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Abstract: TEMPO-containing conductive polymers are used in organic electronics due to their elec-
trochemical properties. One of significant limitations in developing such materials is the structural
modification by several TEMPO moieties. Here, we report a synthesis of the first-generation den-
drimer containing two TEMPO fragments, bis(2,2,6,6-tetramethyl-1-(λ1-oxidaneyl)piperidin-4-yl)
3,3′-((2-hydroxyethyl)azanediyl)dipropionate, that can be implemented into a conductive polymer
structure. The resulting product was characterized using 1H and 13C nuclear magnetic resonance
spectroscopy (NMR) and high-resolution mass spectroscopy (HRMS).
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1. Introduction

2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) is a stable organic radical well known
as a building block for the construction of redox polymers for organic radical batteries [1–7].
The advantages of such polymers in batteries and supercapacitors are their high redox
potential and theoretical specific capacity [8]. The incorporation of TEMPO moieties in the
polymer structure is a key challenge in the design of such conductive polymers due to their
low thermal stability and chemical lability. For instance, an actual problem to be solved
is to attach several TEMPO fragments to the monomeric unit of the conductive polymer.
A possible solution of this problem may be to use the dendrimer-like scaffold [9] with a
reactive focal fragment as a side chain of the conducting polymer, which can enhance the
range of tools for developing such materials.

Here, we report the synthesis of a dendron-like compound bearing two TEMPO
fragments on the basis of the amine-acrylate Michael dendron constructive approach. The
obtained product was characterized using nuclear magnetic resonance (NMR) spectroscopy,
Fourier transform infrared spectroscopy (FTIR), and high-resolution mass spectrometry
(HRMS).

2. Results and Discussion

The starting TEMPO-acrylate 1 was prepared using a modified procedure and its
NMR spectra (Figures S1 and S2 in Supplementary Materials) are consistent with the
literature [10].

The attempted Michael addition of 2-aminoethanol to acrylate 1 in primary alcohols
(methanol or ethanol) suffered from the simultaneous alcoholysis of the product, which
led to the formation of re-esterification products. The replacement of the primary alcohols
by 2-propanol allowed us to avoid the undesired re-esterification. The treatment of 2-
aminoethanol with 2 equivalents of 1 at room temperature in 2-propanol media (Scheme 1)
resulted in the formation of the desired compound 2 with a 59% yield after purification via
column chromatography.
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acquire the NMR spectra. The reductive quenching of the radical centers in 1 and 2 was 
performed in situ with the addition of the N-deuterated 2,3,4,5,6-pentafluorophenylhy-
drazine. To establish the purity of the product, quantitative 1H NMR with p-xylene as in-
ternal standard was acquired (Figure S7). Accordingly, the sample was found to contain 
98% of the title compound based on the integral intensity ratio. 
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mL of dry dichloromethane acryloylchloride (3.011 g, 33 mmol) was added dropwise. The 
reaction mixture was stirred at room temperature for 24 h. Then, the reaction solution was 
poured into cold water (100 mL), and organic layer was washed with brine, separated, and 
dried over Na2SO4. The solvent was partly evaporated under reduced pressure and the 
residue was subjected to silica gel column chromatography (EtOAc/hexane 1:1) to obtain 
acrylate 1 (5.42 g, 80%) as orange crystals.  
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MHz, CDCl3) δ, ppm: 20.58, 31.65, 43.72, 66.81, 128.75, 130.54, 165.74. 

  

Scheme 1. Synthesis of the title compound.

Since TEMPO fragments are paramagnetic, radical centers should be quenched to
acquire the NMR spectra. The reductive quenching of the radical centers in 1 and 2 was per-
formed in situ with the addition of the N-deuterated 2,3,4,5,6-pentafluorophenylhydrazine.
To establish the purity of the product, quantitative 1H NMR with p-xylene as internal
standard was acquired (Figure S7). Accordingly, the sample was found to contain 98% of
the title compound based on the integral intensity ratio.

As a result, a first-generation dendron with TEMPO periphery and a reactive -OH
focal group was obtained. This compound can further be used to implement two TEMPO
fragments at once to enhance the electrochemical and electrical properties of organic
conductive polymers for organic electronics.

