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Abstract: Shallow water coral reefs are the most diverse marine ecosystems, but there is an immense
gap in knowledge when it comes to understanding the diversity of the vast majority of marine biota
in these ecosystems. This is especially true when it comes to understudied small and cryptic coral
reef taxa in understudied ecosystems, such as mesophotic coral reef ecosystems (MCEs). MCEs were
reported in Japan almost fifty years ago, although only in recent years has there been an increase
in research concerning the diversity of these reefs. In this study we describe the first stoloniferous
octocoral from MCEs, Hadaka nudidomus gen. nov. et sp. nov., from Iriomote and Okinawa Islands
in the southern Ryukyus Islands. The species is zooxanthellate; both specimens host Cladocopium
LaJeunesse & H.J.Jeong, 2018 (formerly Symbiodinium ‘Clade C’) and were collected from depths of
~33 to 40 m. Additionally, H. nudidomus gen. nov. et sp. nov. is both sclerite-free and lacks free
pinnules, and both of these characteristics are typically diagnostic for octocorals. The discovery
and morphology of H. nudidomus gen. nov. et sp. nov. indicate that we still know very little
about stoloniferous octocoral diversity in MCEs, their genetic relationships with shallower reef
species, and octocoral–symbiont associations. Continued research on these subjects will improve our
understanding of octocoral diversity in both shallow and deeper reefs.

Keywords: Cladocopium; cryptofauna; marine biodiversity; mesophotic coral reef environments
(MCEs); Octocorallia; stoloniferous octocorals; Symbiodiniaceae; taxonomy

1. Introduction

Coral reefs make up only 0.2% of the earth’s ocean but are estimated to harbor a quarter of all
marine species [1,2] and are the most diverse marine ecosystems on the planet. Unfortunately, these
diverse marine communities are also one of the most threatened [3–6]. The ‘hotspot’ concept, a term
used to mark a relatively restricted geographic area accommodating exceptionally high concentrations
of biodiversity and endemism [7–9] has highlighted the wealth of species that are at risk and how
localized such areas of richness can be [10]. However, there are vast gaps in knowledge concerning
the majority of marine biota [11,12], making the recognition of biodiversity geographic patterns and
hotspots questionable [13,14], as priorities identified for one taxon may not reflect the diversity of other
taxa [14,15]. This is especially true for understudied localities and environments, such as understudied
coral reef ecosystems.
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Mesophotic coral reef ecosystems (MCEs) occur at depths below 30–40 m to 100 m or deeper in
tropical and sub-tropical regions [16–19]. MCEs are considered understudied, as their depths make
them difficult to access via normal SCUBA technology, yet too shallow for most submersibles [19,20].
However, research regarding MCEs has increased in recent years, along with calls for increased
awareness and protection of these ecosystems [21]. Additionally, studies have demonstrated that MCEs
can accommodate high levels of endemism [19,22] and harbor distinct geographical communities [19].

The coral reefs of southern Japan are at the top of the list in terms of global marine conservation
priority, when considering the region’s high levels of multi-taxon endemism and the high risk of
biodiversity loss due to overexploitation and coastal development [23]. The Ryukyus Islands (RYS),
i.e., Ryukyu Archipelago, encompass the southernmost region of Japan and include islands of different
geological formations, ages, and sizes [24,25]. The surrounding waters and coral reefs fringing the
islands are strongly influenced by the warm water brought from tropical areas around the Philippine
islands by the Kuroshio Current, which flows towards the north along the west side of the island
chain [24–26], extending warm water conditions northerly. As such, the RYS experience higher sea
temperatures compared to other areas at similar latitudes, such as eastern Australia [27,28], thus
creating unique coral reef conditions. Serious taxonomic and geographic biases are present in marine
biodiversity research in the RYS. Most work in the RYS has been conducted on the phyla Pisces,
Crustacea, and Cnidaria, with the majority of research on hermatypic hard corals (Scleractinia) and,
surprisingly, far less work on other commercially important groups such as Echinodermata and
Mollusca, as well as on other understudied small and cryptic coral reef taxa [25].

One such understudied small and cryptic group are octocorals belonging to the subordinal group,
Stolonifera. Stoloniferan octocorals are characterized by having relatively simple colony growth forms,
where the polyps are united basally by ribbon-like stolons, instead of being embedded side by side
within a common coenenchymal mass [29–31]. There are seven families that are considered to belong
to Stolonifera: Acrossotidae Bourne, 1914; Arulidae McFadden & Van Ofwegen, 2012; Clavulariidae
Hickson, 1894; Coelogorgiidae Bourne, 1900; Cornulariidae Dana, 1846; Pseudogorgiidae Utinomi &
Harada, 1973; and Tubiporidae Ehrenberg, 1828. The most speciose as well as the most studied family
is Clavulariidae, which comprises approximately 30 genera and over 60 species. Until recently, all
other families are all either monospecific or monogeneric, with no more than a few described species;
recent studies have additionally introduced new genera and species for Arulidae [32,33], which is the
most recently erected family.

Stoloniferous octocorals often have inconspicuous small colonies and polyps, which makes them
hard to detect [32–34]. There are critical gaps that remain in the understanding of the functional and
ecological significance of octocoral–zooxanthellae symbioses [35]. To date, only a handful of data are
available on stoloniferous octocoral–symbiont relationships, which all concern members of the speciose
genus Clavularia Blainville, 1830. Clavularia spp. from Australia all hosted Durusdinium LaJeunesse,
2018 [36,37]. On one other occasion, a single Clavularia sp. specimen from the Caribbean was found to
host Durusdinium [38].

Obligate mutualistic symbioses play important roles in extending available energy resources
and thus potentially influence biodiversity on reefs [36,39]; however, stoloniferous octocorals and
their host–symbiont associations are a relatively underexamined fauna in the RYS, particularly from
within MCEs. In this study we formally describe the zooxanthellate, sclerite-free, and pseudopinnuled
octocoral Hadaka nudidomus gen. nov. et sp. nov. from MCEs around Okinawa and Iriomote Islands.

2. Materials and Methods

2.1. Specimen Collection and Morphological Examinations

One specimen was collected from one location each around Okinawa (August 2017; 26.856412 N,
128.245093 E) and Iriomote (December 2016; 24.370413 N, 123.736428 E) Islands (Figure 1).
The specimens were found at depths of 33 and 40 m, respectively, by means of SCUBA (atmospheric
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air) and were preserved in 70–90% ethanol and subsamples in 95% ethanol. The current study is part
of an ongoing survey of mesophotic and deep reef work. Vouchers and type material were deposited
at the National Museum of Nature and Science (NSMT), Tokyo, Japan (Table 1). Both specimens were
examined for the presence of sclerites by dissolving entire polyps and stolons in 4% hypochlorite
(household bleach). Additionally, to visualize polyp tentacles and pseudopinnules, polyps were fixed
in 20% formalin and embedded in methylene blue (1%).

