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Abstract: This work describes the synthesis of spirocyclic compounds based on 8-azaspiro[5.6]dodec-
10-ene. Diastereomerically pure pyrrole derivatives were prepared from the spirocyclic 1,2,3-triazole
using a coupling reaction. The resulting compounds were characterized via 1H and 13C NMR
spectroscopy and HRMS, and the crystallographic characteristics of one of them were studied via
X-ray diffraction.
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1. Introduction

Cancer is one of the most fatal diseases in the world. Millions of cases of cancer
are diagnosed every year, and cancer also causes the death of millions of people. Many
factors lead to the cancer generation, including, for example, environmental or heredity
influences [1]. There are two main problems with anticancer drugs: non-selectivity for
cancer cells and drug resistance. According to the literature, most anticancer drugs that
were FDA-approved between 2010 and 2015 contain a N-heterocycle in their chemical
structure [2].

Nowadays, heterocyclic chemistry has a fundamental role in drug discovery. Pyrrole
derivatives are of great importance in drug design [3]. Pyrrole-based compounds have
a wide range of biological activity. Among them are derivatives with properties such as
anticancer [4,5], antiviral [6], antidiabetic [7], anti-inflammatory [8], etc.

Figure 1 shows some pyrrole derivatives that exhibit anticancer activity. Sunitinib (1)
is a multitargeted tyrosine kinase inhibitor and is used for the treatment of two types
of cancer: renal cell carcinoma (RCC) and imatinib-resistant gastrointestinal stromal
tumor (GIST) [9,10]. Compound 2 is a strong inhibitor of tubulin polymerization and
cancer cell growth, specifically, of the P-glycoprotein-overexpressing NCI-ADR-RES and
Messa/Dx5MDR cell lines [11]. Ulixertinib (3) is a pyrrole-based protein kinase inhibitor
with high potency and selectivity for ERK1/2 (extracellular signal-regulated protein kinase)
and is approved for the treatment of cancer [12]. Therefore, it is not surprising that, from a
statistical analysis of the presence of this ring in known drugs and natural products, it was
found to be among the top ten rings and is therefore considered a privileged motif for drug
design [13,14].

In addition, nowadays, scaffold rigidification is one of the most sought after strategies
by medicinal chemists for the design and realization of new drug generations [15]. Although
saturated rings and planar aromatic rings can influence ligand-binding entropy, it has
been suggested that compounds with too many planar rings have suboptimal physical
properties [16,17].
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Figure 1. Pyrrole-based derivatives with anticancer activity.

2. Results and Discussion

In a recent work, a set of spirocyclic derivatives based on 8-oxaspiro[5.6]dodecane
were synthetized and profiled in vitro against the hNNMT target to evaluate their anti-
cancer therapeutic potential [18]. Based on their synthetic pathway, the replacement of an
oxygen atom with a nitrogen atom to obtain an additional point for the functionalization of
spirocycles was envisioned. Therefore, a modified literature approach [18] was adopted for
the production of epoxide 1 from commercially available reagents (Scheme 1). Scheme 1
shows the synthesis of 1,2,3-triazole 4, which contains an unprotected nitrogen atom in
a 7-membered ring. Azide 2 was obtained from compound 1 through the epoxide ring
opening with an azide-anion. Then, 1,2,3-triazole 3 was synthesized via a “click-reaction”
with the 1-ethynyl-4-fluorobenzene and using CuSO4×5H2O and Na-ascorbate. Amine
hydrochloride 4 was obtained by removing the protecting group under acidic conditions.
The stereochemistry of such compounds was assigned through comparison with similar
structures from the literature [19].
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Scheme 1. Synthesis of amine 4.

Then, compounds 5–10 were synthesized from amine hydrochloride 4 using a coupling
reaction. N,N,N′,N′-tetramethyl-O-(1H-benzotriazol-1-yl)-uronium hexafluoro-phosphate
(HBTU) was used as the activating agent, while the corresponding acids used have already
been characterized and described in the literature [6,20,21]. All target compounds (5–10)
were obtained in yields of 70–85% (Scheme 2) (see Supplementary Materials).

Molbank 2024, 2024, x FOR PEER REVIEW 3 of 8 
 

 

Scheme 2. Synthesis of compounds 5–10. 

The structure of compound 8 was confirmed by X-ray diffraction analysis (Figure 2). 

