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Abstract: Knowledge of the interactions among different microorganisms is important to understand
how ecological function transformation is affected by elevated CO2 levels in CO2-enhanced oil
recovery (CO2-EOR) sites. Molecular ecological networks were established to reveal the interactions
among different microbes of the soil bacterial community with the high-throughput sequencing data
of 16S rRNA genes. The results showed that these networks are a powerful tool to identify and
explain the interactions and keystone species in the communities under elevated CO2 pressure. The
structures of networks under different CO2 leakage concentrations were different as a result of the
networks’ topology properties, such as node numbers, topological roles of individual nodes, and
network hubs. These indicators imply that the interactions among different groups were obviously
changed. Moreover, changes in the network structure were significantly correlated with soil pH
value, which might suggest that the large CO2 leakage affected the soil ecosystem functions by
changing the network interactions. Additionally, the key microbial populations such as Bacteroidetes
and Proteobacteria were distinguished based on network topology to reveal community structure and
ecosystem functioning. The work developed in this study could help microbiologists to address some
research questions that could not be approached previously, and, hence, might represent a new area
of research for microbial ecology.

Keywords: CO2-enhanced oil recovery; CO2 leakage; soil microbial community; microbial interactions;
network analysis

1. Introduction

Global climate change, mainly caused by the anthropogenic CO2 emissions from the utilization
of fossil fuels, has become a critical challenge [1]. To reduce the increased CO2 emissions, a useful
technology, called CO2 capture, utilization, and sequestration (CCUS), has been exploited [2,3].
CO2-enhanced oil recovery (CO2-EOR), which involves using CO2 to enhance oil recovery or improve
the recovery ratio of oil reservoirs, as a promising technology of CCUS, has been widely applied in
oil recovery around the world [4]. At present, there are four CO2-EOR demonstration projects in
China, in the Shengli Oilfield, Yanchang Oilfield, Jilin Oilfield, and Shenhua Group [5,6]. Although
this technology could improve the recovery ratio of oil reservoirs with low cost and high recoverability,
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there is still a risk of gas leakage during the CO2-EOR process. CO2 leakage can result from the CO2

transportation process, as well as from CO2 injection wells and oil production. Once the leakage occurs,
there may be some negative impacts on the near-surface ecosystem [7,8]. Thus, more attention should
be paid to the potential environmental consequences induced by any kind of CO2 leakage [9,10].

Microbial communities play a key role in the soil carbon and nitrogen cycles, since they have
tremendously metabolic diversity and versatility [11]. Some researchers have reported that the diversity
of microbial communities could affect ecosystem functions via the control and change of above- and
below-ground processes [12,13]. The interactions among different species in soil ecosystems form
many complex functional networks. Therefore, the soil ecosystem has the ability to accomplish many
functions, such as nutrient cycling and organic matter decomposition, that might be the network
interactions [14,15]. However, due to the diversity of soil microbial communities, it is difficult to
elucidate the soil ecosystem functions, and these functions are impossible for individual species to
achieve. Therefore, a detailed explanation of the interactions between species across complicated and
diverse communities is useful to define the functional roles occupied by uncultured microbes [15–17].
On the other hand, due to their microbial diversity, few studies have investigated the ecological
networks of soil microbial communities.

Many studies have been conducted on the impacts of CO2 leakage in recent years [4,18].
Beaubien et al. [19] found that, near the CO2 exhaust port at a natural geological CO2 emission
point, the acidic soil environment decreased the soil microbial activity and enzyme activity, thus greatly
affecting the activity of the rhizosphere microorganisms. Additionally, Oesterreicher-Cunha et al. [20]
studied the effect of CO2 seepage on soil microorganisms in the Atlantic forest zone, South America.
Furthermore, Liu et al. showed that the diversity of fungal and bacterial community was consistently
positive in short-term responses to CO2 enrichment [21]. Moreover, Beulig et al. [22] found that, in
a wetland mofette, the volcanic CO2 could change the geochemistry, and then promote anaerobic
and acidophilic organisms in affected soils. However, considering the long periods of CO2 emission
from natural seepages, the ecosystem may have already adapted through species substitution [11,23].
How the microorganisms worked together to make themselves fit for the high-CO2 environment is
still unknown. Although natural sites can present existing special features, such as soil type and soil
temperature, the results from natural sites might not be applicable to the conditions of possible leakage
from the CO2-EOR process. A sudden and continuous high CO2 concentration might change the soil
biochemical conditions, leading to the variation of the functionality or diversity of local microorganisms.