2.2. DNA Extraction, Amplification, and Sequencing

DNA was extracted from polyps using a DNeasy Blood and Tissue kit (Qiagen, Tokyo, Japan). PCR
amplification and sequencing were performed for four markers, of which three were mitochondrial
(cytochrome c oxidase subunit I (COI), the MSH homologue mtMutS, and subunit ND6) and the fourth
was the nuclear ribosomal marker (28S rDNA). Additionally, for Symbiodiniaceae, the nuclear internal
transcribed spacer (ITS) region of ribosomal DNA was amplified. Protocols in [34] were followed
and PCR products were treated with Exonuclease I and alkaline phosphate (shrimp) and sent for
bidirectional sequencing on an ABI 3730XL (Fasmac, Kanagawa, Japan). Sequences were assembled
and edited using Geneious R11 [40] and BioEdit [41]. COI, mtMutS, and ND6 were checked for introns,
exons, and stop-codons in AliView [42].
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Figure 1. Map of the Ryukyus Islands (RYS), with the six island group divisions (grey dotted lines) 
and the two dive locations where Hadaka nudidomus gen. nov. et sp. nov. specimens were found (red 
dots) at Iriomote (NSMT-Co 1681, holotype) and Okinawa (NSMT-Co 1682, paratype) Islands.

Figure 1. Map of the Ryukyus Islands (RYS), with the six island group divisions (grey dotted lines) and
the two dive locations where Hadaka nudidomus gen. nov. et sp. nov. specimens were found (red dots)
at Iriomote (NSMT-Co 1681, holotype) and Okinawa (NSMT-Co 1682, paratype) Islands.
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Table 1. Overview of information on octocoral specimens collected from mesophotic coral reef
ecosystems (MCEs) at Iriomote and Okinawa Islands, Okinawa Prefecture, Japan, including GenBank
accession numbers and locality. Catalogue number: NSMT = National Museum of Nature and Science,
Tokyo, Japan; n.a. = not available.

Family Species Catalogue
Number

Locality/GPS
(DMS)

Symbiodiniaceae
Genus GenBank Accession Numbers

28S
rDNA COI mtMutS ND6 ITS

Clavulariidae

Hadaka
nudidomus

gen. nov. et
sp. nov.

NSMT-Co
1681

(holotype)

NE Uchibanare,
Iriomote

Isl./24.370413 N,
123.736428 E

Cladocopium MN488601 MN488603 MN488605 n.a. MN488607

Hadaka
nudidomus

gen. nov. et
sp. nov.

NSMT-Co
1682

(paratype)

Entrance Hedo
Dome, Cape

Hedo, Okinawa
Isl./26.856412 N,

128.245093 E

Cladocopium MN488602 MN488604 n.a. MN488606 MN488608

2.3. Molecular Phylogenetic Analyses

Multiple sequence alignments were performed using MAFFT 7 [43] and coding markers were
aligned using MACSE [44] under default parameters. The phylogenetic position of the collected
specimens (n = 2) was determined by aligning the consensus sequences for markers 28S rDNA, COI,
and mtMutS to a reference dataset of 124 octocoral genera, including Cornularia pabloi and Cornularia
cornucopiae as outgroup (total n = 144), as used in Lau and Reimer [33]. This resulted in alignments of
887 bp for 28S rDNA, 717 bp for COI, and 714 bp for mtMutS, and a total concatenated three-marker
dataset of 2318 bp. The separate markers were run in ML analyses, to check for contamination and
congruency (Supplementary Materials Figures S1–S3).

A separate phylogenetic analysis was made to examine the lower level phylogenetic relationships
of the collected mesophotic specimens, using a concatenated four-marker dataset. The concatenated
four-marker dataset resulted in an alignment of 2670 bp (total n = 12). A total of seven reference
species were included in the analysis, which clustered in nearby clades with the specimens in the
three-marker dataset, including Rhodelinda sp. and Telesto sp. as outgroup. The four separate markers
(28S rDNA, 787 bp; COI, 708 bp; mtMutS, 734 bp; ND6, 441 bp) were also run in ML analyses, to check
for contamination and congruency (Supplementary Materials Figures S4–S7).

Additionally, ITS sequences from the two specimens were aligned with a total of 25 reference
sequences (Cladocopium spp. and Durusdinium spp.), including Gerakladium sp. as outgroup.
The resulting dataset comprised 641 bp and a total of 27 sequences and was run in ML analyses
(Supplementary Materials Figure S8).

Alignments of the separate markers were concatenated using SequenceMatrix 1.8 [45]. ML analyses
were run with RAX-ML 8 [46], using the GTRCAT model. The best ML tree was calculated using the
–D parameter. A multi-parametric bootstrap search was performed, which automatically stopped based
on the extended majority rule criterion. The Bayesian inference was performed with ExaBayes 1.5 [47]
using the GTR substitution model. Four independent runs were run for 10,000,000 generations during
which convergence (with a standard deviation of split frequencies < 2%) was reached. Bootstrap
supports and posterior probabilities were depicted on the branches of the best ML tree using P4 [48].
The resulting trees were visualized in FigTree 1.4.2 [49]. Additionally, average distance estimations
within species and within genera were computed using MEGA X [50] by analyzing pairwise measures
of genetic distances (uncorrected P) among sequences (Supplementary Materials Tables S1–S3).

3. Systematic Account

Class Anthozoa
Subclass Octocorallia Ehrenberg, 1831
Order Alcyonacea Lamouroux, 1812
Family Clavulariidae Hickson, 1894
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3.1. Genus Hadaka gen. nov.

Type species: Hadaka nudidomus sp. nov. by original designation and monotype.
Diagnosis: Colony with polyps connected through flattened ribbon-like stolons, which are loosely

attached to a hard substrate. Polyps retract fully into the calyx, which is cylindrical to conical in shape,
narrowing at the base and does not retract fully into the stolon. Tentacles have a wide rachis with a
protruding ridge and pseudopinnules of different lengths arranged on either side, giving the polyps
feather shaped tentacles. No sclerites. Zooxanthellate.

