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Abstract: 2-Methyl-4-oxo-4,5-dihydro-1H-pyrrole-3-carboxylic acid phenylamide was obtained as
a single product in an experiment on the cyclization modes of a glycine-derived enamino amide.
High yield and operational simplicity are the main features of the presented synthetic procedure.
Additionally, this result extends our previous observations on the cyclization reactions of similarly
functionalized enamines, by revealing the preferred cyclization pathway under Boc-deprotection
conditions.
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1. Introduction

The synthesis of pyrrole-3-carboxylic acid amides is of significant interest because this
substructure is central to remarkably successful drugs like Atorvastatin [1] and Sunitinib [2]
(Figure 1).
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1. Introduction 
The synthesis of pyrrole-3-carboxylic acid amides is of significant interest because 

this substructure is central to remarkably successful drugs like Atorvastatin [1] and 
Sunitinib [2] (Figure 1). 
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Figure 1. Structures of Atorvastatin and Sunitinib. 

The structurally related 4-oxo derivatives of pyrrole-3-carboxylic acids, and the pyr-
rolin-4-ones in general, are also of interest as bioactive compounds with antimalarial [3] 
and HIV-1 protease inhibitory [4] activities, which has inspired the development of many 
approaches to their synthesis. In this regard, the cyclization of α-amino ynones [5–7] and 
the three-component reactions of 2,3-diketo esters, amines, and ketones [8] have shown 
significant scope. Another interesting approach is the ring-opening cyclization of cyclo-
propyl ketones with primary amines, which has been accomplished as a Ni(II)-catalyzed 
process [9] and also in an asymmetric variant, with the help of chiral Sc(III) complexes 
[10]. 1,3-Dicarbonyl compounds and their enamines have been widely used as precursors 
to pyrrolin-4-ones with carbamoyl, acyl, or alkoxycarbonyl substituent at the C3-position. 
A well-studied approach of this type is the oxidative cyclization of β-enaminones, involv-
ing a rearrangement step after the ring formation [11–14]. This oxidative cyclization has 
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Figure 1. Structures of Atorvastatin and Sunitinib.

The structurally related 4-oxo derivatives of pyrrole-3-carboxylic acids, and the
pyrrolin-4-ones in general, are also of interest as bioactive compounds with antimalar-
ial [3] and HIV-1 protease inhibitory [4] activities, which has inspired the development of
many approaches to their synthesis. In this regard, the cyclization of α-amino ynones [5–7]
and the three-component reactions of 2,3-diketo esters, amines, and ketones [8] have shown
significant scope. Another interesting approach is the ring-opening cyclization of cyclo-
propyl ketones with primary amines, which has been accomplished as a Ni(II)-catalyzed
process [9] and also in an asymmetric variant, with the help of chiral Sc(III) complexes [10].
1,3-Dicarbonyl compounds and their enamines have been widely used as precursors to
pyrrolin-4-ones with carbamoyl, acyl, or alkoxycarbonyl substituent at the C3-position. A
well-studied approach of this type is the oxidative cyclization of β-enaminones, involving
a rearrangement step after the ring formation [11–14]. This oxidative cyclization has also
been realized in a one-pot variant, starting from β-ketoamides [15]. Similar pyrrolinones
have been synthesized by the Cu(II)-catalyzed cyclization of α-diazo-β-oxoamides with
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amines [16]. Iodine promoted cyclization of enaminone with aryl methyl ketones has also
been demonstrated as a useful method for the synthesis of some pyrrolin-4-ones [17].