In recent years, as technology has developed, detailed information about soil microbial
communities has become available using high-throughput sequence technology [24,25]. Despite
this, it is still a big challenge to explore and analyze interactions among these communities due to the
huge amounts of sequence data. The network analysis of interaction patterns can provide new insights
into the structures of complex microbial communities. Inter-species associations might help to identify
and elucidate the cooperation going on between community members. This knowledge is especially
precious in soil ecosystems [26,27]. Exploring the interactions between soil microorganisms would
be useful for determining potential biological interactions, environmental bias, or shared physiology.
Network analysis has been proposed as a new way to identify and explore the interaction patterns
in huge and complicated datasets, which might be more difficult to detect with alpha/beta diversity
analysis [28,29]. Nowadays, more and more researchers have started to apply network analysis to
explore interaction patterns between microorganisms in complex communities [30,31]. However, this
approach still needs to focus more attention on the soil microorganisms to explore their interactions in
global change.

To further understand how elevated CO2 emissions affect the composition and abundance of
soil bacterial communities at CO2-EOR sites, in this study, we try to use network analyses to explore
associations between soil bacterial taxa at a CO2-EOR site. A total of 60 soil samples were collected
from three CO2 leakage points at a CO2-EOR project, and their bacterial 16S rRNA gene sequences
were then analyzed. This study attempts to examine the following: (1) how bacterial community
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structure and diversity changed under different CO2 leakage concentrations; (2) which were the key
microbial survivors in response to higher CO2 leakage; and (3) whether the abundance of keystone
species was associated with soil properties.

2. Materials and Methods

2.1. Study Sites, Soil Sampling, and Measurment

The study was conducted near the High 89 CO2 gas injection station (37◦9′25.63” N, 117◦56′28.38”
E), located in Gaoqing County, Shandong Province, China (Figure 1a). The station was constructed by
the Shengli oil field around December 2007 to enhance oil recovery. In the surrounding farmland, the
locations of CO2 leakage points can be seen by the wheat growth condition, as shown in Figure 1b.
The CO2 gas that leaked underground went into the soil. A portable CO2 detector was used to detect
the concentration. CO2 gas concentration in soil was also measured using a gas probe (length 40 cm,
diameter 2 cm) that was buried at a vertical depth of 20 cm. The bottom was sealed and small holes
(3 mm diam.) were uniformly drilled into the probe hall 10 cm from the bottom. The top of the
gas probe had a valve seal, which was connected to a modified GT901 portable gas detector (TES,
Taiwan) with an automatic data transmission function. The collection areas were divided according to
different CO2 leakage concentrations: low (L, 5500–6000 ppm), medium (M, 6600–7500 ppm), high (H,
12,000–14,000 ppm), extreme (E, >30,000 ppm), and the control with extra CO2 leakage (C, 600–900 ppm)
(Figure 1c). The sampling time was 01–03 May from 2015 to 2018, which was during the wheat grain
filling stage. The average monthly rainfall in May in 2015, 2016, 2017, and 2018 was 50, 34, 28, and
33 mm, respectively. The mean temperature in May during the same years was 13.9, 16, 14.1, and
14.5 ◦C, respectively.
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Figure 1. Location of the study area and research photos. (a) The High 89 CO2 gas injection station;
(b) affected wheat growth; (c) soil sample collection.

The soil at the research site is fluvo-aquic soil with a pH of 7.5 and a total C of 1.3%. Since
1980, wheat rotated with corn or beans has been planted annually. Approximately 500 g of surface
(0–15 cm) soil was collected from three discrete locations at the leakage sites not far from the injection
station. About 20 g of soil was stored at −20 ◦C for subsequent analysis of microbial diversity. The
remaining soil was air-dried and homogenized to pass through a 2 mm sieve. Soil pH value was
measured using a pH meter (PHC-3C, Shanghai Leici, Shanghai, China). Soil organic matter (OM)
was measured with colorimetrical methods using hydration heat during the oxidation of potassium
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dichromate. The nitrate-nitrogen (NN) content was measured by dual wavelength spectrometry [4].
The total phosphorus (TP) content was determined by the acid digestion-molybdenum and antimony
colorimetric method.