 

Figure 2. X-ray molecular structure of compound 8 with atom labeling. Green = fluorine atoms; red 

= oxygen atoms; grey = carbon atoms; blue = nitrogen atoms; black = hydrogen atoms. 

3. Materials and Methods 

1H and 13C NMR spectra were recorded using a Bruker Avance 400 instrument with 

operating frequencies of 400 and 100 MHz, respectively, and calibrated using residual un-

deuterated chloroform (δ1H = 7.27 ppm) and CDCl3 (δ13C = 77.16 ppm) or undeuterated 

dimethyl sulfoxide (DMSO) (δ1H = 2.50 ppm) and DMSO-d6 (δ13C = 39.51 ppm) as internal 

references. The following abbreviations were used to set multiplicities: s = singlet, d = 

doublet, t = triplet, q = quartet, m = multiplet, br = broad. The purity of the final compounds 

Scheme 2. Synthesis of compounds 5–10.



Molbank 2024, 2024, M1765 3 of 7

The structure of compound 8 was confirmed by X-ray diffraction analysis (Figure 2).
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Figure 2. X-ray molecular structure of compound 8 with atom labeling. Green = fluorine atoms;
red = oxygen atoms; grey = carbon atoms; blue = nitrogen atoms; black = hydrogen atoms.

3. Materials and Methods
1H and 13C NMR spectra were recorded using a Bruker Avance 400 instrument with

operating frequencies of 400 and 100 MHz, respectively, and calibrated using residual
undeuterated chloroform (δ1H = 7.27 ppm) and CDCl3 (δ13C = 77.16 ppm) or undeuter-
ated dimethyl sulfoxide (DMSO) (δ1H = 2.50 ppm) and DMSO-d6 (δ13C = 39.51 ppm) as
internal references. The following abbreviations were used to set multiplicities: s = singlet,
d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. The purity of the final
compounds was checked through liquid chromatography–mass spectrometry (LCMS) via
a Shimadzu LCMS-2010A using three types of detection systems: EDAD, ELSD and UV.
High-resolution mass spectra (HRMS) were registered using a Sciex TripleTOF 5600+.
We used commercial reagents and solvents without further purification. Reactions were
monitored by thin-layer chromatography (TLC) performed on Merck TLC Silica gel plates
(60 F254), using a UV light for visualization and basic aqueous potassium permanganate or
iodine fumes as a developing agent.

3.1. General Procedure for Synthesis of Compounds 5–10

N,N-Diisopropylethylamine (DIPEA) (1 equiv.) was added to an appropriate acid
(1 equiv.), followed by DMF (10 mL), and then, N,N,N′,N′-tetramethyl-O-(1H-benzotriazol-
1-yl)-uronium hexafluorophosphate (HBTU) (1 equiv.). The resulting solution was stirred
for 2 min and added to a solution of appropriate amine (0.1 g, 1 equiv.) and DIPEA
(1.1 equiv.) in DMF (10 mL) in a single portion. The reaction mixture was stirred overnight;
DMF was evaporated, and the residue was dissolved in DCM (50 mL per 1 g of crude
product) and successively washed with 5% aqueous NaOH and 10% tartaric acid solutions
(25 mL per 1 g of crude product). The organic layer was dried over Na2SO4, filtered and
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evaporated. Crude product was purified by flash chromatography using a hexane/EtOAc
mixture as an eluent (from 3:1 to 1:2) to produce the target compounds.

(5-(2-Fluoro-4-(trifluoromethyl)phenyl)-1H-pyrrol-2-yl)((1RS,2RS,6RS)-2-(4-(4-fluorophenyl)-
1H-1,2,3-triazol-1-yl)-1-hydroxy-8-azaspiro[5.6]dodec-10-en-8-yl)methanone (5)

M = 125 mg, slightly yellow powder. Yield = 79%. Rf = 0.6 in hexane/EtOAc 1:2.
1H-NMR (400 MHz, CDCl3) δ: 1.29–1.56 (m, 2 H), 1.61–1.79 (m, 2 H), 1.98–2.16 (m,

2 H), 2.28 (d, J = 11.8 Hz, 1 H), 3.03 (dd, J = 14.2, 2.1 Hz, 1 H), 3.24 (d, J = 14.2 Hz, 1 H), 3.54
(t, J = 10.7 Hz, 1 H), 4.15 (dd, J = 17.0, 3.1 Hz, 1 H), 4.34 (d, J = 14.5 Hz, 1 H), 4.60–4.71 (m,
1 H), 4.95 (d, J = 17.5 Hz, 1 H), 5.15 (d, J = 10.8 Hz, 1 H), 5.60 (d, J = 10.5 Hz, 1 H), 5.80–5.90
(m, 1 H), 6.63–6.68 (m, 1 H), 6.71–6.77 (m, 1 H), 7.09 (t, J = 8.7 Hz, 2 H), 7.36–7.44 (m, 2 H),
7.71 (t, J = 7.9 Hz, 1 H), 7.79 (dd, J = 8.6, 5.4 Hz, 2 H), 7.89 (s, 1 H), 10.17 (br. s, 1 H).

