3-(2-Chloroethoxy)-1-(4-methoxyphenyl)-1H-pyrazole-4-carbaldehyde
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chahal, M.; Dhillon, S.; Rani, P.; Kumari, G.; Aneja, D.K.; Kinger, M. Unravelling the Synthetic and Therapeutic Aspects of Five, Six and Fused Heterocycles Using Vilsmeier–Haack Reagent. RSC Adv. 2023, 13, 26604–26629. [Google Scholar] [CrossRef] [PubMed]
- Quiroga, J.; Diaz, Y.; Insuasty, B.; Abonıa, R.; Nogueras, M.; Cobo, J. Preparation of 6-Chloropyrazolo[3,4-b]Pyridine-5-Carbaldehydes by Vilsmeier–Haack Reaction and Its Use in the Synthesis of Heterocyclic Chalcones and Dipyrazolopyridines. Tetrahedron Lett. 2010, 51, 2928–2930. [Google Scholar] [CrossRef]
- Quiroga, J.; Trilleras, J.; Insuasty, B.; Abonía, R.; Nogueras, M.; Cobo, J. Regioselective Formylation of Pyrazolo[3,4-b]Pyridine and Pyrazolo[1,5-a]Pyrimidine Systems Using Vilsmeier–Haack Conditions. Tetrahedron Lett. 2008, 49, 2689–2691. [Google Scholar] [CrossRef]
- Kazlauskas, K.; Kreiza, G.; Arbačiauskienė, E.; Bieliauskas, A.; Getautis, V.; Šačkus, A.; Juršėnas, S. Morphology and Emission Tuning in Fluorescent Nanoparticles Based on Phenylenediacetonitrile. J. Phys. Chem. C 2014, 118, 25261–25271. [Google Scholar] [CrossRef]
- Varvuolytė, G.; Malina, L.; Bieliauskas, A.; Hošíková, B.; Simerská, H.; Kolářová, H.; Kleizienė, N.; Kryštof, V.; Šačkus, A.; Žukauskaitė, A. Synthesis and Photodynamic Properties of Pyrazole-Indole Hybrids in the Human Skin Melanoma Cell Line G361. Dye. Pigment. 2020, 183, 108666. [Google Scholar] [CrossRef]
- Milišiūnaitė, V.; Arbačiauskienė, E.; Řezníčková, E.; Jorda, R.; Malínková, V.; Žukauskaitė, A.; Holzer, W.; Šačkus, A.; Kryštof, V. Synthesis and Anti-Mitotic Activity of 2,4- or 2,6-Disubstituted- and 2,4,6-Trisubstituted-2H-Pyrazolo [4,3-c]Pyridines. Eur. J. Med. Chem. 2018, 150, 908–919. [Google Scholar] [CrossRef]
- Razmienė, B.; Řezníčková, E.; Dambrauskienė, V.; Ostruszka, R.; Kubala, M.; Žukauskaitė, A.; Kryštof, V.; Šačkus, A.; Arbačiauskienė, E. Synthesis and Antiproliferative Activity of 2,4,6,7-Tetrasubstituted-2H-Pyrazolo[4,3-c]Pyridines. Molecules 2021, 26, 6747. [Google Scholar] [CrossRef]
- Urnikaitė, S.; Malinauskas, T.; Bruder, I.; Send, R.; Gaidelis, V.; Sens, R.; Getautis, V. Organic Dyes with Hydrazone Moieties: A Study of Correlation between Structure and Performance in the Solid-State Dye-Sensitized Solar Cells. J. Phys. Chem. C 2014, 118, 7832–7843. [Google Scholar] [CrossRef]
- Igci, C.; Paek, S.; Rakstys, K.; Kanda, H.; Shibayama, N.; Jankauskas, V.; Roldán-Carmona, C.; Kim, H.; Asiri, A.M.; Nazeeruddin, M.K. D–π–A-Type Triazatruxene-Based Dopant-Free Hole Transporting Materials for Efficient and Stable Perovskite Solar Cells. Sol. RRL 2020, 4, 2000173. [Google Scholar] [CrossRef]