2.2. DNA Extraction, PCR Amplification, and ILLUMINA MiSeq Sequencing

According to the manufacturer’s instruction manual, DNA from 60 soil samples was extracted
from 0.5 g of fresh soil sample with the E.Z.N.ATM Mag-Bind Soil DNA Kit (Omega Biotek, Guangzhou,
China). These soil samples were marked as 2015/2016/2017/2018-C1/2/3, 2015/2016/2017/2018-L1/2/3,
2015/2016/2017/2018-M1/2/3, 2015/2016/2017/2018-H1/2/3, and 2015/2016/2017/2018-E1/2/3 collected in
2015, 2016, 2017, and 2018, respectively. The V3–V4 region of the bacterial 16S rRNA genes was amplified
using the primer sets 341F (CCCTACACGACGCTCTTCCGATCTG-CCTACGGGNGGCWGCAG)
and 805R (GACTGGAGTTCCTTGGCACCCGAGAATTCCA-GACTACHVGGGTATCTAATCC). The
50-µL PCR reaction system included 5 µL of 10×PCR buffer, 0.5 µL of each primer (50 µM), 0.5 µL
of dNTP (10 mM each), 0.5 µL Platinum Taq (5 U/uL), 42 µL sterilized ultrapure water, and 1 µL of
template DNA (10 ng/µL). PCR products were pooled and purified with the DNA Gel Extraction Kit
(Axygen Biosciences, Union City, CA, USA) according to the instruction manual. Quantification of
the purified PCR products was carried out using Quant-iTPicoGreen dsDNA Assay Kit (Invitrogen,
Carlsbad, CA, USA). Purified amplicons were pooled in equimolar amounts and paired-end sequenced
(2 × 300) on the Illumina MiSeq platform (Personalbio, Shanghai, China), according to the protocol.
The sample sequencing data were distinguished with the barcode sequence, and the sequence of
each sample underwent quality control. The non-specific amplification sequences and chimeric
were then removed with the USEARCH method (http://www.drive5.com/usearch/). Operational
taxonomic units (OTUs) with a 97% similarity cutoff were also clustered using the USEARCH method.
Mothur software was used to analyze the alpha diversity (http://www.mothur.org/). The Chao
(http://www.mothur.org/wiki/Chao) and Shannon indices (http://www.mothur.org/wiki/Shannon) were
conducted to reveal the richness and diversity. A RDP classifier was used to classify the species
(http://rdp.cme.msu.edu/misc/resources.jsp) [32,33]. According to the taxonomic results, a species’
abundance diagram and rich infrared images were constructed with Origin 9.1 and R software. The
beta diversity analysis was performed using the weighted UniFrac metric algorithmic with R software.

2.3. Network Construction and Analysis

In this study, based on 16S rDNA sequencing data, all the data from the 60 collected soil samples
were used for constructing the interaction networks, which were defined as phylogenetic molecular
ecological networks (MENs) [27]. For these 60 samples, each CO2 concentration gradient had 12 samples
to establish their own networks, for example, 2015-C1/2/3, 2016-C1/2/3, 2017-C1/2/3, and 2018-C1/2/3
from the control sites to make the MEN. Before the network construction, the random matrix theory
(RMT) method was used to identify the appropriate similarity threshold. According to Deng et al. [34],
there were four steps included in the construction process, which were the data collection, data
transformation, pairwise similarity matrix calculation, and the adjacent matrix determination.