Remarks: Hadaka gen. nov. et sp. nov. shows gross resemblance to Hanabira Lau, Stokvis, Imahara
& Reimer, 2019 in having a similar polyp shape with feather or petal shaped tentacles and fused
pinnules, which can still be distinguished by shallow furrows. Hadaka gen. nov. et sp. nov. differs
from Hanabira in having no sclerites in any part of the colony and having a protruding ridge on the
upper side of the tentacle. Genetically, Hadaka gen. nov. is well-supported and positioned in a different
phylogenetic clade from Hanabira. The closest sister taxa of Hadaka gen. nov. is Acrossota Bourne, 1914,
which is also sclerite-free, but morphologically very different; Acrossota lacks pinnules completely.

Etymology: From the Japanese word hadaka (裸), meaning naked, bare, nude; denoting the absence
of two characteristic features of octocorals, sclerites, and free pinnules. Gender: feminine.

http://zoobank.org/39430672-5ADA-4EFF-9F5A-B4076B6B90C0

3.2. Hadaka nudidomus sp. nov.

See Figure 2.
Material examined: All specimens were collected from Okinawa Prefecture, Japan. Holotype:

NSMT-Co 1681, northeast Uchibanare, Iriomote Island (24.370413 N,123.736428 E), ~40 m depth,
19 December 2016, coll. D. Uyeno. GenBank accession numbers: 28S rDNA, MN488601; COI,
MN488603; mtMutS, MN488605. Paratype: NSMT-Co 1682, entrance to Hedo Dome, Cape Hedo,
Okinawa Island (26.856412 N, 128.245093 E), 33 m depth, 18 August 2017, coll. J.D. Reimer. GenBank
accession numbers: 28S rDNA, MN488602; COI, MN488604; ND6, MN488606.

Description: Holotype colony consists of 15 polyps with flattened ribbon-like stolons encrusting a
sponge. Polyps can be seen individually or clustered in groups and are spaced apart irregularly, 3 mm
to 2 cm in between polyps and clusters. Stolons are 0.5 mm at their narrowest and 1 mm at their widest
point. Polyps retract fully into the calyx (~1.8 mm wide and ~3.55 mm in length), which is cylindrical
to conical shaped, narrowing at the base, and does not retract fully into the stolon. Expanded polyps
are ~4–5 mm diameter in life. Tentacles have a wide rachis with a protruding ridge on the upper side
and long pseudopinnules arranged on either side (~24–26 pseudo-pairs), giving the polyps feather
shaped tentacles. When stained with methylene blue, the outline of the tentacles can be observed.
Structures of the pinnule axis are visible; however, the notches that distinguish the pseudopinnules are
not observed in the contour of the tentacle (Figure 2d). No sclerites were found in any parts of the
specimens. Polyps are brown in life and yellowish-white in ethanol (Figure 2c). Zooxanthellate.

Morphological variation: There is a difference in color between the polyps of the holotype (NSMT-Co
1681) and paratype (NSMT-Co 1682); the polyps of the holotype are brown with a white oral disc and
base of the tentacles and the polyps of the paratype are whitish yellow with a bright blue oral disc
(Figure 2a,b).

Distribution: Southwestern Japan, southern Ryukyus Islands, around northern Okinawa Island,
and inside the bay of western Iriomote Island in the East China Sea. Specimens were collected from
depths of ~33–40 m.

Remarks: The polyps of paratype NSMT-Co 1682 were all used for DNA extraction and sclerite
examination, as they were initially thought to be a Hanabira yukibana specimen; three fragments of
rock with stolon remain. The holotype colony (NSMT-Co 1681) was attached to sponge tissue, but this
epibiont is not obligate, as the paratype was attached to rock.

Habitat: The holotype (NSMT-Co 1681) was found attached to sponge on a large piece of coral
rubble (>15 cm) lying on a mixed small rubble/soft sediment bottom. The paratype (NSMT-Co 1682)

http://zoobank.org/39430672-5ADA-4EFF-9F5A-B4076B6B90C0
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was found on consolidated hard carbonate bottom. Both colonies were on the upward-facing side of
the bottom.

Etymology: From Latin nudus, meaning naked or bare, and domus, meaning home or house;
denoting the ‘naked’ host habitat in which the zooxanthellae reside, as the species is sclerite-free.

http://zoobank.org/71620752-8C33-4DCE-9B6E-DD7FC2DA3E20

4. Molecular Results

This study added a total of six sequences of Hadaka nudidomus gen. nov. et sp. nov. to the public
reference database GenBank and no barcodes were available before. For the family Symbiodiniaceae,
two Cladocopium spp. sequences were added. The phylogenies resulting from the ML analyses of
the separate markers (COI, 28S rDNA, mtMutS, ND6) were highly congruent with those from the
concatenated alignments for both the three- and four-marker datasets (Supplementary Materials
Figures S1–S7). ML and Bayesian analyses for the concatenated datasets yielded almost identical tree
phylogenies (Supplementary Materials Figure S9). Sequences of Hadaka nudidomus gen. nov. et sp.
nov. collected from Okinawa and Iriomote Islands formed a completely-supported clade, containing
sclerite-free species only: species of clavulariid genus Phenganax Alderslade & McFadden, 2011 and
monospecific acrossotid genus Acrossota Bourne, 1914 in both the three- and four-marker analyses
(Figures 3 and 4).
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Figure 2. Photographs of Hadaka nudidomus gen. nov. et sp. nov.: (a) in situ holotype NSMT-Co 1681,
scale bar approximately 1 mm; (b) in situ paratype NSMT-Co 1682, scale bar approximately 1 mm;
(c) holotype in ethanol, scalebar 1 mm; (d) holotype in methylene blue staining, scale bar 0.1 mm.
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Figure 3. Phylogenetic relationships among 122 octocoral genera (total n = 144), including two species,
Hadaka nudidomus gen. nov. et sp. nov. (highlighted red), collected at Iriomote and Okinawa Islands
using the combined 28S rDNA + COI + mtMutS dataset. The best maximum likelihood tree is shown,
with values at branches representing bootstrap probabilities (shown when >70%; top/left) and Bayesian
posterior probabilities (shown when >0.80; bottom/right; A = 1.00, B = 0.95–0.99, C = 0.90–0.94,
D = 0.80–0.89). * represents 100%/1.00 for both analyses. Non-stoloniferous families are shown with
family classification only and stoloniferous families are highlighted in grey. Sclerite-free species are
indicated with a blue dot. Species that are both sclerite-free and lack free pinnules are indicated with a
blue circle. Cornularia spp. were used as outgroup.
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Hadaka gen. nov. was sister to the remaining clade in the three-marker analyses; however, in the
four-marker analyses, Phenganax was sister to Hadaka gen. nov. and Acrossota. Nonetheless, in both
phylogenies, the two specimens of Hadaka gen. nov. formed a completely-supported clade.

