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Abstract: The title dibromodisalicylaldehyde, obtained as a by-product in the m-chloroperoxybenzoic
acid oxidation of 5-bromo-2-(methoxymethoxy)benzaldehyde, has been characterised by IR and NMR
spectroscopy and X-ray diffraction. The structure features two independent molecules with a π–π
stacking interaction between them.
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1. Introduction

Ever since salicylaldehyde 1 was first studied in the mid-19th century, it was observed
to undergo dehydrative dimerisation, particularly under acidic conditions, to give a com-
pound variously described as “parasalicyl” [1,2] and disalicylaldehyde [3]. There were vari-
ous suggestions as to its structure and in a definitive paper of 1922 [4] this was finally shown
by chemical methods to be the interesting dibenzo-fused trioxabicyclo[3.3.1]nonadiene 2
(Scheme 1). The activity of substituted derivatives of 2 as antimicrobial agents has been
reported [5].
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Scheme 1. Formation and structure of “disalicylaldehyde” 2.

In the course of recent synthetic work, we were carrying out a Baeyer–Villiger oxidation
of the methoxymethyl-ether-protected 5-bromosalicylaldehyde 3 to give the protected
bromocatechol 4 and, in addition to the expected product, obtained a minor by-product in
low yield which turned out to be the dibromo derivative of disalicylaldehyde 5 (Scheme 2).
This has only been mentioned once before in a 1940 paper where it was obtained by
direct bromination of 2 and only a melting point was given [6]. We describe here the full
characterisation of this compound including its IR and NMR spectra and X-ray structure
determination.
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2. Results

The starting compound 3 was prepared according to a literature procedure [7] and
subjected to m-chloroperoxybenzoic acid (m-CPBA) oxidation as described in a patent [8].
We faced significant difficulty in separating the desired product 4 from the m-chlorobenzoic
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acid and even after several washings had to subject the residue to column chromatography.
This did give the required product 4 in 75% isolated yield after a further recrystallisation,
but a fast-running minor component was also obtained which proved to be the unexpected
dibromodisalicylaldehyde 5 (4%). In addition to NMR signals for a 1,2,4-trisubstituted
benzene ring (see Supplementary Materials), this had a distinctive singlet at δH 6.28 and
δC 89.4 ppm in agreement with expectation for a benzylic ArCH(OR)2 environment. The
IR spectrum showed no significant signals above 1650 cm–1 confirming the absence of OH
and C=O. The material failed to give any meaningful mass spectrometric data.

Recrystallisation from hexane gave colourless prisms suitable for X-ray diffraction and
the resulting structure (Figure 1) shows two independent but closely similar molecules in
the unit cell. At 1.888(8)–1.892(8) Å the C–Br distances are rather short compared to the
mean value of 1.899 Å for ArC–Br [9]. Two views of the molecule (Figure 2) show that the
central trioxabicyclo[3.3.1] ring system is symmetrical and distinctly angular.
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Figure 2. Two alternative views of 5 showing the symmetrical and distinctly angular shape of the
molecule (carbon atoms—dark grey, hydrogen atoms—light grey, oxygen atoms—red, bromine
atoms—brown).

As far as we are aware, only six compounds with this core structure have been
previously characterised by X-ray diffraction (Figure 3) and the key geometric parameters
for these are compared with 5 in Table 1. It can be seen that these form a relatively consistent
pattern with the possible exception of the parent compound 2 which has longer bridging
C–O bonds, a larger angle at the ring oxygens and a smaller angle between the mean planes.
This last parameter is the angle between the planes defined by the five atoms making up
each of the three-atom bridges in the bicyclo[3.3.1] system, i.e., CH–O–C=C–CH.
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Figure 3. Crystallographically characterised disalicylaldehyde derivatives with CSD Ref Codes.

Table 1. Comparison of selected geometric parameters for 5 and related compounds (Å, ◦).

Compd Bridging
C–O Length (s)

Angle at
Bridging O

Angle(s) at
Ring Os

Angle between
Mean Planes Ref

5 1.404 (10), 1.410 (11) 109.6 (6) 111.6 (6), 112.4 (7) 72.9 This work
5 1.403 (11), 1.407 (11) 109.9 (6) 112.5 (6), 112.7 (6) 73.5 This work

6 FADVOV 1.418 108.6 112.3 (2) 71.7 [10]
2 ZIZSAC 1.549 106.5 117.9 (9) 65.9 [11]

7 TOLDAC 1.415(2), 1.417(2) 108.0(1) 111.4(1), 111.9(1) 73.5 [12]
8 ZOLBOR 1.411(3), 1.416(3) 107.8(2) 111.5(2), 111.7(2) 72.75 [13]
9 UGIPIJ 1.408(5), 1.414(5) 109.3(3) 112.2(2), 112.3(3) 72.75 [14]

10 UGIPEF 1.413(2), 1.417(2) 111.0(1) 112.6(1), 113.1(1) 73.6 [14]

The other main feature of the crystal structure of 5, which is not evident in Figure 1,
is the arrangement of adjacent pairs of independent molecules to allow a favourable π–π
stacking interaction between them (Figure 4, distance between two mean planes 3.384 Å,
centroid···centroid distance 3.602(6) Å). Among the six other structures of Figure 3 this
feature only seems to occur for 2 (distance between two mean planes 3.264 Å). We assume
that the presence of bulky substituents in the other cases prevents this arrangement.
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Figure 4. Crystal structure of 5 viewed along the crystallographic a axis showing π–π stacking
interactions (arrows) between pairs of independent molecules.

