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Abstract: The [1,2,4]triazolo[4,3-a]pyridine derivative 3-(4-(benzyloxy)-3-methoxyphenyl)-[1,2,4]
triazolo[4,3-a]pyridine was prepared in a 73% isolated yield by means of an oxidative ring closure of
a hydrazine intermediate. Sodium hypochlorite was used as the oxidant and ethanol as a solvent,
making the process a clean, green approach. The reaction was performed at room temperature for
3 h, and then the heterocycle was isolated in an analytically pure form by extraction, followed by
passing the crude product mixture through a small plug of alumina.
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1. Introduction

Triazolopyridines are a class of compounds that are currently attracting significant
attention [1,2]. These heterocyclic molecules comprise a triazole ring fused to a pyridine
ring. There are multiple isomers which differ by the location of the nitrogen atoms and
the nature of the ring fusion. The [1,2,4]triazolo[4,3-a]pyridine motif (Figure 1) is found in
a variety of biologically active compounds, including antibacterial, antithrombotic, anti-
inflammatory, antiproliferative, and herbicidal agents [3–8]. They can also be used as
molecular chemosensors for metal ions, anions, and amino acids [9,10] as well as in the con-
struction of luminophores [11]. This subset of the triazolopyridine family can be prepared
with a number of synthetic routes [2]. Some involve an oxidative ring closure [12–17] and
others employ a transition metal catalysis [18,19].
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Figure 1. The [1,2,4]triazolo[4,3-a]pyridine motif. 

Our research group has focused some significant effort on the preparation of hetero-
cyclic compounds, and we have developed a series of methodologies centered around the 
use of oxoammonium salts and their corresponding nitroxide analogs as reagents and 
catalysts [20–23]. A theme running through our work is the use of cleaner, greener ap-
proaches to preparative chemistry. As such, we became interested in applying some of 
our methodologies to the synthesis of [1,2,4]triazolo[4,3-a]pyridines by means of an oxi-
dative cyclization of hydrazines. Such an approach is not unprecedented but often in-
volves the use of toxic or hazardous reagents such as Cr(VI) salts (Figure 2a) [13] or 2,3-
dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) (Figure 2b) [14]. Sodium hypochlorite was 
used as an oxidant, being more environmentally benign (Figure 2c) [24], and served as a 

Citation: Doherty, K.E.;  

Leon Sandoval, A.; Mercier, E.T.; 

Leadbeater, N.E. 3-(4-(Benzyloxy)-3-

methoxyphenyl)-[1,2,4]triazolo[4,3-

a]pyridine. Molbank 2023, 2023, x. 

https://doi.org/10.3390/xxxxx 

Academic Editor: Fawaz Aldabbagh 

Received: 20 June 2023 

Revised: 08 July 2023 

Accepted: 10 July 2023 

Published: 12 July 2023 

Copyright: © 2023 by the authors. 

Submitted for possible open access 

publication under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 

Figure 1. The [1,2,4]triazolo[4,3-a]pyridine motif.

Our research group has focused some significant effort on the preparation of hete-
rocyclic compounds, and we have developed a series of methodologies centered around
the use of oxoammonium salts and their corresponding nitroxide analogs as reagents
and catalysts [20–23]. A theme running through our work is the use of cleaner, greener
approaches to preparative chemistry. As such, we became interested in applying some
of our methodologies to the synthesis of [1,2,4]triazolo[4,3-a]pyridines by means of an
oxidative cyclization of hydrazines. Such an approach is not unprecedented but often
involves the use of toxic or hazardous reagents such as Cr(VI) salts (Figure 2a) [13] or
2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) (Figure 2b) [14]. Sodium hypochlo-
rite was used as an oxidant, being more environmentally benign (Figure 2c) [24], and
served as a starting point for our method development. Here, we present the synthesis of
3-(4-(benzyloxy)-3-methoxyphenyl)-[1,2,4]triazolo[4,3-a]pyridine (2) from N-[(3-methoxy-4-
phenylmethoxyphenyl)methylideneamino]pyridin-2-amine (1), serving as a representative
example of our approach (Figure 2d).
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2. Results and Discussion

To prepare [1,2,4]triazolo[4,3-a]pyridine 2, we first generated hydrazine 1. This was
achieved by treating a 1:1 stoichiometric mixture of 2-hydrazinopyridine and 4-benzyloxy-
3-methoxybenzaldehyde in ethanol with acetic acid. The hydrazine precipitated out of
the solution in pure form. Hydrazine 1 was then treated with four equivalents of sodium
hypochlorite pentahydrate in ethanol, with the reaction mixture being stirred at room
temperature for 3 h. The [1,2,4]triazolo[4,3-a]pyridine 2 was isolated by means of an
aqueous/organic extraction and purified by passing the material through a plug of alumina,
obtaining a 73% isolated yield.

The novel [1,2,4]triazolo[4,3-a]pyridine product 2 was characterized by IR and NMR
spectroscopy as well as high-resolution mass spectrometry. 13C-NMR spectrum showed
18 signals, which was in agreement with the number of unique carbon environments in 2.
The 1H-NMR showed signals for the aromatic backbone of the [1,2,4]triazolo[4,3-a]pyridine
as well as the 4-benzyloxy-3-methoxy group in the 3-position of the heterocyclic moiety.
The high-resolution mass spectrum confirmed the identity and purity of the product.