During the construction, for each network, only the OTUs (97% sequence identity) occurring in
100% of the total samples were used for the network computation. Moreover, the relative abundances
of OTUs were transformed to log10, and the blanks were filled with 0.01 with paired valid values. The
Spearman correlation coefficient was recommended to measure the correlation, and a similarity matrix
was calculated. Thereafter, the similarity threshold from 0.01 to 0.99 with intervals of 0.01 increased,
and an optimal similarity threshold was chosen. Only the similarity values above the chosen threshold
were kept for calculating matrix eigenvalues. The significant non-random patterns were determined
by evaluating whether the spacing of the eigenvalue distribution followed a Poisson distribution. An
indirect network graph could be drawn after the adjacency matrix was defined and subsequently
visualized using software. To allow comparison, an identical cut-off of 0.80 was used to construct
the interaction networks for each gradient. The network construction and statistical analysis were
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performed using the existing pipeline available at http://ieg4.rccc.ou.edu/mena. The networks were
visualized with Cytoscape 3.7.0 software [35,36].

2.4. Characterization of the Molecular Ecological Networks and Statistical Analysis

First, the network global properties were calculated, including total nodes and links, R square of
power-law, average degree (avgK), average clustering coefficient (avgCC), and average path distance
(GD). The network indices for an individual node such as degree, stress centrality, and betweenness
were then calculated for the pipeline. The greedy modularity optimization was used as the separation
method for the setting of module separation. In the network, a group of OTUs with a high number of
connections among themselves was defined as a module while there were far fewer connections with
other OTUs outside the group. Modularity (M) was very important for system stability [31]. Moreover,
the values of the two parameters Zi (within-module connectivity) and Pi (among-module connectivity)
of each node were also calculated. Furthermore, according to the values of Zi and Pi, the roles of nodes
were classified into four categories: peripherals (Zi ≤ 2.5, Pi ≤ 0.62), connectors (Zi ≤ 2.5, Pi > 0.62),
module hubs (Zi > 2.5, Pi ≤ 0.62), and network hubs (Zi > 2.5, Pi > 0.62) [34]. Three power-law models,
including regular power-law, exponential law, and truncated power-law were fitted to for the first step
of the network statistics. The network connections were then rewired and the network properties were
calculated randomly with 100 permutations to evaluate the constructed networks, with the number of
nodes and links being constant between random and empirical networks [34].

The relationships between Gene/OTU significances (GS) and environmental traits were calculated,
and the Mantel test was used to check the correlations between GS and network connectivity. The
GS was calculated and defined as the square of the Pearson correlation coefficient (r2) of the OTU
abundance profile with environmental traits. The correlations between GS and nodes’ network
indices, such as degree, were used to reveal the internal associations between network topology and
environmental traits. During the process, we tried four distance methods, namely Euclidean distance,
Bray–Cutis distance, Morisita distance, Jaccard distance, and Euclidean distance was chosen. Finally,
the process of module-eigengene analyses was also run on the pipeline. Eigengene analysis is important
for revealing higher-order organization and identifying key populations based on network topology.
In this analysis, every module was summarized through singular value decomposition analysis with a
single representative abundance profile, which was referred to be the module eigengene. Eigengene
represented the relative abundance profile of the OTUs within a module. The Pearson correlations have
been used to define the eigengene network by some researchers. The relationships among eigengenes
can be visualized as a clustering dendrogram through average-linkage hierarchical analysis [27]. As
reported, the module eigengene could explain approximately 50% or more of the variance of the OTU
abundances in the module.

3. Results

3.1. Topological Properties of Molecular Ecological Networks (MENs) under Different CO2
Leakage Concentrations

A MEN appears to be a representation of some biological interactions in an ecosystem, such as
competition or mutualisms, in which a microbe (here mean nodes) is linked by pairwise interactions (here
mean links). In this study, five networks under different CO2 leakage concentrations were constructed
individually. Some important general network topological characteristics, such as scale-free, small
world, or modular, were investigated to understand the differences among these MENs.