Additionally, genetic distances gave further support to phylogenetic affinities and morphological
features justifying the establishment of a new genus. Between-genus distances (Hadaka compared to
Acrossota and Phenganax) for COI were 2.52–2.54% and 7.69–13.33% for mtMutS, which are well above
the intergeneric range for octocorals [51]. Additional comparisons between Hadaka nudidomus sp. nov.
specimens, Acrossota amboinenesis Burchardt, 1902 and Phenganax spp.; Phenganax parrini Alderslade
& McFadden, 2011, Phenganax marumi Lau & Reimer, 2019, Phenganax subtilis Lau & Reimer, 2019,
Phenganax stokvisi Lau & Reimer, 2019, also resulted in ranges (COI: 2.15–2.97%, MSH: 7.00–13.33%)
that indicated that Hadaka gen. nov. specimens belong to a different genus (Supplementary Materials
Tables S1–S3). There were no differences (0%) when comparing genetic distances within the two Hadaka
specimens, indicating that the specimens are of the same species.

Hadaka nudidomus gen. nov. et sp. nov. specimens were analyzed for the presence of zooxanthellae,
and identical sequences of Symbiodiniaceae were found. Both Hadaka nudidomus specimens collected
from Okinawa and Iriomote Island hosted Cladocopium LaJeunesse & H.J.Jeong, 2018 (formerly
Symbiodinium ‘Clade C’).
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Figure 4. Phylogenetic reconstruction using a four-marker concatenated dataset (28S rDNA + COI +

mtMutS + ND6) among Hadaka nudidomus gen. nov. et sp. nov., closest sister species Phenganax spp.
and outgroup specimens Rhodelinda sp. and Telesto sp. (total n = 12). The best maximum likelihood tree
is shown, with values at branches representing bootstrap probabilities in percentages (top/left) and
Bayesian posterior probabilities (bottom/right). In situ photographs are shown for the two octocoral
species that are sclerite-free and lack free pinnules, Hadaka nudidomus gen. nov. et sp. nov. and Acrossota
amboinensis. Photograph credit: in situ image RMNH Coel. 40798 Acrossota amboinensis, by Daniel Knop
(modified from [52]; reproduced with permission from copyright holder).
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5. Discussion

In the three- and four-marker phylogenies, there was disparity in the position of Hadaka nudidomus
gen. nov. et sp. nov. and Acrossota amboinensis. It remains unresolved how these genera and genus
Phenganax are related to one another. A possible explanation could be that there is no sufficient signal
in the sequences of both Hadaka nudidomus gen. nov. et sp. nov. and Acrossota amboinenesis due to the
fact that the closest relatives for these genera are yet to be discovered.

Morphologically, there was a difference between the coloration of the polyps of the holotype
and paratype found at Iriomote and Okinawa Islands, respectively. The differences in coloration
suggested that perhaps the specimens hosted different members of Symbiodiniaceae. However, both
specimens hosted genus Cladocopium and thus no biogeographical distinction in Symbiodiniaceae was
observed. Members of Cladocopium spp. are known to be adapted to a wide range of temperatures
and irradiances [53], which would be expected from MCEs, where irradiances are not only subject to
seasonal variations but are already reduced.

Hadaka nudidomus gen. nov. et sp. nov is the first zooxanthellate stoloniferous octocoral described
from mesophotic depths. Only one other zooxanthellate octocoral, an alcyoniid species, Sinularia
mesophotica Benayahu, McFadden, Shoham & van Ofwegen, 2017, has been explicitly described
from mesophotic depths [54]. However, it was not further specified which genus or species of
Symbiodiniaceae was hosted by S. mesophotica and therefore, we cannot yet hypothesize differences of
zooxanthellae hosted by octocorals from MCEs.

Nonetheless, another recent study has shown that there are geographical differences in the genera
of Symbiodiniaceae in Hanabira yukibana Lau, Stokvis, Imahara & Reimer, 2019 from shallow coral
reefs, as specimens found from Okinawa Island hosted Cladocopium while Durusdinium LaJeunesse,
2018 was hosted in specimens from Iriomote Island. However, in this previous study, similar to the
current study, no consistently different patterns of polyp coloration related to symbiont associations
were observed [34]. To this end, finer-scale examinations of Symbiodiniaceae using faster-evolving
DNA markers [55] may reveal patterns yet unseen.

Hadaka nudidomus gen. nov. et sp. nov. is the second species within Octocorallia after
Acrossota amboinensis that has no sclerites in any part of the colony and also no free pinnules; both
species are taxonomically placed within family Clavulariidae. Acrossota amboinensis differs from
Hadaka nudidomus gen. nov. et sp. nov. in colony form, polyp morphology, and habitat (Figure 4);
A. amboinensis does not have pseudopinnules, but instead lacks pinnules completely and has, so
far, not been found at mesophotic depths. When comparing A. amboinensis to Phenganax spp.
there are also distinct morphological differences; all Phenganax species have free pinnules and have
completely different polyp and tentacle shapes. Nonetheless, the genera Acrossota and Phenganax
are phylogenetically closely related. In a recent study, the phylogenetic topology for these genera
was different from that generated in the current study [33], in which Acrossota is placed basally to all
Phenganax species. As a result of the unresolved phylogenetic location of Acrossota within Clavulariidae,
while it is clear these three genera are distinct, it remains unclear how Hadaka and Phenganax are related
to Acrossota.

Moreover, it can be concluded that several octocoral species lack both sclerites and free pinnules,
and thus, that such features are not completely rare in octocorals, which raises important implications
for the definition of subclass Octocorallia, as sclerite characterization and the presence of pinnated
tentacles are two of the major diagnostic features of the group [52,56,57].

It is clear that more species diversity data from many marine regions are needed before we can
state with certainty that the southern Ryukyus harbor high levels of stoloniferous octocoral diversity
and endemism, but at least it can be said that this region potentially harbors many undiscovered species,
not only in shallow coral reefs [33,34], but also among the many unexplored MCEs in this region.

Recent studies have shown that MCEs harbor distinct and independent biological communities
when compared to shallower reefs [21]. MCEs are not only affected by anthropogenic and natural
impacts as are shallow reefs but have seldom been the focus of specific conservation efforts [21,58].
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Thus, researchers have only begun to scratch the surface of what we know about mesophotic marine
life [21,58,59], including information on stoloniferous octocoral diversity and octocoral–zooxanthellae
relationships in MCEs. The discovery of Hadaka nudidomus gen. nov. et sp. nov. and other recent
discoveries [54,57] emphasize the need for continued studies on MCE octocoral diversity, as undescribed
species may disappear before we have the opportunity to discover and study them [21].