13C-NMR (100 MHz, CDCl3) δ: 20.2, 32.4, 34.5, 36.7, 47.9, 50.3, 52.3, 63.4, 78.2, 111.3 (d,
J = 4.6 Hz), 114.1 (dq, J = 3.9, 26.2 Hz), 114.9, 115.7 (d, J = 21.6 Hz, 2 C), 120.0, 121.7 (m),
122.5 (d, J = 11.6 Hz), 123.6 (dq, J = 2.4, 272.2 Hz), 124.8, 125.7, 127.4 (d, J = 3.3 Hz), 127.5 (d,
J = 8.1 Hz, 2 C), 127.7 (d, J = 4.1 Hz), 128.5, 128.5 (d, J = 7.7 Hz), 130.5 (dq, J = 8.3, 33.5 Hz),
146.0, 158.5 (d, J = 250.1 Hz), 162.6 (d, J = 246.6 Hz), 163.0.

IR (KBr): 3226, 2932, 2866, 1583, 1496, 1481, 1433, 1329, 1263, 1209, 1170, 1124, 791,
744 cm−1.

HRMS (ESI) m/z: calcd for C31H29F5N5O2 [M + H]+ 598.2236, found 598.2233.

(5-(3-Fluoro-4-(trifluoromethyl)phenyl)-1H-pyrrol-2-yl)((1RS,2RS,6RS)-2-(4-(4-fluorophenyl)-
1H-1,2,3-triazol-1-yl)-1-hydroxy-8-azaspiro[5.6]dodec-10-en-8-yl)methanone (6)

M = 120 mg, white powder. Yield = 76%. Rf = 0.6 in hexane/EtOAc 1:2.
1H-NMR (400 MHz, CDCl3) δ: 1.30–1.52 (m, 2 H), 1.60–1.76 (m, 2 H), 1.96–2.30 (m, 3 H),

2.95–3.18 (m, 2 H), 3.54 (t, J = 10.8 Hz, 1 H), 4.00 (d, J = 15.2 Hz, 1 H), 4.35 (d, J = 14.5 Hz,
1 H), 4.67 (t, J = 9.6 Hz, 1 H), 4.83 (d, J = 17.0 Hz, 1 H), 5.39–5.61 (m, 2 H), 5.78–5.90 (m, 1 H),
6.51 (d, J = 2.1 Hz, 2 H), 7.06 (t, J = 8.6 Hz, 2 H), 7.29–7.37 (m, 2 H), 7.51 (t, J = 7.9 Hz, 1 H),
7.65 (dd, J = 8.5, 5.4 Hz, 2 H), 7.78 (s, 1 H), 10.70 (br. s, 1 H).

13C-NMR (100 MHz, CDCl3) δ: 20.2, 32.6, 34.3, 36.8, 48.0, 50.2, 52.3, 63.3, 78.1, 109.5,
112.8 (d, J = 22.3 Hz), 115.4, 115.6 (d, J = 21.6 Hz, 2 C), 116.4 (dq, J = 12.7, 33.2 Hz), 119.9,
120.2 (d, J = 3.1 Hz), 122.7 (q, J = 271.6 Hz), 124.9, 126.0, 127.4, 127.4 (d, J = 8.1 Hz, 2 C),
127.7 (dq, J = 1.8, 4.4 Hz), 128.3, 133.1, 137.4 (d, J = 8.7 Hz),145.8, 160.1 (dq, J = 2.2, 254.9 Hz),
162.5 (d, J = 246.6 Hz), 163.1.

IR (KBr): 3214, 2933, 2864, 1627, 1582, 1495, 1484, 1435, 1323, 1213, 1127, 1041, 840,
790 cm−1.

HRMS (ESI) m/z: calcd for C31H29F5N5O2 [M + H]+ 598.2236, found 598.2238.