Table 1 shows that all five networks were scale-free, i.e., their connectivity follows a power law, i.e.,
a few nodes in the networks have many connections with other nodes, while most of the nodes have a
few connections. The network connectivity (or degree) in the five constructed MENs fitted well with
the power law model, with R2 values of 0.5 to 0.636, except for the H network. The results imply that
the MENs in these microbial communities behaved approximately scale-free. Furthermore, the average

http://ieg4.rccc.ou.edu/mena
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clustering coefficients and path distances were also different from those of the corresponding random
networks (Table 1). The value of avgCC was used to measure the extent of the module structure present
in the network. Table 1 shows that the avgCC of the L, H, and E networks were 0.570, 0.548 and 0.536,
which are bigger than the value of 0.487 in the C network. Deng et al. reported that higher avgK means
a more complex network, and a small GD means that nodes in the network are closer [34]. The order
of avgK values for the networks was 8.077 (C) > 8.026 (L) > 7.387 (E) > 5.521 (M). The fact that the
C network with no CO2 leakage pressure was more complex than other networks with higher CO2

leakage concentration (except the H network) can be identified by the decreased average degree (avgK)
and longer path distance (GD) (Table 1). All these results suggest that the MENs in these microbial
communities had the small-world property [37].

Table 1. Topological properties of the empirical molecular ecological networks of microbial communities
and their random networks under five CO2 concentrations. (C, control; L, low CO2 concentration; M,
medium CO2 concentration; H, high CO2 concentration; E, extreme CO2 concentration).

Network Index C L M H E

Empirical
networks

Similarity threshold 0.8 0.8 0.8 0.8 0.8
R2 of power law 0.5 0.594 0.568 0.352 0.636

avgK 8.077 8.026 5.521 8.553 7.387
avgCC 0.487 0.570 0.452 0.548 0.536

GD 2.915 2.841 3.068 2.942 2.773
Modularity 0.393 0.437 0.494 0.337 0.383

Random
networks

avgCC 0.235 ± 0.02 0.223 ± 0.020 0.130 ± 0.021 0.299 ± 0.021 0.266 ± 0.024
GD 2.410 ± 0.046 2.346 ± 0.036 2.655 ± 0.044 2.287 ± 0.027 2.408 ± 0.049

Modularity 0.237 ± 0.009 0.244 ± 0.010 0.327 ± 0.012 0.224 ± 0.008 0.247 ± 0.010

On the other hand, there are no obvious differences among the sizes of the obtained networks,
while the number of links for the five networks is similar, except for the M network (Figure 2a). The
composition and structure of the five networks are different. The distribution of the node number
of the nine phyla involved in the five networks varied substantially among different phylogenetic
groups (Figure 2b). For example, the node number of Actinobacteria, Chloroflexi, and Verrucomicrobia
decreased with increasing CO2 concentration, whereas the opposite trend was found for Proteobacteria
and Gemmatinoadetes. Interestingly, Bacteroidetes and Firmicutes did not show a significant variation.
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Alon has reported that networks in biological systems are always modular [38]. In the constructed
networks, the module was defined as a group of microbial genes that are highly connected among
themselves but have few connections with the genes belonging to other modules. Modularity is a
special ecological concept, and can originate from some special processes, such as ecological niche
overlap, natural selection, or phylogenetic relatedness. Moreover, it might be important for ecosystem
stability and resilience [39]. Table 1 shows that the five MENs obtained here were modular, with higher
modularity in the empirical networks than those from the random networks. On the other hand, in the
five networks, we focused on the modules with more than five nodes. As a result, a total of five (one
with >20 nodes), three (two with >20 nodes), four (none with >20 nodes), four (two with >20 nodes),
and three (one with >30 nodes) modules were detected in the C, L, M, H, and E networks, respectively
(Figure 3). The module sizes varied considerably, ranging from 6 to 31 nodes, and the individual
modules showed obvious differences.
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In Figure 3, some members of Bateroidetes were found to be in the same modules in the C network
(module 2 and 4). They were found in the modules of the other four networks, and the interactions
among them were significant in these networks (Figure 3). All these results might show that these
Bateroidetes have similar ecological niches. On the other hand, it was strange that Proteobacteria and
Actinobacteria were not spread over the major modules under different CO2 concentrations (Figure 3),
which is contrary to the fact that these two groups have highly diverse physiology and occupy
almost all different ecological niches. Furthermore, it was interesting that some species of the phylum
Planctomycetes showed a close phylogenetic relationship, which means a good relationship with other
microorganisms in the networks of comparable higher CO2 concentrations (Figure 3). This result might
imply that these species represent different “ecological species” under higher CO2 concentrations.
In the five networks, the negative connections were dominant, whereas the proportions of positive
connections were elevated in the networks with higher CO2 concentration. Although the microbial
community structures and species interactions were different among the samples with different CO2

concentration, there were still some bacterial species shared in all the networks.