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-2818/11/10/176/s1,
Figure S1: Maximum Likelihood phylogeny reconstruction of 28S rDNA gene region of Hadaka nudidomus gen.
nov. et sp. nov. from Okinawa and Iriomote Islands (Japan) and octocoral references from 123 genera, including
outgroup Cornularia spp., Figure S2: Maximum Likelihood phylogeny reconstruction of COI gene region of
Hadaka nudidomus gen. nov. et sp. nov. from Okinawa and Iriomote Islands (Japan) and octocoral references
from 123 genera, including outgroup Cornularia spp., Figure S3: Maximum Likelihood phylogeny reconstruction
of mtMutS gene region of Hadaka nudidomus gen. nov. et sp. nov. from Okinawa and Iriomote Islands (Japan)
and octocoral references from 123 genera, including outgroup Cornularia spp., Fiugre S4: Maximum Likelihood
phylogeny reconstruction of 28S rDNA gene region of Hadaka nudidomus gen. nov. et sp. nov. from Okinawa
and Iriomote Islands (Japan) and five octocoral references (Phenganax spp., Acrossota amboinensis), and outgroup
(Telesto sp., Rhodelinda sp.)., Figure S5: Maximum Likelihood phylogeny reconstruction of COI gene region of
Hadaka nudidomus gen. nov. et sp. nov. from Okinawa and Iriomote Islands (Japan) and five octocoral references
(Phenganax spp., Acrossota amboinensis), and outgroup (Rhodelinda sp.)., Figure S6: Maximum Likelihood phylogeny
reconstruction of mtMutS gene region of Hadaka nudidomus gen. nov. et sp. nov. from Okinawa and Iriomote
Islands (Japan) and four octocoral references (Phenganax spp., Acrossota amboinensis), and outgroup (Telesto sp.).,
Figure S7: Maximum Likelihood phylogeny reconstruction of ND6 gene region of Hadaka nudidomus gen. nov.
et sp. nov. from Okinawa and Iriomote Islands (Japan) and two octocoral references (Phenganax spp.)., Figure
S8: Maximum likelihood phylogenetic reconstruction of gene region ITS of Symbiodiniaceae hosted by Hadaka
nudidomus gen. nov. et sp. nov. specimens from Okinawa and Iriomote Islands (Japan) and reference taxa
Durusdinium sp. (= former Symbiodinium ‘Clade D’, n = 14) and Cladocopium sp. (former Symbiodinium ‘Clade
C’, n = 10) and outgroup sister taxa, Gerakladium sp. (= former Symbiodinium ‘Clade G’) as used in Lau et al
(2019)., Figure S9: Bayesian inference phylogeny reconstruction of the combined 28S rDNA+COI+mtMutS gene
regions of Hadaka nudidomus gen. nov. et sp. nov. from Okinawa and Iriomote Islands (Japan) and octocoral
references from 123 genera, including outgroup Cornularia spp., Table S1: Number of base differences per site
from averaging over all sequence pairs between stoloniferous octocoral genera (Hadaka gen. nov., Phenganax,
Acrossota) is shown (p expressed as percentage) for COI and mtMutS gene regions. Standard error estimates (S.E.)
are shown above the diagonal. Analysis involved 9 and 6 nucleotide sequences for COI and mtMutS, respectively.
All positions containing gaps and missing data were eliminated. There were totals of 708 and 734 positions in
the final dataset for COI and mtMutS, respectively. Evolutionary analyses were conducted in MEGA X (Kumar
et al. 2018)., Table S2: Number of base differences per site from averaging over all sequence pairs between
stoloniferous octocoral taxa (Hadaka nudidomus gen. nov. sp. nov., Phenganax spp., Acrossota amboinensis) is shown
(p expressed as percentage) for gene regions COI and mtMutS. Standard error estimates (S.E.) are shown above
the diagonal. Analysis involved 7 nucleotide sequences for both COI and mtMutS. All positions containing gaps
and missing data were eliminated. There were totals of 717 and 881 positions in the final dataset for COI and
mtMutS, respectively. Evolutionary analyses were conducted in MEGA X (Kumar et al. 2018)., Table S3: Estimates
of average evolutionary divergence over sequence pairs within stoloniferous octocoral genera (Hadaka gen. nov.,
Phenganax, Acrossota, Rhodelinda, Telesto) for gene regions COI and mtMutS. The numbers of base differences
per site from averaging over all sequence pairs within each group (d) are shown (p expressed as percentage).
Standard error estimates (S.E.) are shown in the second column and were obtained by a bootstrap procedure (1000
replicates). Analyses involved 9 and 6 nucleotide sequences for COI and mtMutS, respectively. All positions
containing gaps and missing data were eliminated. There were totals of 708 and 734 positions in the final dataset
for COI and mtMutS, respectively. Evolutionary analyses were conducted in MEGA X (Kumar et al. 2018).

Author Contributions: Conceptualization, methodology, and writing—review and editing, Y.W.L. and J.D.R.;
formal analysis, investigation, data curation, writing—original draft preparation, and visualization, Y.W.L.;
supervision and resources, J.D.R.

Funding: This research received no external funding.

Acknowledgments: Daisuke Uyeno (Kagoshima University) is thanked for providing the holotype specimen
NSMT-Co 1681. Tohru Naruse (University of the Ryukyus) is thanked for logistical support in the field in Iriomote
Island. Kristen G.Y. Soong (University of the Ryukyus) is thanked for her help with laboratory work. Frank R.
Stokvis (Naturalis Biodiversity Center) is thanked for providing help with phylogenetic analyses.

Conflicts of Interest: The authors declare no conflict of interest.

http://www.mdpi.com/1424-2818/11/10/176/s1


Diversity 2019, 11, 176 11 of 13

References

1. Buddemeier, R.W.; Kleypas, J.A.; Aronson, R.B. Coral Reefs and Global Climate Change: Potential Contributions of
Climate Change to Stresses on Coral Reef Ecosystems, Report; Pew Centre on Global Climate Change: Arlington,
VA, USA, 2004; 56p, Available online: http://www.reefresilience.org/pdf/Coral_Reefs_and_Global_Climate_
Change.pdf (accessed on 2 April 2019).