((1RS,2RS,6RS)-2-(4-(4-Fluorophenyl)-1H-1,2,3-triazol-1-yl)-1-hydroxy-8-azaspiro[5.6]dodec-
10-en-8-yl)(5-(5-(trifluoromethyl)pyridin-2-yl)-1H-pyrrol-2-yl)methanone (7)

M = 128 mg, slightly brown powder. Yield = 84%. Rf = 0.5 in hexane/EtOAc 1:2.
1H-NMR (400 MHz, CDCl3) δ: 1.28–1.56 (m, 2 H), 1.58–1.79 (m, 2 H), 1.97–2.20 (m,

2 H), 2.28 (d, J = 11.6 Hz, 1 H), 3.03 (dd, J = 14.2, 2.1 Hz, 1 H), 3.23 (d, J = 14.4 Hz, 1 H), 3.53
(t, J = 10.7 Hz, 1 H), 4.15 (dd, J = 17.3, 3.3 Hz, 1 H), 4.35 (d, J = 14.5 Hz, 1 H), 4.62–4.73 (m,
1 H), 4.95 (d, J = 16.6 Hz, 1 H), 5.15 (d, J = 11.0 Hz, 1 H), 5.58 (d, J = 10.4 Hz, 1 H), 5.79–5.89
(m, 1 H), 6.60–6.68 (m, 1 H), 6.75–6.82 (m, 1 H), 7.09 (t, J = 8.7 Hz, 2 H), 7.63 (d, J = 8.4 Hz,
1 H), 7.76–7.88 (m, 3 H), 7.91 (s, 1 H), 8.72 (s, 1 H), 10.57 (br. s, 1 H).

13C-NMR (100 MHz, CDCl3) δ: 20.2, 32.3, 34.4, 36.7, 47.9, 50.2, 52.3, 63.4, 78.2, 109.9,
115.3, 115.7 (d, J = 21.6 Hz, 2 C), 118.4, 120.2, 123.7 (q, J = 272.0 Hz), 124.3 (q, J = 33.2 Hz),
124.8 (br.), 126.2, 127.4, 127.5 (d, J = 8.1 Hz. 2 C), 128.5, 133.2, 133.9 (q, J = 3.3 Hz), 146.0,
146.5 (q, J = 4.1 Hz), 152.1, 162.5 (d, J = 246.6 Hz), 163.0.

IR (KBr): 3440, 3246, 2930, 2868, 1605, 1496, 1474, 1434, 1326, 1257, 1225, 1124, 1069,
841, 755 cm−1.

HRMS (ESI) m/z: calcd for C30H29F4N6O2 [M + H]+ 581.2283, found 581.2284.
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(5-(5-Chloropyridin-2-yl)-1H-pyrrol-2-yl)((1RS,2RS,6RS)-2-(4-(4-fluorophenyl)-1H-1,2,3-
triazol-1-yl)-1-hydroxy-8-azaspiro[5.6]dodec-10-en-8-yl)methanone (8)

M = 123 mg, white powder. Yield = 85%. Rf = 0.5 in hexane/EtOAc 1:2.
1H-NMR (400 MHz, CDCl3) δ: 1.37–1.58 (m, 2 H), 1.63–1.78 (m, 2 H), 2.07 (d, J = 10.7

Hz, 1 H), 2.12–2.26 (m, 1 H), 2.34 (d, J = 11.5 Hz, 1 H), 3.02–3.60 (m, 3 H), 4.17 (dd, J = 17.1,
3.7 Hz, 1 H), 4.42 (d, J = 14.4 Hz, 1 H), 4.69 (td, J = 11.1, 4.1 Hz, 1 H), 4.98–5.21 (m, 2 H), 5.60
(d, J = 11.7 Hz, 1 H), 5.82–5.93 (m, 1 H), 6.63–6.73 (m, 2 H), 7.12 (t, J = 8.7 Hz, 2 H), 7.51 (d,
J = 8.5 Hz, 1 H), 7.64 (dd, J = 8.5, 2.4 Hz, 1 H), 7.84 (dd, J = 8.6, 5.4 Hz, 2 H), 7.94 (s, 1 H),
8.48 (d, J = 2.1 Hz, 1 H), 10.35 (br. s, 1 H).

