2,8-Dibromo-6H,12H-6,12-epoxydibenzo[b,f][1,5]dioxocine

R. Alan Aitken *(D) David B. Cordes (©) An Jie Ler and Aidan P. McKay

EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, Fife, UK

* Correspondence: raa@st-and.ac.uk; Tel.: +44-1334-463865

Abstract

The title dibromodisalicylaldehyde, obtained as a by-product in the m-chloroperoxybenzoic acid oxidation of 5-bromo-2-(methoxymethoxy)benzaldehyde, has been characterised by IR and NMR spectroscopy and X-ray diffraction. The structure features two independent molecules with a $\pi-\pi$ stacking interaction between them.

Keywords: X-ray structure; disalicylaldehyde; trioxabicyclo[3.3.1]nonadiene

1. Introduction

Ever since salicylaldehyde 1 was first studied in the mid-19th century, it was observed to undergo dehydrative dimerisation, particularly under acidic conditions, to give a compound variously described as "parasalicyl" [1,2] and disalicylaldehyde [3]. There were various suggestions as to its structure and in a definitive paper of 1922 [4] this was finally shown by chemical methods to be the interesting dibenzo-fused trioxabicyclo[3.3.1]nonadiene 2 (Scheme 1). The activity of substituted derivatives of $\mathbf{2}$ as antimicrobial agents has been reported [5].

Citation: Aitken, R.A.; Cordes, D.B.; Ler, A.J.; McKay, A.P. 2,8-Dibromo$6 H, 12 H-6,12$-epoxydibenzo[b,f][1,5] dioxocine. Molbank 2023, 2023, M1729. https: / /doi.org/10.3390/M1729

Academic Editors: Stefano D'Errico and Annalisa Guaragna

Received: 24 August 2023
Revised: 16 September 2023
Accepted: 17 September 2023
Published: 19 September 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:/ / creativecommons.org/licenses/by/ 4.0/).

Scheme 1. Formation and structure of "disalicylaldehyde" 2.
In the course of recent synthetic work, we were carrying out a Baeyer-Villiger oxidation of the methoxymethyl-ether-protected 5-bromosalicylaldehyde 3 to give the protected bromocatechol 4 and, in addition to the expected product, obtained a minor by-product in low yield which turned out to be the dibromo derivative of disalicylaldehyde 5 (Scheme 2). This has only been mentioned once before in a 1940 paper where it was obtained by direct bromination of 2 and only a melting point was given [6]. We describe here the full characterisation of this compound including its IR and NMR spectra and X-ray structure determination.

Scheme 2. Formation of compound 5.

2. Results

The starting compound 3 was prepared according to a literature procedure [7] and subjected to m-chloroperoxybenzoic acid (m-CPBA) oxidation as described in a patent [8]. We faced significant difficulty in separating the desired product 4 from the m-chlorobenzoic
acid and even after several washings had to subject the residue to column chromatography. This did give the required product 4 in 75% isolated yield after a further recrystallisation, but a fast-running minor component was also obtained which proved to be the unexpected dibromodisalicylaldehyde $5(4 \%)$. In addition to NMR signals for a 1,2,4-trisubstituted benzene ring (see Supplementary Materials), this had a distinctive singlet at $\delta_{\mathrm{H}} 6.28$ and $\delta_{\mathrm{C}} 89.4 \mathrm{ppm}$ in agreement with expectation for a benzylic $\mathrm{ArCH}(\mathrm{OR})_{2}$ environment. The IR spectrum showed no significant signals above $1650 \mathrm{~cm}^{-1}$ confirming the absence of OH and $\mathrm{C}=\mathrm{O}$. The material failed to give any meaningful mass spectrometric data.

Recrystallisation from hexane gave colourless prisms suitable for X-ray diffraction and the resulting structure (Figure 1) shows two independent but closely similar molecules in the unit cell. At 1.888(8)-1.892(8) \AA the $\mathrm{C}-\mathrm{Br}$ distances are rather short compared to the mean value of $1.899 \AA$ for $\mathrm{ArC}-\mathrm{Br}$ [9]. Two views of the molecule (Figure 2) show that the central trioxabicyclo[3.3.1] ring system is symmetrical and distinctly angular.