2. Results

In the course of our ongoing studies on a class of synthetic intermediates, obtained by
the acylation of β-enamino amides with N-protected amino acids, we have observed two
distinct modes of acid-catalyzed intramolecular cyclization in these compounds, leading
to either enaminotetramic derivatives [18] or pyrrolin-4-ones [19]. Our experiments so
far have focused on acid-stable protecting groups, which in both modes are retained in
the final products, except for one unusual case of 2-nitrobenzoyl protection [20]. It was
of interest to check whether an initial removal of the protecting group would change the
cyclization mode. For this purpose, we turned our attention to acid-labile protection, such
as Boc, and prepared compound 2 by the acylation of enaminoamide 1 with N-Boc-glycine
(Scheme 1, i). The acylation was done using the mixed carbonic anhydride method [18,19]
and gave the expected product 2 in an 87% yield. Compound 2 was then treated with TFA
to remove the Boc protection from the glycine residue (Scheme 1, ii). Experiments were
carried out with varying concentration of TFA in dichloromethane at room temperature
and also in neat TFA. In all experiments, the pyrrolinone 4 was obtained as a single product
in a 70–90% yield. The structure of 4 was determined on the basis of its 1H and 13C NMR
spectra, which clearly indicate the retention of the phenyl amide moiety and departure
of the ethylamino group from intermediate 2. An interesting peculiarity that is observed
in the 1H and COSY NMR spectra of 4 is the long-range coupling between the exocyclic
C2-methyl protons and the C5-methylene protons in the pyrrolinone ring (5J = 1.8 Hz, see
SI file 1). The formation of 4 is likely to proceed through the imino-tautomer 3′ of the
unprotected intermediate, as a 5-exo-trig addition followed by the elimination of ethylamine
(Scheme 2). This mode of cyclization is different to the one observed in analogues of 2
with acid-stable N-protection, such as Troc or COOEt. The latter react only upon heating in
neat TFA, with the 5-exo-trig process taking place at the amide carbonyl, followed by the
elimination of aniline [18]. Ethylenediamine analogues of 2, on the other hand, follow the
same mode of cyclization, but with retention of the acid-stable protecting groups [19].
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Scheme 1. Synthesis of intermediate 2 and pyrrolinone 4. Reagents and conditions: (i) Boc-
NHCH2COOH, NMM, EtOCOCl, CH2Cl2, 0 °C to r.t., 1h; (ii) TFA, r.t. 

Scheme 1. Synthesis of intermediate 2 and pyrrolinone 4. Reagents and conditions:
(i) BocNHCH2COOH, NMM, EtOCOCl, CH2Cl2, 0 ◦C to r.t., 1h; (ii) TFA, r.t.

In conclusion, we have obtained 2-methyl-4-oxo-4,5-dihydro-1H-pyrrole-3-carboxylic
acid phenylamide (4) in a high yield, using an operationally simple protocol, not involving
chromatographic purification of the product or any intermediate. This result suggests yet
another approach to pyrrolin-4-one derivatives and complements our previously described
synthesis of N-protected compounds of this type [19].
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Scheme 2. Deprotection and cyclization of intermediate 2 with suggested 5-exo-trig ring closure. 
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3. Materials and Methods

All reagents and solvents were purchased from Sigma-Aldrich, Darmstadt, Ger-
many, and were used as supplied. Enamino amide 1 was obtained in a quantitative
yield by the condensation of ethylamine and acetoacetanilide, following our published
procedure [18,20]. NMR spectra were run on a Bruker NEO 400 (400/100 MHz 1H/13C)
spectrometer at BAS-IOCCP—Sofia. Chemical shifts (δ, ppm) are downfield from TMS.
High-resolution mass spectral measurements were performed on a Waters Acquity—Synapt
XS UPLC—mass spectrometry system. IR spectra were measured on a Bruker Alpha II FT
IR spectrometer in KBr pellets. Melting point measurements were done in capillary tubes
on a KRÜSS M5000 automatic mp meter and are not corrected.