13C-NMR (100 MHz, CDCl3) δ: 20.2, 32.3, 34.2 (br.), 37.0 (br.), 48.0, 50.3, 52.4 (br.), 63.4,
78.1, 108.6, 115.5, 115.8 (d, J = 21.7 Hz, 2 C), 119.7, 120.3, 124.8, 125.3, 127.5 (d, J = 3.3 Hz), 127.6
(d, J = 8.1 Hz, 2 C), 128.4, 130.1, 133.8, 136.5, 146.0, 147.3, 148.4, 162.6 (d, J = 246.6 Hz), 163.2.

IR (KBr): 3435, 3223, 2933, 2864, 1584, 1560, 1496, 1457, 1433, 1295, 1257, 1219, 1074,
839, 787, 753 cm−1.

HRMS (ESI) m/z: calcd for C29H29ClFN6O2 [M + H]+ 547.2019, found 547.2024.

(5-(5-Chloropyridin-2-yl)-3-methyl-1H-pyrrol-2-yl)((1RS,2RS,6RS)-2-(4-(4-fluorophenyl)-1H
-1,2,3-triazol-1-yl)-1-hydroxy-8-azaspiro[5.6]dodec-10-en-8-yl)methanone (9)

M = 103 mg, white powder. Yield = 70%. Rf = 0.6 in hexane/EtOAc 1:2.
1H-NMR (400 MHz, CDCl3) δ: 1.35–1.56 (m, 2 H), 1.66–1.75 (m, 2 H), 2.02–2.23 (m,

5 H), 2.25–2.36 (m, 1 H), 3.04–3.23 (m, 2 H), 3.58 (t, J = 8.4 Hz, 1 H), 4.03 (d, J = 18.3 Hz,
1 H), 4.41 (d, J = 14.5 Hz, 1 H), 4.50–4.60 (m, 1 H), 4.65 (d, J = 17.7 Hz, 1 H), 5.10 (br. s, 1 H),
5.44–5.55 (m, 1 H), 5.75–5.86 (m, 1 H), 6.48 (d, J = 2.2 Hz, 1 H), 7.09 (t, J = 8.7 Hz, 2 H), 7.44
(d, J = 8.6 Hz, 1 H), 7.59 (dd, J = 8.5, 2.4 Hz, 1 H), 7.79 (dd, J = 8.6, 5.4 Hz, 2 H), 7.89 (s, 1 H),
8.39 (d, J = 1.9 Hz, 1 H), 9.82 (br. s, 1 H).

13C-NMR (100 MHz, CDCl3) δ: 12.8, 20.2, 32.1, 34.5 (br.), 37.0 (br.), 48.5 (br.), 50.1, 53.9
(br.), 63.5, 78.5, 110.0, 115.8 (d, J = 21.7 Hz, 2 C), 119.3, 120.4, 123.4, 123.8, 125.7 (br.), 127.4
(d, J = 3.3 Hz), 127.5 (d, J = 8.1 Hz, 2 C), 127.7, 129.5, 132.2, 136.5, 146.0, 147.7, 148.2, 162.6
(d, J = 246.6 Hz), 165.6.

IR (KBr): 3231, 2927, 2869, 1587, 1451, 1381, 1297, 1259, 1221, 1111, 1075, 839, 813,
610 cm−1.

HRMS (ESI) m/z: calcd for C30H31ClFN6O2 [M + H]+ 561.2176, found 561.2172.

((1RS,2RS,6RS)-2-(4-(4-Fluorophenyl)-1H-1,2,3-triazol-1-yl)-1-hydroxy-8-azaspiro[5.6]dodec-
10-en-8-yl)(3-methyl-5-(5-(trifluoromethyl)pyridin-2-yl)-1H-pyrrol-2-yl)methanone (10)

M = 129 mg, white powder. Yield = 84%. Rf = 0.6 in hexane/EtOAc 1:2.
1H-NMR (400 MHz, CDCl3) δ: 1.36–1.58 (m, 2 H), 1.71–1.84 (m, 2 H), 2.06–2.24 (m,

5 H), 2.33 (d, J = 11.6 Hz, 1 H), 3.07–3.28 (m, 2 H), 3.60 (t, J = 10.5 Hz, 1 H), 4.06 (d, J = 18.6
Hz, 1 H), 4.43 (d, J = 14.4 Hz, 1 H), 4.51–4.71 (m, 2 H), 4.95 (br. s, 1 H), 5.48–5.57 (m, 1 H),
5.79–5.90 (m, 1 H), 6.61 (d, J = 2.3 Hz, 1 H), 7.10 (t, J = 8.7 Hz, 2 H), 7.58 (d, J = 8.4 Hz, 1 H),
7.76–7.91 (m, 4 H), 8.70 (s, 1 H), 9.87 (br. s, 1 H).

