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Abstract: The compound 1-(3-chlorophenyl)-3-(6-((1,7,7-trimethylbicyclo[2.2.1]heptan-2-ylidene)
amino)hexyl)thiourea was synthesized for the first time from 6-((1,7,7-trimethylbicyclo[2.2.1]heptan-
2-ylidene)amino)hexan-1-amine and 3-chlorophenylisothiocyanate in DMF with a 60% yield. It was
characterized by 1H, 13C{1H} NMR, FT-IR, MS, and elemental analysis.
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1. Introduction

Previously, we have observed synthesis and inhibitory activity against human soluble
epoxide hydrolase (sEH) of multiple series of adamantyl-containing 1,3-disubstituted ureas and
thioureas, and the same findings have been reported by our colleagues [1–3]. sEH is involved in
the metabolism of epoxy fatty acids to corresponding vicinal diols through a catalytic addition
of water [4,5]. The resulting dihydroxyepoxyeicosatrienoic acids promote various pathological
states, such as pain and inflammation [6]. Thus, inhibition of sEH could be beneficial in the
treatment of cardiovascular, neuronal, and renal diseases [7,8]. 1,3-Disubstituted ureas contain-
ing lipophilic moieties such as adamantyl, bornyl, or 4-(trifluoromethoxy)phenyl (Figure 1) are
among the most potent sEH inhibitors active in nanomolar concentrations [9–11].
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1. Introduction 
Previously, we have observed synthesis and inhibitory activity against human 

soluble epoxide hydrolase (sEH) of multiple series of adamantyl-containing 1,3-
disubstituted ureas and thioureas, and the same findings have been reported by our 
colleagues [1–3]. sEH is involved in the metabolism of epoxy fatty acids to corresponding 
vicinal diols through a catalytic addition of water [4,5]. The resulting 
dihydroxyepoxyeicosatrienoic acids promote various pathological states, such as pain and 
inflammation [6]. Thus, inhibition of sEH could be beneficial in the treatment of 
cardiovascular, neuronal, and renal diseases [7,8]. 1,3-Disubstituted ureas containing 
lipophilic moieties such as adamantyl, bornyl, or 4-(trifluoromethoxy)phenyl (Figure 1) 
are among the most potent sEH inhibitors active in nanomolar concentrations [9–11]. 
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Figure 1. Most common fragments of soluble epoxide hydrolase inhibitors. 

This makes the synthesis and evaluation of new adamantyl-containing 1,3-
disubstituted thioureas as soluble epoxide hydrolase inhibitors relevant. The present 
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Figure 1. Most common fragments of soluble epoxide hydrolase inhibitors.

This makes the synthesis and evaluation of new adamantyl-containing 1,3-disubstituted
thioureas as soluble epoxide hydrolase inhibitors relevant. The present study focuses on the
preparation and identification of 1-(3-chlorophenyl)-3-(6-((1,7,7-trimethylbicyclo[2.2.1]heptan-
2-ylidene)amino)hexyl)thiourea.
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2. Results and Discussion

We chose to use imine derived from camphor as a fragment for our new class of
soluble epoxide hydrolase inhibitors for a number of reasons. First of all, substitution of
adamantane with natural monoterpene fragments [2] or their simultaneous introduction
into the same molecule [12] can provide great benefits in the field of green chemistry.
Secondly, compounds containing imines derived from camphor possess various biological
activities, including strong antiviral activity [13]. Finally, the imine group, unlike the urea
and thiourea groups, is slightly basic and is capable of forming salts with acids. These
salts could be water-soluble, or could at least possess significantly higher water solubility
compared to free imine.

Based on our previous experience, we proposed a method for the preparation and isola-
tion of 1-(3-chlorophenyl)-3-(6-((1,7,7-trimethylbicyclo[2.2.1]heptan-2-ylidene)amino)hexyl)
thiourea (3) (Scheme 1).
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recorded on a FT-801 FT-IR spectrometer (LLC Simex, Novosibirsk, Russia). The MS 
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Scheme 1. Synthesis of compound 3 from 6-((1,7,7-trimethylbicyclo[2.2.1]heptan-2-ylidene)amino)hexan-
1-amine (1) and 3-chlorophenylisothiocyanate (2).

Starting compound 1 has very poor solubility in hexane and diethyl ether, so we used
DMF as a solvent for this reaction. We usually use anhydrous DMF for the reactions including
isocyanates due to its water sensitivity. However, for isothiocyanates, this is not necessary.
We also did not use Et3N in this reaction. Commonly, we use Et3N to increase the basicity of
the medium and thus to speed up the reaction. However, to remove Et3N from the reaction
mass, we rinse it with 1 N HCl and then with water. For this reaction, we could not use HCl
due to the possibility of salt formation by the product. For the same reason, we did not use
excess amine in this reaction. Excess amine is used to speed up the reaction and to make sure
that no isocyanate or isothiocyanate remains. Excess amine is also removed by treating the
reaction mass with 1 N HCl. Since we could not do this, we used the starting material in the
equimolar ratio and increased the reaction time from 8 to 12 h.

After the reaction mass was stirred for 12 h, the formation of pale-yellow precipitate
of crude compound 3 was observed. After the solvent was filtered off, the precipitate was
washed with distilled water and dried in vacuo. Crystallization from ethanol produced
pure compound 3 as a white solid.