3.2. Dominant Microbial Taxa under Different CO2 Leakage Gradient

Microbial patterns were distinctly different for the five networks under different CO2

concentrations, whereas the networks became simpler and less clustered as the CO2 concentration
increased (Figure 4). Figure 4 shows that there were nine phyla in each network with >1 node number,
namely Actinobacteria, Proteobacteria, Bacteroidetes, Chloroflexi, Planctomycetes, Verrucomicrobia, Firmicutes,
Nitrospirae, and Gemmatinoadetes.

As reported, the nodes with a higher degree can be considered as the central nodes in the network
structure [40]. In Figure 4, it can be seen that nodes with high connectivity (degree) varied across the
CO2 concentration (Figure 4). For example, in the C network, the top five nodes (node degree >20)
which might be the predominant phylum belonged to Actinobacteria (Microbacteriaceae), Proteobacteria
(Skermanella, etc.), and Chloroflexi (Thermomicrobia), whereas Bacteroidetes (Flavobacteriaceae, etc.) played
an important role in the E network, followed by Planctomycetes (Phycisphaerales), Proteobacteria
(Luteimonas, etc.), and Actinobacteria (Nocardioides). In the E network, Phycisphaerales, Flavobacteria,
Nocardioides, and Flavobacteriales had the top node degrees of 29, 25, 25, and 25 (Table S1). In the H
network, Nitrosomonadales, Nitrosomonadaceae, and Lysobacter belonging to the phylum Proteobacteria
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had the highest node degrees, with values of 29, 29, and 28. Bacteroidetes (Flavobacterium, etc.) and
Actinobacteria (Pseudonocardia, etc) also had high degrees. On the other hand, Verrucomicrobia and
Nitrospirae also became the important components with high node degree in the H network (Table S2).
Compared to the node size of other networks, the degree values of the medium network were much
smaller. Furthermore, the node degree of the dominant bacterial species of the L network did not show
a significant change compared to the C network. However, in the medium concentration network,
Proteobacteria (Polaromonas), Chloroflexi (Chloroflexales), and Actinobacteria (Micromonosporaceae) were the
top three in terms of the largest node degree, with values of 18, 18, and 17, respectively. These results
imply that different CO2 leakage concentrations selected for different bacterial communities, which
might mean that the interactions among different microbial taxa in the soil bacterial communities were
substantially changed by the CO2 concentration. Moreover, these kinds of effects changed significantly
among different bacterial groups.
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The connectivity within and among modules has been reported to identify the roles of nodes
in MENs [31]. Four ecological roles, known as peripherals, connectors, module hubs, or network
hubs can be used to assign every node in the networks. In the five networks, peripherals occupied
>96% of the total nodes. While there were no module hubs in the C network, some module hubs
appeared in the L, M, and H networks, whereas some connectors were observed in the C, M, and H
networks (Figure 5). A special phenomenon was that no module hubs were observed in the C and E
networks. Compared with the module hubs, more connectors were detected; however, these did not
show an obvious trend, ranging from three connectors in the C network to no connectors in the L and
E networks (Figure 5). In this study, we did not detect any network hubs. Figure 5 also shows that the
module hubs and connectors had a wide distribution in various microbial populations. Of the total of
the five module hubs, three belonged to Betaproteobacteria, one to Chloroflexi, and one to Actinobacteria.
Three connectors in the C network belonged to the bacterial phyla Planctomycetes and Firmicutes,
while in the M networks, Actinobacteria, Bacteroidetes, and Gammaproteobacteria were observed for the
connectors. In the H network, there were two connectors which contained the phyla Verrucomicrobia
and Deltaproteobacteria. The results also suggest that Proteobacteria occupied a dominant percentage of
the module hubs and connectors. Although microbial phyla Bacteroidetes, Planctomycetes, and Chloroflexi
might belong to the keystone taxa, their abundances were relatively low. All these results might also
imply that CO2 concentration changed the network structure and key bacterial populations.
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Figure 5. Z-P plot showing the keystone species in the different CO2 concentration networks. Different
symbols with special colors represent different networks showing as follows: black squares for control,
red stars for the low CO2 concentration, blue up-triangles for medium CO2 concentration, rose red
down-triangles for high CO2 concentration and green diamonds for the extreme CO2 concentration.
The module hubs and connectors are labeled with phylogenetic affiliations. (C, control; L, low
CO2 concentration; M, medium CO2 concentration; H, high CO2 concentration; E, extreme CO2

concentration).