- Hwang, J.; Kim, C.Y.; Kang, H.; Jeong, J.-E.; Woo, H.Y.; Cho, M.J.; Park, S.; Choi, D.H. Universal Polymeric Bipolar Hosts for Highly Efficient Solution-Processable Blue and Green Thermally Activated Delayed Fluorescence OLEDs. J. Mater. Chem. C Mater. 2020, 8, 16048–16056. [Google Scholar] [CrossRef]
- Mai, R.; Wu, X.; Jiang, Y.; Meng, Y.; Liu, B.; Hu, X.; Roncali, J.; Zhou, G.; Liu, J.-M.; Kempa, K.; et al. An Efficient Multi-Functional Material Based on Polyether-Substituted Indolocarbazole for Perovskite Solar Cells and Solution-Processed Non-Doped OLEDs. J. Mater. Chem. A Mater. 2019, 7, 1539–1547. [Google Scholar] [CrossRef]
- Li, Q.; Jiang, J.; Fan, A.; Cui, Y.; Jia, Y. Total Synthesis of Lamellarins D, H, and R and Ningalin B. Org. Lett. 2011, 13, 312–315. [Google Scholar] [CrossRef]
- Mathew, P.; Asokan, C.V. Cyclization of Functionalized Ketene-N,S-Acetals to Substituted Pyrroles: Applications in the Synthesis of Marine Pyrrole Alkaloids. Tetrahedron Lett. 2005, 46, 475–478. [Google Scholar] [CrossRef]
- Boudreault, J.; Lévesque, F.; Bélanger, G. Studies toward Total Synthesis of (±)-Caldaphnidine C via One-Pot Sequential Intramolecular Vilsmeier–Haack and Azomethine Ylide 1,3-Dipolar Cycloaddition. J. Org. Chem. 2016, 81, 9247–9268. [Google Scholar] [CrossRef]
- Abdelhamid, I.A.; Shaaban, M.R.; Elwahy, A.H.M. Applications of the Vilsmeier Reaction in Heterocyclic Chemistry. In Advances in Heterocyclic Chemistry; Academic Press: Cambridge, MA, USA, 2022; Volume 136, pp. 171–223. [Google Scholar]
- Su, W.; Weng, Y.; Jiang, L.; Yang, Y.; Zhao, L.; Chen, Z.; Li, Z.; Li, J. Recent Progress in the Use of Vilsmeier-Type Reagents. Org. Prep. Proced. Int. 2010, 42, 503–555. [Google Scholar] [CrossRef]
- Luo, G.; Chen, M.; Lyu, W.; Zhao, R.; Xu, Q.; You, Q.; Xiang, H. Design, Synthesis, Biological Evaluation and Molecular Docking Studies of Novel 3-Aryl-4-Anilino-2H-Chromen-2-One Derivatives Targeting ERα as Anti-Breast Cancer Agents. Bioorg. Med. Chem. Lett. 2017, 27, 2668–2673. [Google Scholar] [CrossRef]
- Abdellatif, K.R.A.; Velázquez, C.A.; Huang, Z.; Chowdhury, M.A.; Knaus, E.E. Triaryl (Z)-Olefins Suitable for Radiolabeling with Iodine-124 or Fluorine-18 Radionuclides for Positron Emission Tomography Imaging of Estrogen Positive Breast Tumors. Bioorg. Med. Chem. Lett. 2011, 21, 1195–1198. [Google Scholar] [CrossRef]
- Linciano, P.; Sorbi, C.; Rossino, G.; Rossi, D.; Marsala, A.; Denora, N.; Bedeschi, M.; Marino, N.; Miserocchi, G.; Dondio, G.; et al. Novel S1R Agonists Counteracting NMDA Excitotoxicity and Oxidative Stress: A Step Forward in the Discovery of Neuroprotective Agents. Eur. J. Med. Chem. 2023, 249, 115163. [Google Scholar] [CrossRef]
- Deligeorgiev, T.G.; Simov, D. Preparation of Cationic Azo Dyes Derived from 2-Amino-6-(2-Chloroethoxy)Benzothiazole and 2-Amino-4-(2-Hydroxyethoxy)Benzothiazole. Dye. Pigm. 1998, 38, 115–125. [Google Scholar] [CrossRef]