13C-NMR (100 MHz, CDCl3) δ: 12.7, 20.2, 32.1, 34.6 (br.), 37.0 (br.), 48.5 (br.), 50.1, 53.9
(br.), 63.6, 78.5, 111.3, 115.8 (d, J = 21.6 Hz, 2 C), 118.0, 120.3, 123.8 (q, J = 272.0 Hz), 123.9 (q,
J = 33.0 Hz), 123.9, 124.4, 125.7 (br.), 127.4 (d, J = 3.1 Hz), 127.5 (d, J = 8.1 Hz, 2 C), 127.9
(br.), 131.8, 133.9 (q, J = 3.3 Hz), 146.1, 146.4 (q, J = 4.2 Hz), 152.4 (d, J = 1.3 Hz), 162.6 (d,
J = 246.6 Hz), 165.5.

IR (KBr): 3196, 2932, 2863, 1602, 1496, 1324, 1294, 1240, 1127, 1071, 839, 733 cm−1.
HRMS (ESI) m/z: calcd for C31H31F4N6O2 [M + H]+ 595.2439, found 595.2427.

3.2. Crystallography Details

The data of 8 were collected by using an STOE diffractometer Pilatus100K detector,
with mirror-focusing collimation Cu Kα (1.54086 Å) radiation, in rotation method mode.
STOE X-AREA software (STOE & Cie GmbH, Darmstadt, Germany, 2013) was used for
cell refinement and data reduction. Data collection and image processing were performed
using an X-Area 1.67 (STOE & Cie GmbH, Darmstadt, Germany, 2013). Intensity data were
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scaled using LANA (part of X-Area) in order to minimize differences in the intensities of
symmetry-equivalent reflections (multi-scan method).

Crystallization of molecule 8 has a tendency to form twins, and despite numerous
attempts, we were unable to find a single crystal. A sample of two crystals (basf 0.49)
was studied.

Under refinement of the positional and thermal parameters of the atoms, reflections
from twin crystal were used, but the positions of some reflections coincided, which affected
the value of the R-factor and the refinement process.

Cell parameters: a = 9.750(1) Å, b = 10.3730(1) Å, c = 26.349(2) Å, α 103.156(3), β 96.11(1)◦.
γ 102.875; V = 2649.7(4), Z = 4, dcalc = 1.376 Mg/m3. Crystal class is monoclinic. Space

group: P21/n. Absorption coefficient: 1.662 mm−1.
The structures were solved and refined using the SHELX program [22]. The non-

hydrogen atoms were refined by using the anisotropic full-matrix least-square procedure.
Hydrogen atoms were placed in the calculated positions and allowed to ride on their

parent atoms (C-H 0.93–0.98; Uiso 1.2 Ueq (parent atom)). The position of the hydrogen
atom in the (O2-H21) hydroxy group was determined from Fourier synthesis and was
freely refined in the isotropic approximation. The oxygen group O2-H21 (Figure 2) forms a
hydrogen bond with the oxygen atom O1i (angle O2-H21. . .O1i 162(10)◦, distance H21-O1i-
1.83(12) Å), thereby forming endless chains of molecules along the b axis.

Refinement was made against 25,016 reflections. A total of 363 parameters were refined
using 0 restraints. The final R value was 0.107 against 8272 F2 > 2σ(F2). Molecular geometry
calculations were performed using the SHELX program, and the molecular graphics were
prepared by using DIAMOND software [23] (Brandenburg, K. DIAMOND, Release 2.1d;
Crystal Impact GbR: Bonn, Germany, 2000).

CCDC-2305668 contains the supplementary crystallographic data for this paper. These
data can be obtained free of charge from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif (accessed on 3 November 2023).

4. Conclusions

As a result of this study, we obtained the target pyrrole derivatives 5–10, the synthesis
of which was validated, and the compounds were fully characterized by spectral analysis
methods. The structure of 8 was also studied via X-ray diffraction analysis, which confirmed
that diastereomerically pure products were obtained. The biological activity of the obtained
compounds are to be explored as soon as any appropriated panel assay is available for
this project.

Supplementary Materials: The following data are available online: 1H-NMR, 13C-NMR, 2D correla-
tion spectra 1H-1H (COSY, NOESY), 1H-13C (HSQC) and HR-MS of 8.
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