Figure 1. Molecular structure of 5 showing the two independent molecules with anisotropic displacement ellipsoids drawn at 50% probability level (hydrogen atoms are shown as grey spheres of arbitrary size) and the numbering system used.

Figure 2. Two alternative views of 5 showing the symmetrical and distinctly angular shape of the molecule (carbon atoms-dark grey, hydrogen atoms-light grey, oxygen atoms-red, bromine atoms-brown).

As far as we are aware, only six compounds with this core structure have been previously characterised by X-ray diffraction (Figure 3) and the key geometric parameters for these are compared with 5 in Table 1. It can be seen that these form a relatively consistent pattern with the possible exception of the parent compound 2 which has longer bridging $\mathrm{C}-\mathrm{O}$ bonds, a larger angle at the ring oxygens and a smaller angle between the mean planes. This last parameter is the angle between the planes defined by the five atoms making up each of the three-atom bridges in the bicyclo[3.3.1] system, i.e., $\mathrm{CH}-\mathrm{O}-\mathrm{C}=\mathrm{C}-\mathrm{CH}$.

Figure 3. Crystallographically characterised disalicylaldehyde derivatives with CSD Ref Codes.
Table 1. Comparison of selected geometric parameters for 5 and related compounds $\left(\AA,{ }^{\circ}\right)$.

Compd	Bridging C-O Length (s)	Angle at Bridging O	Angle(s) at Ring Os	Angle between Mean Planes	Ref
$\mathbf{5}$	$1.404(10), 1.410(11)$	$109.6(6)$	$111.6(6), 112.4(7)$	72.9	This work
$\mathbf{5}$	$1.403(11), 1.407(11)$	$109.9(6)$	$112.5(6), 112.7(6)$	73.5	This work
6 FADVOV	1.418	108.6	$112.3(2)$	71.7	[10]
2 ZIZSAC	1.549	106.5	$117.9(9)$	65.9	[11]
7 TOLDAC	$1.415(2), 1.417(2)$	$108.0(1)$	$111.4(1), 111.9(1)$	73.5	$[12]$
8 ZOLBOR	$1.411(3), 1.416(3)$	$107.8(2)$	$111.5(2), 111.7(2)$	72.75	$[13]$
9 UGIPIJ	$1.408(5), 1.414(5)$	$109.3(3)$	$112.2(2), 112.3(3)$	72.75	$[14]$
10 UGIPEF	$1.413(2), 1.417(2)$	$111.0(1)$	$112.6(1), 113.1(1)$	73.6	[14]

The other main feature of the crystal structure of 5, which is not evident in Figure 1, is the arrangement of adjacent pairs of independent molecules to allow a favourable $\pi-\pi$ stacking interaction between them (Figure 4, distance between two mean planes $3.384 \AA$, centroid \cdots centroid distance 3.602(6) \AA). Among the six other structures of Figure 3 this feature only seems to occur for 2 (distance between two mean planes $3.264 \AA$). We assume that the presence of bulky substituents in the other cases prevents this arrangement.

Figure 4. Crystal structure of 5 viewed along the crystallographic a axis showing $\pi-\pi$ stacking interactions (arrows) between pairs of independent molecules.

In summary, the dibromodisalicylaldehyde 5 obtained as a minor by-product has been spectroscopically characterised for the first time and its X-ray crystal structure consist of pairs of independent molecules in a $\pi-\pi$ stacking arrangement.

3. Experimental

Melting points were recorded on a Reichert hot-stage microscope (Reichert, Vienna, Austria) and are uncorrected. IR spectra were recorded using the ATR technique on a Shimadzu IRAffinity 1S instrument. NMR spectra were obtained using a Bruker AV300 instrument (Bruker, Billerica, MA, USA). Spectra were run with internal $\mathrm{Me}_{4} \mathrm{Si}$ as the reference and chemical shifts are reported in ppm to high frequency of the reference.