Synthesis of (4-Ethylamino-2-oxo-3-phenylcarbamoyl-pent-3-enyl)-carbamic acid tert-butyl
ester (2): To a magnetically stirred suspension of N-Boc-glycine (526 mg, 3 mmol) in CH2Cl2
(15 mL) was added N-methylmorpholine (3 mmol, 0.33 mL). The resulting solution was
cooled in an ice bath and then ethyl chloroformate (3 mmol, 0.3 mL) was added. The
mixture was left to stir for 5 min and after that a solution of enamino amide 1 (613 mg,
3 mmol) and DMAP (73 mg, 0.6 mmol) in CH2Cl2 (35 mL) was added in one portion. The
ice bath was then removed, the reaction mixture was allowed to warm up to r.t. and was
left to stir for one more hour. The reaction mixture was then transferred to a separatory
funnel with 20 more mL of CH2Cl2 and was washed with aqueous (10:1) HCl. The aqueous
layer was extracted with 20 more mL of CH2Cl2, the combined organic layers were dried
with anhydrous sodium sulfate, the drying agent was removed by filtration and the solvent
was distilled off. The crude α-C-acylated product 2 crystallized upon trituration with
diethyl ether and was washed with small amount of the same solvent. Yield: 995 mg
(92%), white solid, m.p. 156–157 ◦C; IR (cm–1, KBr): 3434, 3255, 3225, 3122, 3051, 3005, 2983,
1707, 1637, 1598, 1581; 1H-NMR (DMSO-d6, δ ppm, J Hz): 1.19 (t, J = 7.2, 3H), 1.37 (s, 9H)
2.04 (s, 3H), 3.37 (m, 2H), 3.81 (d, 2H, J = 5.8), 6.61 (t, 1H, J = 5.8), 7.06 (m, 1H), 7.31 (m,
2H), 7.67 (d, 2H, J = 7.8), 10.14 (s, 1H), 11.37 (br s, 1H); 13C-NMR (DMSO-d6, δ ppm):
15.5, 16.4, 28.7, 37.8, 46.5, 78.2, 106.7, 119.6, 123.7, 129.12, 140.0, 156.2, 163.8, 167.9, 189.1
(Only signals corresponding to the major tautomer are listed); HRMS m/z (ES+): calculated
for C19H27N3NaO4

+ [M+Na]+ 384.1894, found 384.1919; calculated for C38H54N6NaO8++

[2M+Na]+ 745.3895, found 745.3906.
Synthesis of 2-Methyl-4-oxo-4,5-dihydro-1H-pyrrole-3-carboxylic acid phenylamide (4): To

compound 2 (300 mg, 0.83 mmol), placed in a 100 mL round bottom flask with a magnetic
stirrer bar, was added trifluoroacetic acid (10 mL) and the mixture was magnetically stirred
for 10 min at room temperature. Then, water (50–60 mL) was poured into the flask and
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the resulting suspension was left to stir for 30 min at room temperature. The obtained
product was isolated by vacuum filtration on a sintered glass funnel and was rinsed
consecutively with small amounts of water and diethyl ether. Alternatively, the product
could be isolated by repetitive extractions in CH2Cl2, but the solubility in this solvent
is poor. Yield: 162 mg (90%), white solid, m.p. 207 ◦C dec.; IR (cm–1, KBr): 3185, 3082,
2952, 2924, 1674, 1593, 1541; 1H-NMR (DMSO-d6, δ ppm, J Hz): 2.55 (dt, 4J(H-C-C-N-H) = 0.4,
5J(H-C-C-N-C-H) = 1.8, 3H, CH3), 4.09 (dq, 3J(H-C-N-H) = 2.0, 5J(H-C-N-C-C-H) = 1.8, 2H, CH2), 7.00
(m, 1H, Aryl CH, para), 7.29 (m, 2H, Aryl CH, metha), 7.58 (m, 2H, Aryl CH, ortho), 9.67 (br s,
1H, NH), 10.42 (s, 1H, CONH); 13C-NMR (DMSO-d6, δ ppm): 17.1, 55.0, 103.7, 119.3, 122.9,
129.3, 139.7, 162.4, 181.2, 196.6; HRMS m/z (ES+): calculated for C12H12N2NaO2

+ [M+Na]+

239.0791, found 239.0782; calculatedd for C12H13N2O2
+ [M+H]+ 217.0972, found 217.0968.

Supplementary Materials: S1.pdf—Processed NMR and mass spectra. S2-1.zip—Raw NMR data in
Bruker-specific format and mol files. S2-2.zip—IR spectra.
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