3. Materials and Methods
3.1. General Consideration

Reagents of “reagent grade” purity were purchased from Sigma–Aldrich (Hamburg,
Germany). The starting TEMPO-acrylate 1 was prepared following the modified proce-
dure in the literature [10]. 1H and 13C-NMR spectra were acquired on a Bruker Avance
400 spectrometer (Bruker Analytische Messtechnik GmbH, Rheinstetten, Germany) at
400 and 101 MHz, respectively, in CDCl3 with the presence of N-deuterated 2,3,4,5,6-
pentafluorophenylhydrazine. The Fourier-transform infrared spectra were recorded on the
Shimadzu IRAffinity-1 FTIR spectrophotometer (Shimadzu Europa GmbH, Kyoto, Japan)
in KBr pellets. The HRMS spectrum was recorded using electrospray ionization on a Bruker
microTOF apparatus (Bruker Analytische Messtechnik GmbH, Rheinstetten, Germany) in
positive mode.

3.2. Synthesis of TEMPO-Acrylate 1

To a solution of 4-hydroxyTEMPO (5.21 g, 30 mmol) with Et3N (3.361 g, 33 mmol),
15 mL of dry dichloromethane acryloylchloride (3.011 g, 33 mmol) was added dropwise.
The reaction mixture was stirred at room temperature for 24 h. Then, the reaction solution
was poured into cold water (100 mL), and organic layer was washed with brine, separated,
and dried over Na2SO4. The solvent was partly evaporated under reduced pressure and
the residue was subjected to silica gel column chromatography (EtOAc/hexane 1:1) to
obtain acrylate 1 (5.42 g, 80%) as orange crystals.

1H NMR (400 MHz, CDCl3) δ, ppm: 1.24 (s, 12H), 1.64 (t, J = 12 Hz, 2H), 1.97 (dd,
J = 4 Hz, 12 Hz, 2H), 2.45 (t, J = 7 Hz, 4H), 5.14 (tt, J = 4 Hz, 11 Hz, 1H). 5.82 (dd, J = 1.5 Hz,
10 Hz 1H), 6.09 (dd, J = 10 Hz, 17 Hz, 1H), 6.39 (dd, J = 1.5 Hz, 17 Hz, 1H). 13C NMR
(101 MHz, CDCl3) δ, ppm: 20.58, 31.65, 43.72, 66.81, 128.75, 130.54, 165.74.
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3.3. Synthesis of Bis(2,2,6,6-tetramethyl-1-(λ1-oxidaneyl)piperidin-4-yl 3,3′-((2-
hydroxyethyl)azanediyl)dipropionate 2

To a solution of 1 (1.12 g, 4.96 mmol) in dry isopropanol (10 mL), 2-aminoethanol
(0.145 g, 2.4 mmol) was added. The reaction mixture was stirred at room temperature for
72 h. The resulting solution was then poured into water and extracted with dichloromethane
(3 × 40 mL). The organic phase was dried over sodium sulphate, the solvent was partly
evaporated in vacuo, and the residue was purified using silica gel column chromatography
(EtOAc/hexane 1:2), giving 2 as an orange oil (59%).

1H NMR (400 MHz, CDCl3) δ, ppm: 1.21 (s, 12H), 1.23 (s, 12H), 1.60 (t, J = 12 Hz, 4H),
1.92 (dd, J = 4 Hz, 12Hz, 4H), 2.45 (t, J = 7 Hz, 4H), 2.81 (t, J = 7 Hz, 4H), 3.59 (t, J = 5 Hz,
2H), 5.07 (m, 2H). 5.24 (s, 1H). 13C NMR (101 MHz, CDCl3) δ, ppm: 20.47, 31.72, 32.74,
43.71, 49.03, 55.75, 58.89, 59.52, 66.92, 172.09. FTIR (KBr) ṽ, cm−1: 2976 (br, C-H), 1730 (C=O
ester). HRMS (ESI) m/z [M + H]+ calcd for C26H48N3O7

+ 514.3487, found 514.3483.
The sample for the quantitative NMR analysis was prepared as follows: 21.0 mg of

product 2 and 6.24 mg of p-xylene were precisely weighed in the NMR tube, dissolved
in CDCl3, and quenched with N-deuterated 2,3,4,5,6-pentafluorophenylhydrazine. The
quantity of the dendron was calculated from the ratio of the integral intensities of the
aromatic singlet of the p-xylene on 7.09 ppm and the signal of the TEMPO protons at
1.92 ppm.

Supplementary Materials: Figures S1–S7: 1H and 13C NMR spectra for compounds 1 and 2, FTIR
and HRMS spectrum for compound 2.
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