3. Materials and Methods
3.1. General Experimental

Chemicals were purchased from Oakwood Chemicals (Estill, SC, USA), Sigma-Aldrich
(St. Louis, MO, USA), and Alfa Aesar (Haverhill, MA, USA), with the exception of 4-
benzyloxy-3-methoxybenzaldehyde, which was prepared using the literature method.
Deuterated dimethyl sulfoxide (DMSO-d6) was purchased from Cambridge Isotope Lab-
oratories (Tewksbury, MA, USA). NMR spectra (1H and 13C) were recorded at 300 K on
a Brüker Avance Ultra Shield 300 MHz, Bruker DRX-400 400 MHz, or Brüker Avance
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500 MHz spectrometer. The 1H-NMR spectra were referenced to residual non-deuterated
dimethyl sulfoxide (2.50 ppm) in DMSO-d6. 13C-NMR spectra were referenced to DMSO
(39.52 ppm). Reactions were monitored with NMR and/or with TLC on alumina plates
(60 Å porosity, 250 µm thickness). TLC analysis was performed using dichloromethane
and visualized with UV light. Infrared spectra were recorded on a Bruker Alpha FTIR
spectrometer using an attenuated total reflection (ATR) diamond crystal. High-resolution
mass spectra were collected on an Applied Biosystems QSTAR Elite instrument equipped
with an electrospray ionization (ESI) source, calibrated using Agilent LC/MS tuning mix.

3.2. Preparation of N-[(3-Methoxy-4-phenylmethoxyphenyl)methylideneamino]pyridin-2-amine (1)

In a 6 dram (18.5 mL) vial equipped with a stir bar, 2-hydrazinopyridine (5 mmol,
0.546 g) was dissolved in ethanol (10 mL). After, 4-benzyloxy-3-methoxybenzaldehyde
(5 mmol, 1.211 g) was added to the vial, and the mixture was stirred for 1 min before
adding approximately 10 drops of acetic acid. The precipitate formed was isolated using
vacuum filtration; it was first washed with water and then with methanol to afford pure
N-[(3-methoxy-4-phenylmethoxyphenyl)methylideneamino]pyridin-2-amine (1) as a white
solid (1.523 g, 91% yield).

MP 175–176 ◦C. FTIR (ATR 4000–400 cm−1) 3198 w, 2986 w, 2933 w, 1596 s, 1539 m,
1509 s, 1438 vs. 1382 w, 1306 m, 1261 s, 1229 s, 1165 s, 1131 vs. 1087 m, 1019 m cm−1.
1H-NMR (400 MHz, DMSO-d6) δ 10.72 (s, 1H), 8.09 (dd, J = 4.8, 0.9 Hz, 1H), 7.95 (s, 1H),
7.66–7.58 (m, 1H), 7.49–7.31 (m, 6H), 7.24 (d, J = 8.4 Hz, 1H), 7.12–7.02 (m, J = 15.9, 5.0 Hz,
2H), 6.73 (dd, J = 6.5, 5.2 Hz, 1H), 5.11 (s, 2H), 3.84 (s, 3H). 13C-NMR (101 MHz, DMSO-d6)
δ 157.16, 149.40, 148.48, 147.70, 138.94, 137.79, 136.95, 128.63, 128.39, 127.86, 127.81, 119.72,
114.60, 113.38, 108.25, 106.21, 69.90, 55.48. HRMS (ESI) m/z calculated for C20H20N3O2
[M + H]+ 334.1556, found 334.1553.

3.3. Preparation of 3-(4-(Benzyloxy)-3-methoxyphenyl)-[1,2,4]triazolo[4,3-a]pyridine (2)

In a 100 mL capacity round-bottom flask equipped with a stir bar, 1 (2 mmol, 0.666 g),
sodium hypochlorite pentahydrate (8 mmol, 1.316 g), and ethanol (40 mL) were added.
The flask was sealed with a rubber septum, then the contents were allowed to stir at room
temperature for 3 h. The septum was then removed from the flask, and the contents were
left open to air overnight, after which time the remaining ethanol was removed in vacuo
from the product mixture. The resultant material was dissolved in dichloromethane and
gently added atop an aluminum oxide plug. The desired product was eluted off the plug
with chloroform. The eluent was collected, and the solvent was removed in vacuo to afford
the pure 3-(4-(benzyloxy)-3-methoxyphenyl)-[1,2,4]triazolo[4,3-a]pyridine (2) as a white
solid (0.481 g, 73%).

MP 136-139 ◦C. FTIR (ATR 4000-400 cm−1) 3232 w, br, 2931 w, br, 1605 w, 1527 m,
1479 m, 1370 m, 1256 vs. 1228 s cm−1. 1H-NMR (400 MHz, DMSO-d6) δ 8.55 (d, J = 7.0 Hz,
1H), 7.83 (d, J = 9.3 Hz, 1H), 7.53–7.47 (m, J = 7.2 Hz, 2H), 7.46–7.32 (m, 6H), 7.27 (d,
J = 8.3 Hz, 1H), 7.00 (t, J = 6.6 Hz, 1H), 5.21 (s, 2H), 3.88 (s, 3H). 13C-NMR (101 MHz,
DMSO-d6) δ 149.78, 149.43, 149.15, 145.96, 136.80, 128.45, 127.94, 127.82, 127.62, 123.93,
120.66, 119.21, 115.54, 114.19, 113.65, 111.85, 69.93, 55.73. HRMS (ESI) m/z calculated for
C20H18N3O2 [M + H]+ 332.1399, found 332.1402.

4. Conclusions

A [1,2,4]triazolo[4,3-a]pyridine derivative was prepared simply and rapidly in a 73%
isolated yield by means of an oxidative ring closure of a hydrazine intermediate. The
product could be isolated in an analytically pure form by extraction followed by passing
the crude product mixture through a small plug of alumina.

Supplementary Materials: Copies of the 1H- and 13C-NMR as well as the IR spectra of 1 and 2.
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