3.1. Reaction Leading to Formation of $\mathbf{5}$

A solution of 5-bromo-2-methoxymethoxybenzaldehyde 3 [7] ($20.0 \mathrm{~g}, 81.6 \mathrm{mmol}$) and m-chloroperoxybenzoic acid $(28.8 \mathrm{~g}, 116.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$ was stirred at RT for 18 h . The mixture was filtered and the filtrate was stirred with 2 M aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ for 2 h . The organic layer was separated, dried and evaporated to give a solid (25.3 g). Column chromatography of this $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 4:1) gave, as the first fraction, by-product 5 ($0.66 \mathrm{~g}, 4 \%$) followed by the desired product $4(14.35 \mathrm{~g}, 75 \%)$ which had data in agreement with the published values [8].

Data for 5: mp 157-159 ${ }^{\circ} \mathrm{C}$ (lit. [6] $168{ }^{\circ} \mathrm{C}$); IR: $v_{\max } / \mathrm{cm}^{-1} 1607,1477,1412,1265,1221$, 1184, 1132, 957, 881, 858, 814; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 6.28(2 \mathrm{H}, \mathrm{s}, \mathrm{OCHO}$, H-6,12), 6.79 (2H, d, J $6.6 \mathrm{~Hz}, \mathrm{H}-4,10$), 7.36 (2H, dd, J 6.6, 1.8 Hz, H-3,9), 7.42 (2H, d, J 1.8 Hz , $\mathrm{H}-1,7)$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 89.4$ (2CH, OCHO, C-6,12), 113.9 (2C, C-2,8), 118.6 (2CH, C-4,10), 121.3 (2C, C-6a,12a), 130.1 (2CH, C-1,7), 134.2 (2CH, C-3,9), 149.4 (2C, C-4a,10a). ${ }^{13} \mathrm{C}$ NMR assignments for CH confirmed by HSQC. Recrystallisation of 5 from hexane gave crystals suitable for X -ray diffraction.

3.2. X-ray Structure Determination of $\mathbf{5}$

X-ray diffraction data for compound 5 was collected at 173 K using a Rigaku FR-X Ultrahigh Brilliance Microfocus RA generator/confocal optics with XtaLAB P200 diffractometer [Mo K α radiation $(\lambda=0.71073 \AA)$]. Data were collected and processed (including correction for Lorentz, polarization and absorption) using CrysAlisPro [15]. Structures were solved by dual-space methods (SHELXT) [16] and refined by full-matrix least-squares against F^{2} (SHELXL-2019/3) [17]. Non-hydrogen atoms were refined anisotropically, and hydrogen atoms were refined using a riding model. All calculations were performed using the Olex2 [18] interface.

Crystal data for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{3}, M=384.02 \mathrm{~g} \mathrm{~mol}^{-1}$, colourless prism, crystal dimensions $0.09 \times 0.08 \times 0.06 \mathrm{~mm}$, triclinic, space group P-1 (No. 2), $a=6.9692(3), b=9.2930(4)$, $c=21.4788(10) \AA, \alpha=97.000(4), \beta=97.013(4), \gamma=110.805(4)^{\circ}, V=1270.00(10) \AA^{3}, Z=4$, $D_{\text {calc }}=2.008 \mathrm{~g} \mathrm{~cm}^{-3}, T=173 \mathrm{~K}, R_{1}=0.0798, w R_{2}=0.1442$ for 4246 reflections with $I>2 \sigma(I)$, and 343 variables, $\mathrm{R}_{\text {int }} 0.0422$, Goodness of fit on $\mathrm{F}^{2} 1.323$. Data have been deposited at the Cambridge Crystallographic Data Centre as CCDC 2290326. The data can be obtained free of charge from the Cambridge Crystallographic Data Centre via http:/ /www.ccdc.cam.ac. uk/ getstructures.

Supplementary Materials: The following supporting information can be downloaded at: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ and HSQC NMR and IR data as well as cif and check-cif files for 5.