3. Materials and Methods
1H and 13C NMR spectra were recorded with a Bruker DPX 300 machine (Bruker

AXS Handheld Inc., Kennewick, WA, USA) (at frequencies of 300 and 75 MHz) in DMSO-
d6 solution with TMS as the standard. The J values are given in Hz. The IR spectrum
was recorded on a FT-801 FT-IR spectrometer (LLC Simex, Novosibirsk, Russia). The
MS spectrum was recorded on an Agilent MS 5977b (Agilent Technologies, Inc., Santa Clara,
CA, USA) using electron impact ionization (EI). The melting point was measured using a
Büchi M-565 (Büchi Labortechnik AG, Flawil, Switzerland) and was calculated as the mean
of 3 separate experiments. The elemental analysis was performed on a Perkin-Elmer Series
II 2400 Elemental Analyzer (Perkin Elmer Inc., Waltham, MA, USA). The TLC analysis
was carried out on Merck silica gel chromatography plates with fluorescent indicator
F254 (1.05554); sorbent: Silica 60, with a layer thickness of 200 um; a pore size of 60 Å, and a
particle size of 10-12 um; binder: organic polymer (Merck KGaA, Darmstadt, Germany).
The solvents and reagents were purchased from commercial sources. The NMR signals of
the bornylidene fragment were assigned according to data found in the literature [13].
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Synthesis of 1-(3-chlorophenyl)-3-(6-((1,7,7-trimethylbicyclo[2.2.1]heptan-2-ylidene)amino)
hexyl)thiourea (3) was performed according to the following procedure. Labelling of atoms in
the compound 3 is given in Figure 2. For detailed spectral data see Supplementary Materials.
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Into a flat-bottom flask equipped with a magnetic stirrer, we added 300 mg (1.20 mmol)
of compound 1, 5 mL of hexane and 200 mg (1.18 mmol) of compound 2. The resulting mixture
was left to stir for 12 h at rt. After that, pale-yellow precipitate of crude compound 3 was
filtered off, washed with 30 mL of distilled water, and dried in vacuo. The resulting crude
compound 3 was purified by crystallization from ethanol. Yield 298 mg, 0.70 mmol, 60% yield,
white solid, m.p. = 112.7 ◦C. FT-IR (ATR, cm−1): 549 (C-Cl), 738 (C=S), 1478 (C-N), 1545 (NH),
1673 (C=N), 2942 (CH). Mass spectrum, m/z (Irel.%): 421 (2% [M + 1]+), 250 (20% [M-Cl-Ph-
NCS]+), 169 (100%, [Cl-Ph-NCS]+). 1H NMR (DMSO-d6), δ, ppm: 0.68 (s, 3H, H-9), 0.84 (s,
3H, H-9), 0.87 (s, 3H, H-8), 1.13–1.22 (m, 2H, (H-5endo, H-6endo)), 1.26–1.35 (m, 4H, H-12,
H-13), 1.48–1.55 (m, 4H, H-11, H-14), 1.55–1.61 (m, 1H, H-6exo), 1.75–1.84 (m, 2H, (H-3endo,
H-5exo)), 1.88 (t, 1H, J = 4.5 Hz, H-4), 2.27 (br.d, 1H, J = 17.2 Hz, H-3exo), 3.02–3.20 (m, 2H,
H-10), 3.38–3.49 (m, 2H, H-15), 7.05–7.13 (m, 1H, H-20), 7.25–7.34 (m, 2H, H-21, H-22), 7.70 (s,
1H, H-18), 7.86 (br.s, 1H, NH-C-15), 9.48 (br.s, 1H, NH-C-17). 13C{1H} NMR (DMSO-d6), δ,
ppm: 12.2 (C-8), 19.4 (C-9), 19.9 (C-9), 27.0 (C-12), 27.3 (C-13), 27.6 (C-5), 29.0 (C-11), 30.8 (C-14),
32.6 (C-6), 35.4 (C-3), 43.9 (C-4), 44.4 (C-15), 47.0 (C-7), 51.8 (C-10), 53.7 (C-1), 121,3 (C-22),
122.4 (C-18), 123.9 (C-20), 130.7 (C-21), 133.2 (C-19), 141.8 (C-17), 180.4 (C-16), 180.8 (C-2).
Calcd. for C23H34ClN3S: C 65.77; H 8.16; N 10.00; S 7.63. Found: C 65.80; H 8.15; N 10.05;
S 7.60. M = 420.06.

4. Conclusions

In this work, we presented a method for the preparation of 1-(3-chlorophenyl)-3-(6-((1,7,7-
trimethylbicyclo[2.2.1]heptan-2-ylidene)amino)hexyl)thiourea from 6-((1,7,7-trimethylbicyclo
heptan-2-ylidene)amino)hexan-1-amine and 3-chlorophenylisothiocyanate in DMF with 60%
yield. The compound, which was synthesized for the first time, was identified via 1H and
13C{1H} NMR, MS, FT-IR, and elemental analyses.

Supplementary Materials: 1H NMR, 13C NMR and FT-IR spectra. Figure S1. 1H NMR spectrum of
compound 3. Figure S2. 13C NMR spectrum of compound 3. Figure S3. FT-IR spectrum of compound 3.
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