2. Chen, P.Y.; Chen, C.C.; Chu, L.; McCarl, B. Evaluating the economic damage of climate change.
Glob. Environ. Chang. 2015, 30, 12–20. [CrossRef]

3. Hughes, T.P.; Baird, A.H.; Bellwood, D.R.; Card, M.; Connolly, S.R.; Folke, C.; Grosberg, R.;
Hoegh-Guldberg, O.; Jackson, J.B.C.; Kleypas, J.; et al. Climate change, human impacts, and the resilience of
coral reefs. Science 2003, 301, 929–933. [CrossRef] [PubMed]

4. Pandolfi, J.M.; Bradbury, R.H.; Sala, E.; Hughes, T.P.; Bjorndal, K.A.; Cooke, R.G.; McArdle, D.;
McClenachan, L.; Newman, M.J.H.; Paredes, G.; et al. Global trajectories of the long-term decline of
coral reef ecosystems. Science 2003, 301, 955–958. [CrossRef] [PubMed]

5. Meyer, C.P.; Geller, J.B.; Paulay, G. Fine scale endemism on coral reefs: Archipelagic differentiation in turbinid
gastropods. Evolution 2005, 59, 113–125. [CrossRef] [PubMed]

6. Hughes, T.P.; Kerry, J.T.; Baird, A.H.; Connolly, S.R.; Dietzel, A.; Eakin, C.A.; Heron, S.F.; Hoey, A.S.;
Hoogenboom, M.O.; Liu, G.; et al. Global warming transforms coral reef assemblages. Nature 2018, 556,
492–496. [CrossRef] [PubMed]

7. Mittermeier, R.A.; Myers, N.; Thomsen, J.B.; da Fonseca, G.A.B.; Olivieri, S. Biodiversity hotspots and major
tropical wilderness areas: Approaches to setting conservation priorities. Conserv. Biol. 1998, 12, 516–520.
[CrossRef]

8. Mittermeier, R.A.; Myers, N.; Mittermeier, C.G. Hotspots—Earth’s Biologically Richest and Most Endangered
Terrestrial Ecoregions; Cemex: Mexico City, Mexico, 1999; 431p.

9. Allen, G.R. Conservation hotspots of biodiversity and endemism for Indo-Pacific coral reef fishes.
Aquat. Conserv. 2008, 18, 541–556. [CrossRef]

10. Bellwood, D.R.; Meyer, C.P. Searching for heat in a marine biodiversity hotspot. J. Biogeogr. 2009, 36, 569–576.
[CrossRef]

11. Appeltans, W.; Ahyong, S.T.; Anderson, G.; Angel, M.V.; Artois, T.; Bailly, N.; Bamber, R.; Barber, A.;
Bartsch, I.; Berta, A.; et al. The magnitude of global marine species diversity. Curr. Biol. 2012, 22, 2189–2202.
[CrossRef]

12. Troudet, J.; Grandcolas, P.; Blin, A.; Vignes-Lebbe, R.; Legendre, F. Taxonomic bias in biodiversity data and
societal preferences. Sci. Rep. 2017, 7, 9132. [CrossRef]

13. Mace, G.M.; Balmford, A.; Boitani, L.; Cowlishaw, G.; Dobson, A.P.; Faith, D.P. It’s time to work together and
stop duplicating conservation efforts. Nature 2000, 405, 393. [CrossRef] [PubMed]

14. Hooper, J.N.A.; Kennedy, J.A.; Quinn, R.J. Biodiversity ‘hotspots’, patterns of richness and endemism,
and taxonomic affinities of tropical Australian sponges (Porifera). Biodivers. Conserv. 2002, 11, 851–885.
[CrossRef]

15. Kerr, J.T. Species richness, endemism, and choice of areas for conservation. Conserv. Biol. 1997, 11, 1094–1100.
[CrossRef]

16. Puglise, K.A.; Hinderstein, L.M.; Marr, J.C.A.; Dowgiallo, M.J.; Martinez, F.A. Mesophotic Coral Ecosystems
Research Strategy: International Workshop to Prioritize Research and Management Needs for Mesophotic Coral
Ecosystems, Jupiter, Florida, 12–15 July 2008; NOAA Technical Memorandum NOS NCCOS 98 and OAR OER
2; NOAA National Centers for Coastal Research, NOAA Undersea Research Program: Silver Spring, MD,
USA, 2009; 24p.

17. Kahng, S.E.; Garcia-Sais, J.R.; Spalding, H.L.; Brokovich, E.; Wagner, D.; Weil, E.; Hinderstein, L.; Toonen, R.J.
Community ecology of mesophotic coral reef ecosystems. Coral Reefs 2010, 29, 255–275. [CrossRef]

18. Sinniger, F.; Harii, S. Studies on Mesophotic Coral Ecosystems in Japan. In Coral Reef Studies of Japan. Coral
Reefs of the World; Iguchi, A., Hongo, C., Eds.; Springer: Singapore, 2018; Volume 13, pp. 149–162.

19. Laverick, J.H.; Piango, S.; Andradi-Brown, D.A.; Exton, D.A.; Bongaerts, P.; Bridge, T.C.; Lesser, M.P.;
Pyle, R.L.; Slattery, M.; Wagner, D.; et al. To what extent do mesophotic coral ecosystems and shallow reefs
share species of conservation interest? A systematic review. Environ. Evid. 2018, 7, 15. [CrossRef]

http://www.reefresilience.org/pdf/Coral_Reefs_and_Global_Climate_Change.pdf
http://www.reefresilience.org/pdf/Coral_Reefs_and_Global_Climate_Change.pdf
http://dx.doi.org/10.1016/j.gloenvcha.2014.10.011
http://dx.doi.org/10.1126/science.1085046
http://www.ncbi.nlm.nih.gov/pubmed/12920289
http://dx.doi.org/10.1126/science.1085706
http://www.ncbi.nlm.nih.gov/pubmed/12920296
http://dx.doi.org/10.1111/j.0014-3820.2005.tb00899.x
http://www.ncbi.nlm.nih.gov/pubmed/15792232
http://dx.doi.org/10.1038/s41586-018-0041-2
http://www.ncbi.nlm.nih.gov/pubmed/29670282
http://dx.doi.org/10.1046/j.1523-1739.1998.012003516.x
http://dx.doi.org/10.1002/aqc.880
http://dx.doi.org/10.1111/j.1365-2699.2008.02029.x
http://dx.doi.org/10.1016/j.cub.2012.09.036
http://dx.doi.org/10.1038/s41598-017-09084-6
http://dx.doi.org/10.1038/35013247
http://www.ncbi.nlm.nih.gov/pubmed/10839513
http://dx.doi.org/10.1023/A:1015370312077
http://dx.doi.org/10.1046/j.1523-1739.1997.96089.x
http://dx.doi.org/10.1007/s00338-010-0593-6
http://dx.doi.org/10.1186/s13750-018-0127-1


Diversity 2019, 11, 176 12 of 13

20. Pyle, R.L. Ocean Pulse: A Critical Diagnosis; Tanacredi, J.T., Loret, J., Eds.; Springer: Boston, MA, USA, 1998;
pp. 71–88.