Author Contributions: A.J.L. prepared the compound, D.B.C. and A.P.M. collected the X-ray data and solved the structure; R.A.A. designed the study, analysed the data, and wrote the paper. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Data Availability Statement: The X-ray data are at CCDC as stated in the paper.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ettling. Ueber die Distillationsproducte des salicyligsauren und benzoësauren Kupferoxyds. Liebigs Ann. Chem. 1845, 53, 77-90. [CrossRef]
Cahours, A. Untersuchungen über das Phenol (Phenylhydrat). Liebigs Ann. Chem. 1851, 78, 225-228. [CrossRef]
Perkin, W.H. Ueber Benzosalicyl- und Disalicylwasserstoff. Liebigs Ann. Chem. 1868, 145, 295-301. [CrossRef]
Adams, R.; Fogler, M.F.; Kreger, C.W. The structure of disalicyl aldehyde. J. Am. Chem. Soc. 1922, 44, 1126-1133. [CrossRef]
Fiedler, H. Derivate des 2-Hydroxy-3-methoxy-benzaldehyds. Arch. Pharm. 1964, 297, 226-235. [CrossRef] [PubMed]
2. Tamaki, T.; Endo, Z. Action of phosphorus pentoxide on organic compounds I. Reaction between salicylaldehyde and phosphorus pentoxide. Nippon Kagaku Kaishi 1940, 61, 231-233.
3. Nevesely, T.; Daniliuc, C.G.; Gilmour, R. Sequential energy transfer catalysis: A cascade synthesis of angularly-fused dihydrocoumarins. Org. Lett. 2019, 21, 9724-9728. [CrossRef] [PubMed]
4. Hagihara, M.; Tanaka, M.; Katsube, T.; Okudo, M.; Iwase, N.; Shigetomi, M.; Kanda, T.; Nakanishi, T. Pyrrolopyridazinone Compound. European Patent 1982986 A1, 22 October 2008.
5. Allen, F.H.; Kennard, O.; Watson, D.G.; Brammer, L.; Orpen, A.G.; Taylor, R. Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J. Chem. Soc. Perkin Trans. 2 1987, S1-S19. [CrossRef]
6. Bachet, B.; Brassy, C.; Guidi-Morosini, C. Epoxy-8,16 Dihydro-8,16 Dinaphto[2,1-b:2', $\left.1^{\prime}-f\right][$ dioxocinne-1,5]. Acta Crystallogr. Sect. C 1986, 42, 1630-1632. [CrossRef]
7. Vol'eva, V.B.; Belostotskaya, I.S.; Shishkin, O.V.; Struchkov, Y.T.; Ershov, V.V. Synthesis and structures of anhydrodimers of salicylaldehydes. Russ. Chem. Bull. 1995, 44, 1489-1491. [CrossRef]
8. Wang, L.-H.; Lin, D.-D. The crystal structure of 4,10-ethoxy-6H,12H-6,12-epoxydibenzo[b,f][1,5]dioxocine, $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{5}$. Z. Kristallogr. New Cryst. Struct. 2019, 234, 673-674. [CrossRef]
9. Stomberg, R.; Li, S.; Lindquist, K. Crystal structure of 4,10-dimethoxy-6,12-epoxy-6H,12H-dibenzo $[b, f][1,5]$ dioxocin, $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{5}$. Z . Kristallogr. Cryst. Mater. 1995, 210, 967-968. [CrossRef]
10. Ragot, J.P.; Prime, M.E.; Archibald, S.J.; Taylor, R.J.K. A novel route to preussomerins via 2-arylacetal anions. Org. Lett. 2000, 2, 1613-1616. [CrossRef] [PubMed]
11. CrysAlisPro, v1.171.42.94a; Rigaku Oxford Diffraction, Rigaku Corporation: Tokyo, Japan, 2023.
12. Sheldrick, G.M. SHELXT—Integrated space-group and crystal structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71,3-8. [CrossRef] [PubMed]
13. Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3-8. [CrossRef] [PubMed]
14. Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339-341. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