- Sawant, R.T.; Stevenson, J.; Odell, L.R.; Arvidsson, P.I. Organocatalytic Asymmetric Cross-Aldol Reaction of 2-Chloroethoxy Acetaldehyde: Diversity-Oriented Synthesis of Chiral Substituted 1,4-Dioxanes and Morpholines. Tetrahedron Asymmetry 2013, 24, 134–141. [Google Scholar] [CrossRef]
- Stoffelen, C.; Staltari-Ferraro, E.; Huskens, J. Effects of the Molecular Weight and the Valency of Guest-Modified Poly(Ethylene Glycol)s on the Stability, Size and Dynamics of Supramolecular Nanoparticles. J. Mater. Chem. B 2015, 3, 6945–6952. [Google Scholar] [CrossRef] [PubMed]
- Pethő, B.; Vangel, D.; Csenki, J.T.; Zwillinger, M.; Novák, Z. Palladium Catalyzed Chloroethoxylation of Aromatic and Heteroaromatic Chlorides: An Orthogonal Functionalization of a Chloroethoxy Linker. Org. Biomol. Chem. 2018, 16, 4895–4899. [Google Scholar] [CrossRef] [PubMed]
- Jawabrah Al-Hourani, B.; El-Barghouthi, M.I.; Al-Awaida, W.; McDonald, R.; Fattash, I.A.; El Soubani, F.; Matalka, K.; Wuest, F. Biomolecular Docking, Synthesis, Crystal Structure, and Bioassay Studies of 1-[4-(2-Chloroethoxy)Phenyl]-5-[4-(Methylsulfonyl)Phenyl]-1H-Tetrazole and 2-(4-(5-(4-(Methylsulfonyl)Phenyl)-1H-Tetrazol-1-Yl)Phenoxy)Ethyl Nitrate. J. Mol. Struct. 2020, 1202, 127323. [Google Scholar] [CrossRef]
- Zhang, G.; Zha, L. Isolation of Highly Pure Erlotinib Hydrochloride by Recrystallization after Nucleophilic Substitution of an Impurity with Piperazine. Res. Chem. Intermed. 2013, 39, 2303–2309. [Google Scholar] [CrossRef]
- Wang, Y.; Metcalf, C.A.I.; Shakespeare, W.C.; Sawyer, T.K.; Bohacek, R. Novel Quinazolines and Uses Thereof. WO03000188A2, 8 January 2003. [Google Scholar]
- Urbonavičius, A.; Fortunato, G.; Ambrazaitytė, E.; Plytninkienė, E.; Bieliauskas, A.; Milišiūnaitė, V.; Luisi, R.; Arbačiauskienė, E.; Krikštolaitytė, S.; Šačkus, A. Synthesis and Characterization of Novel Heterocyclic Chalcones from 1-Phenyl-1H-Pyrazol-3-Ol. Molecules 2022, 27, 3752. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varvuolytė, G.; Bieliauskas, A.; Kleizienė, N.; Žukauskaitė, A.; Šačkus, A. 3-(2-Chloroethoxy)-1-(4-methoxyphenyl)-1H-pyrazole-4-carbaldehyde. Molbank 2024, 2024, M1782. https://doi.org/10.3390/M1782
Varvuolytė G, Bieliauskas A, Kleizienė N, Žukauskaitė A, Šačkus A. 3-(2-Chloroethoxy)-1-(4-methoxyphenyl)-1H-pyrazole-4-carbaldehyde. Molbank. 2024; 2024(1):M1782. https://doi.org/10.3390/M1782
Chicago/Turabian StyleVarvuolytė, Gabrielė, Aurimas Bieliauskas, Neringa Kleizienė, Asta Žukauskaitė, and Algirdas Šačkus. 2024. "3-(2-Chloroethoxy)-1-(4-methoxyphenyl)-1H-pyrazole-4-carbaldehyde" Molbank 2024, no. 1: M1782. https://doi.org/10.3390/M1782
APA StyleVarvuolytė, G., Bieliauskas, A., Kleizienė, N., Žukauskaitė, A., & Šačkus, A. (2024). 3-(2-Chloroethoxy)-1-(4-methoxyphenyl)-1H-pyrazole-4-carbaldehyde. Molbank, 2024(1), M1782. https://doi.org/10.3390/M1782