In summary, the dibromodisalicylaldehyde 5 obtained as a minor by-product has been
spectroscopically characterised for the first time and its X-ray crystal structure consist of
pairs of independent molecules in a π–π stacking arrangement.
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3. Experimental

Melting points were recorded on a Reichert hot-stage microscope (Reichert, Vienna,
Austria) and are uncorrected. IR spectra were recorded using the ATR technique on a
Shimadzu IRAffinity 1S instrument. NMR spectra were obtained using a Bruker AV300
instrument (Bruker, Billerica, MA, USA). Spectra were run with internal Me4Si as the
reference and chemical shifts are reported in ppm to high frequency of the reference.

3.1. Reaction Leading to Formation of 5

A solution of 5-bromo-2-methoxymethoxybenzaldehyde 3 [7] (20.0 g, 81.6 mmol) and
m-chloroperoxybenzoic acid (28.8 g, 116.7 mmol) in CH2Cl2 (300 mL) was stirred at RT for
18 h. The mixture was filtered and the filtrate was stirred with 2 M aqueous Na2S2O3 for
2 h. The organic layer was separated, dried and evaporated to give a solid (25.3 g). Column
chromatography of this (SiO2, hexane/EtOAc, 4:1) gave, as the first fraction, by-product 5
(0.66 g, 4%) followed by the desired product 4 (14.35 g, 75%) which had data in agreement
with the published values [8].

Data for 5: mp 157–159 ◦C (lit. [6] 168 ◦C); IR: νmax/cm–1 1607, 1477, 1412, 1265, 1221,
1184, 1132, 957, 881, 858, 814; 1H NMR (300 MHz, CDCl3, 25 ◦C): δ 6.28 (2H, s, OCHO,
H-6,12), 6.79 (2H, d, J 6.6 Hz, H-4,10), 7.36 (2H, dd, J 6.6, 1.8 Hz, H-3,9), 7.42 (2H, d, J 1.8 Hz,
H-1,7); 13C NMR (75 MHz, CDCl3, 25 ◦C): δ 89.4 (2CH, OCHO, C-6,12), 113.9 (2C, C-2,8),
118.6 (2CH, C-4,10), 121.3 (2C, C-6a,12a), 130.1 (2CH, C-1,7), 134.2 (2CH, C-3,9), 149.4 (2C,
C-4a,10a). 13C NMR assignments for CH confirmed by HSQC. Recrystallisation of 5 from
hexane gave crystals suitable for X-ray diffraction.

3.2. X-ray Structure Determination of 5

X-ray diffraction data for compound 5 was collected at 173 K using a Rigaku FR-X
Ultrahigh Brilliance Microfocus RA generator/confocal optics with XtaLAB P200 diffrac-
tometer [Mo Kα radiation (λ = 0.71073 Å)]. Data were collected and processed (including
correction for Lorentz, polarization and absorption) using CrysAlisPro [15]. Structures
were solved by dual-space methods (SHELXT) [16] and refined by full-matrix least-squares
against F2 (SHELXL-2019/3) [17]. Non-hydrogen atoms were refined anisotropically, and
hydrogen atoms were refined using a riding model. All calculations were performed using
the Olex2 [18] interface.

Crystal data for C14H8Br2O3, M = 384.02 g mol–1, colourless prism, crystal dimensions
0.09 × 0.08 × 0.06 mm, triclinic, space group P-1 (No. 2), a = 6.9692(3), b = 9.2930(4),
c = 21.4788(10) Å, α = 97.000(4), β = 97.013(4), γ = 110.805(4) ◦, V = 1270.00(10) Å3, Z = 4,
Dcalc = 2.008 g cm–3, T = 173 K, R1 = 0.0798, wR2 = 0.1442 for 4246 reflections with I > 2σ(I),
and 343 variables, Rint 0.0422, Goodness of fit on F2 1.323. Data have been deposited at the
Cambridge Crystallographic Data Centre as CCDC 2290326. The data can be obtained free
of charge from the Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.
uk/getstructures.

Supplementary Materials: The following supporting information can be downloaded at: 1H and
13C and HSQC NMR and IR data as well as cif and check-cif files for 5.
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