21. Rocha, L.A.; Pinheiro, H.T.; Shepherd, B.; Papastamatiou, Y.P.; Luiz, O.J.; Pyle, R.L.; Bongaerts, P. Mesophotic
coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science 2018, 361, 281–284.
[CrossRef] [PubMed]

22. Kosaki, R.K.; Pyle, R.L.; Leonard, J.C.; Hauk, B.B.; Whitton, R.K.; Wagner, D. 100% endemism in mesophotic
reef fish assemblages at Kure Atoll, Hawaiian Islands. Mar. Biodivers. 2017, 47, 783–784. [CrossRef]

23. Roberts, C.M.; McClean, C.J.; Veron, J.E.N.; Hawkins, J.P.; Allen, J.R.; McAllister, D.E.; Mittermeier, C.G.;
Schueler, F.W.; Spalding, M.; Wells, F.; et al. Marine biodiversity hotspots and conservation priorities for
tropical reefs. Science 2002, 295, 1280–1285. [CrossRef]

24. Kizaki, K. Geology and tectonics of the Ryukyu Islands. Tectonophysics 1986, 125, 193–207. [CrossRef]
25. Reimer, J.D.; Biondi, P.; Lau, Y.W.; Masucci, G.; Nguyen, X.H.; Santos, M.E.A.; Wee, H.B. Marine biodiversity

research in the Ryukyu Islands, Japan: Current status and trends. PeerJ 2019, 7, e6532. [CrossRef]
26. Andres, M.; Park, J.H.; Wimbush, M.; Zhu, X.H.; Chang, K.I.; Ichikawa, H. Study of the Kuroshio/Ryukyu

current system based on satellite-altimeter and in situ measurements. J. Oceanogr. 2008, 64, 937–950.
[CrossRef]

27. Veron, J.E.N. Conservation of biodiversity: A critical time for the hermatypic corals of Japan. Coral Reefs
1992, 11, 13–21. [CrossRef]

28. Rodriguez-Lanetty, M.; Hoegh-Guldberg, O. Symbiont diversity within the widespread scleractinian coral
Plesiastrea versipora, across the northwestern Pacific. Mar. Biol. 2003, 143, 501–509. [CrossRef]

29. Fabricius, K.; Alderslade, P. Soft Corals and Sea Fans: A Comprehensive Guide to the Tropical Shallow-Water Genera
of the Central-West Pacific, the Indian Ocean and the Red Sea; Australian Institute of Marine Science: Townsville,
Australia, 2001.

30. Daly, M.; Brugler, M.R.; Cartwright, P.; Collins, A.G.; Dawson, M.N.; Fautin, D.G.; France, S.C.; McFadden, C.S.;
Opresko, D.M.; Rodriguez, E.; et al. The phylum Cnidaria: A review of phylogenetic patterns and diversity
300 years after Linnaeus. Zootaxa 2007, 1668, 127–182.

31. McFadden, C.S.; van Ofwegen, L.P. Stoloniferous octocorals (Anthozoa, Octocorallia) from South Africa, with
descriptions of a new family of Alcyonacea, a new genus of Clavulariidae, and a new species of Cornularia
(Cornulariidae). Invertebr. Syst. 2012, 26, 331–356. [CrossRef]

32. Lau, Y.W.; Stokvis, F.R.; Van Ofwegen, L.P.; Reimer, J.D. Stolonifera from shallow waters in the north-western
Pacific: A description of a new genus and two new species within the Arulidae (Anthozoa, Octocorallia).
ZooKeys 2018, 790, 1–19. [CrossRef] [PubMed]

33. Lau, Y.W.; Reimer, J.D. A first phylogenetic study on stoloniferous octocorals off the coast of Kota Kinabalu,
Sabah, Malaysia, and the description of three new genera and six new species. ZooKeys 2019, 872, 127–158.
[CrossRef]

34. Lau, Y.W.; Stokvis, F.R.; Imahara, Y.; Reimer, J.D. The stoloniferous octocoral, Hanabira yukibana, gen. nov.,
sp. nov., of the southern Ryukyus has morphological and symbiont variation. Contrib. Zool. 2019, 54–77.
[CrossRef]

35. Van de Water, J.A.J.M.; Allemand, D.; Ferrier-Pagès, C. Host-microbe interactions in octocoral
holobionts-recent advances and perspectives. Microbiome 2018, 6, 64. [CrossRef]

36. Van Oppen, M.J.H.; Mieog, J.C.; Sánchez, C.A.; Fabricius, K.E. Diversity of alga symbionts (zooxanthellae) in
octocorals: The roles of geography and host relationships. Mol. Ecol. 2005, 14, 2403–2417. [CrossRef]

37. Goulet, T.L.; Simmons, C.; Goulet, D. Worldwide biogeography of Symbiodinium in tropical octocorals.
Mar. Ecol. Prog. Ser. 2008, 355, 45–58. [CrossRef]

38. LaJeunesse, T.C.; Bhagooli, R.; Hidaka, M.; de Vantier, L.; Done, T.; Schmidt, G.W.; Fitt, W.K.;
Hoegh-Guldberg, O. Closely related Symbiodinium spp. differ in relative dominance in coral reef host
communities across environmental, latitudinal and biogeographic gradients. Mar. Ecol. Prog. Ser. 2004, 284,
147–161. [CrossRef]

39. Fabricius, K.E.; De’ath, G. Photosynthetic symbionts and energy supply determine octocoral biodiversity in
coral reefs. Ecology 2008, 89, 3163–3173. [CrossRef]

40. Kearse, M.; Moir, M.; Wilson, A.; Stones-havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.;
Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for
the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [CrossRef] [PubMed]

http://dx.doi.org/10.1126/science.aaq1614
http://www.ncbi.nlm.nih.gov/pubmed/30026226
http://dx.doi.org/10.1007/s12526-016-0510-5
http://dx.doi.org/10.1126/science.1067728
http://dx.doi.org/10.1016/0040-1951(86)90014-4
http://dx.doi.org/10.7717/peerj.6532
http://dx.doi.org/10.1007/s10872-008-0077-2
http://dx.doi.org/10.1007/BF00291930
http://dx.doi.org/10.1007/s00227-003-1105-9
http://dx.doi.org/10.1071/IS12035
http://dx.doi.org/10.3897/zookeys.790.28875
http://www.ncbi.nlm.nih.gov/pubmed/30364726
http://dx.doi.org/10.3897/zookeys.872.36288
http://dx.doi.org/10.1163/18759866-20191355
http://dx.doi.org/10.1186/s40168-018-0431-6
http://dx.doi.org/10.1111/j.1365-294X.2005.02545.x
http://dx.doi.org/10.3354/meps07214
http://dx.doi.org/10.3354/meps284147
http://dx.doi.org/10.1890/08-0005.1
http://dx.doi.org/10.1093/bioinformatics/bts199
http://www.ncbi.nlm.nih.gov/pubmed/22543367


Diversity 2019, 11, 176 13 of 13

41. Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows
95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98.

