 2948w, 1705s, 1439m, 1192m, 1162m, 1013m, 832m, 740s, 689m;
δH (600 MHz; CDCl3; Me4Si) 7.95 (s, 1H, 3-H), 7.43–7.37 (m, 5H, Ar), 7.36–7.31 (m, 2H,
Ar), 7.28–7.25 (m, 2H, Ar), 3.62 (s, 3H, CO2Me), 3.25 (s, 2H, CH2), 1.50 (s, 6H, Me2C); δC
(151 MHz; CDCl3; Me4Si) 193.7, 163.3, 144.8, 139.6, 135.3, 134.4, 131.6, 130.2, 129.6, 129.3,
128.3, 127.4, 114.7, 63.8, 54.9, 51.1, 29.6; HRMS (ESI) m/z calculated for: C22H22ClN2O3S
[MH]+: 429.1034; found: 429.1024.
Methyl 1-(3-oxopropyl)-5-phenyl-1H-pyrazole-4-carboxylate (2b). Prepared according to
general procedure from 1b (129 mg, 0.5 mmol) and 4,4′-dichlorodiphenyl disulfide
(29 mg, 0.2 equiv.); CC (EA/PE, 1:6; RF = 0.30); 87 mg (67%); white solid; δH (500 MHz;
CDCl3; Me4Si) 9.74 (d, J = 1.1 Hz, 1H), 7.99 (s, 1H), 7.53–7.35 (m, 5H), 4.27 (t, J = 6.7 Hz,
2H), 3.68 (s, 3H), 3.01 (td, J = 6.8, 1.0 Hz, 2H); spectroscopic data are in accordance with
the literature [9].
Methyl 1-(3-((4-chlorophenyl)thio)-3-oxopropyl)-5-phenyl-1H-pyrazole-4-carboxylate (4b). Pre-
pared according to general procedure from 1b (129 mg, 0.5 mmol) and 4,4′-dichlorodiphenyl
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disulfide (172 mg, 1.2 equiv.); CC (EA/PE, 1:3; RF = 0.25); 80 mg (40%); white solid;
Tm.p. = 130–131 ◦C; νmaks/cm−1 (ATR) 1712s, 1698s, 1201s, 765s, 698s; δH (500 MHz; CDCl3;
Me4Si) 8.02 (s, 1H, 3-H), 7.50–7.46 (m, 3H, Ar), 7.39–7.33 (m, 4H, Ar), 7.29–7.26 (m, 2H, Ar),
4.28 (t, J = 6.9 Hz, 2H, NCH2), 3.69 (s, 3H, CO2Me), 3.21 (t, J = 6.9 Hz, 2H, CH2C(O)); δC
(126 MHz; CDCl3; Me4Si) 194.0, 163.3, 146.4, 141.6, 136.1, 135.6, 129.9, 129.6, 129.5, 128.5,
128.4, 125.4, 112.7, 51.2, 44.8, 42.6; HRMS (ESI) m/z calculated for: C20H18ClN2O3S [MH]+:
401.0708; found: 401.0708.

4. Conclusions

By irradiating pyrazolo[1,2-a]pyrazolones with visible light in the presence of diaryl
disulfides as HAT catalysts, we successfully reduced the reaction time and increased the
irradiation wavelength in the synthesis of pyrazole 2b. We discovered two novel reaction
pathways that arise from the interaction between pyrazolo[1,2-a]pyrazolones and diaryl
disulfides. These findings enabled us to synthesize three novel pyrazoles, 3a, 4a and 4b.

Supplementary Materials: The following supporting information can be downloaded online in PDF
format: 1H and 13C NMR spectra of compounds 2–4.
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