42. Larsson, A. AliView: A fast and lightweight alignment viewer and editor for large datasets. Bioinformatics
2014, 30, 3276–3278. [CrossRef]

43. Katoh, K.; Standley, D.M. MAFFT Multiple sequence alignment software version 7: Improvements in
performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [CrossRef] [PubMed]

44. Ranwez, V.; Harispe, S.; Delsuc, F.; Douzery, E.J.P. MACSE: Multiple Alignment of Coding SEquences
accounting for frameshifts and stop codons. PLoS ONE 2011, 6, e22594. [CrossRef]

45. Gaurav, V.; Lohman, D.J.; Meier, R. SequenceMatrix: Concatenation software for the fast assembly of
multi-gene datasets with character set and codon information. Cladistics 2011, 27, 171–180. [CrossRef]

46. Stamatakis, A. RAxML version 8: A tool for phylogenetic analyses and post-analysis of large phylogenies.
Bioinformatics 2014, 30, 1312–1313. [CrossRef]

47. Aberer, A.J.; Kobert, K.; Stamatakis, A. ExaBayes: Massively parallel Bayesian tree inference for the
whole-genome era. Mol. Biol. Evol. 2014, 31, 2553–2556. [CrossRef] [PubMed]

48. Foster, P.G. Modeling compositional heterogeneity. Syst. Biol. 2014, 53, 485–495. [CrossRef] [PubMed]
49. Rambout, A. FigTree. 2014. Available online: tree.bio.ed.ac.uk/software/figtree/ (accessed on 17 April 2019).
50. Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis

across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [CrossRef] [PubMed]
51. McFadden, C.S.; Benayahu, Y.; Pante, E.; Thoma, J.N.; Nevarez, P.A.; France, S.C. Limitations of mitochondrial

gene barcoding in Octocorallia. Mol. Ecol. Resour. 2011, 11, 19–31. [CrossRef] [PubMed]
52. Alderslade, P.; McFadden, C.S. Pinnule-less polyps: A new genus and new species of Indo-Pacific

Clavulariidae and validation of the soft coral genus Acrossota and the family Acrossotidae (Coelenterata:
Octocorallia). Zootaxa 2007, 1400, 27–44. [CrossRef]

53. LaJeunesse, T.C.; Parkinson, J.E.; Gabrielson, P.W.; Jeong, H.J.; Reimer, J.D.; Voolstra, C.R.; Santos, S.R.
Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts.
Curr. Biol. 2018, 28. [CrossRef] [PubMed]

54. Benayahu, Y.; McFadden, C.S.; Shoham, E.; Van Ofwegen, L.P. Search for mesophotic octocorals (Cnidaria,
Anthozoa) and their phylogeny: II. A new zooxanthellate species from Eilat, northern Red Sea. ZooKeys
2017, 676. [CrossRef]

55. LaJeunesse, T.C.; Thornhill, D.J. Improved resolution of reef-coral endosymbiont (Symbiodinium) species
diversity, ecology, and evolution through psbA non-coding region genotyping. PLoS ONE 2011, 6, e29013.
[CrossRef]

56. Alderslade, P.; McFadden, C.S. A new sclerite-free genus and species of Clavulariidae (Coelenterata:
Octocorallia). Zootaxa 2011, 3104, 64–68. [CrossRef]

57. Benayahu, Y.; McFadden, C.S.; Shoham, E. Search for mesophotic octocorals (Cnidaria, Anthozoa) and their
phylogeny: I. A new sclerite-free genus from Eilat, northern Red Sea. ZooKeys 2017, 680. [CrossRef]

58. Baldwin, C.C.; Pitassy, D.E.; Robertson, D.R. A new deep-reef scorpionfish (Teleostei, Scorpaenidae,
Scorpaenodes) from the southern Caribbean with comments on depth distributions and relationships of
western Atlantic members of the genus. ZooKeys 2016, 606, 141–158. [CrossRef] [PubMed]

59. Loya, Y.; Eyal, G.; Treibitz, T.; Lesser, M.P.; Appeldoorn, R. Theme section on mesophotic coral ecosystems:
Advances in knowledge and future perspectives. Coral Reefs 2016, 35. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1093/bioinformatics/btu531
http://dx.doi.org/10.1093/molbev/mst010
http://www.ncbi.nlm.nih.gov/pubmed/23329690
http://dx.doi.org/10.1371/journal.pone.0022594
http://dx.doi.org/10.1111/j.1096-0031.2010.00329.x
http://dx.doi.org/10.1093/bioinformatics/btu033
http://dx.doi.org/10.1093/molbev/msu236
http://www.ncbi.nlm.nih.gov/pubmed/25135941
http://dx.doi.org/10.1080/10635150490445779
http://www.ncbi.nlm.nih.gov/pubmed/15503675
tree.bio.ed.ac.uk/software/figtree/
http://dx.doi.org/10.1093/molbev/msy096
http://www.ncbi.nlm.nih.gov/pubmed/29722887
http://dx.doi.org/10.1111/j.1755-0998.2010.02875.x
http://www.ncbi.nlm.nih.gov/pubmed/21429097
http://dx.doi.org/10.11646/zootaxa.1400.1.2
http://dx.doi.org/10.1016/j.cub.2018.07.008
http://www.ncbi.nlm.nih.gov/pubmed/30100341
http://dx.doi.org/10.3897/zookeys.676.12751
http://dx.doi.org/10.1371/journal.pone.0029013
http://dx.doi.org/10.11646/zootaxa.3104.1.6
http://dx.doi.org/10.3897/zookeys.680.12727
http://dx.doi.org/10.3897/zookeys.606.8590
http://www.ncbi.nlm.nih.gov/pubmed/27551226
http://dx.doi.org/10.1007/s00338-016-1410-7
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Specimen Collection and Morphological Examinations 
	DNA Extraction, Amplification, and Sequencing 
	Molecular Phylogenetic Analyses 

	Systematic Account 
	Genus Hadaka gen. nov. 
	Hadaka nudidomus sp. nov. 

	Molecular Results 
	Discussion 
	References