3.3. Eigengene Network Analysis

A conceptual example of eigengene network analysis for a module is illustrated in Figure 6. The
eigengene network analysis was composed of various components. For example, a heat map showed
the relative abundances of individual bacterial species within a module. Furthermore, the eigengene
represented the abundance profile. The module membership included in the analysis referred to the
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key species within a module. The module visualization can be used to show the interactions among
different populations, which are shown in Figure 3.
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graphs of the other networks). Most of the eigengenes (5/8) explained more than 50% of the observed
variations, similar to observations from OTUs eigengene network analysis. These results imply that
these eigengenes could represent species shift across different samples in individual modules.

Groups of eigengenes in this dendrogram are defined as the meta-modules in the eigengene
network, which shows the higher-order structure of the constructed network. In our study, the
eigengenes from some modules showed significant correlations. Two meta-modules were clustered
for C and M networks, whereas only one meta-module was clustered for the L, H, and E networks
(Figure 7). The eigengenes from the paired modules were clustered differently in different networks,
which implies that the higher-order organization of the paired modules was not retained between
different CO2 leakage concentrations. With the aim of determining how the species was associated
with a module, module membership was evaluated, and was shown as the square of the Pearson
correlation between the given species abundance profile and the module eigengene. Many species
had significant module memberships with their respective modules (Files S1–S5, see Supplemental
Material). However, for some nodes, module memberships presented different performances among
the paired modules (Files S1–S5, see Supplemental Material). These results also indicate that CO2

could significantly change the topological positions of individual species.
With the purpose of checking whether some soil properties were important to network modules,

the trait-based module significances were measured, via the square of the correlation between the
signal intensity of a module and each soil characteristic (Figure 8). From Figure 8, it can be seen that,
for the C network, there were strongly significant or significant correlations between the connectivity
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of three modules and the selected soil variables, except for the pH value (p ≤ 0.001, 0.001 ≤ p ≤ 0.05).
For the L network, the connectivity of one module was very significantly related to the nitrate value
(p ≤ 0.001). There were significant correlations between the connectivity of three modules and the
selected soil variables of soil pH, soil organic matter (OM), nitrate-nitrogen (NN), and total phosphorus
(TP) (0.001 ≤ p ≤ 0.05). However, for the E network, only the connectivity of one module showed a
significant correlation with the selected soil variable pH (0.001 ≤ p ≤ 0.05).
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4. Discussion

The rapid development of technologies such as high-throughput sequencing technologies provides
huge amounts of scientific data, especially in the field of molecular ecology [41]. However, even
with advanced technology, microorganisms are still invisible to the naked eye, and, additionally,
most cannot be cultivated. Detection work always relies on molecular markers, such as 16S rRNA
genes. The structures of microbial communities can be described by the gene richness and abundance.
However, there are still some challenges in terms of dealing with these tremendous quantities of
data and how to use these data to understand some functional processes at the community level.
Furthermore, the relationship between biodiversity and ecosystem functioning is one of the central
goals in ecology and environmental sciences. Abundant evidence supports the generally positive
effect of biodiversity on ecosystem functioning, increasing ecosystem services and stability, and the
resilience and multifunctionality of an ecosystem [42–45]. However, most biodiversity studies in
the field of microbial ecology consider the richness and abundance of microbes, rather than the
interactions among different microbes. Otherwise, network interactions play a more important role
in the ecosystem processes and functions than diversity. Therefore, this study investigated how
determining the response of bacterial communities to CO2 leakage and identifying the key populations
is critical for future CO2-EOR projects and climate change. Based on high-throughput sequencing data,
some networks were established, and how the CO2 concentration affected the network interactions
among the different bacterial groups was investigated. The key microorganisms responding to higher
CO2 leakage concentration, and the relationships between network structures and soil properties, were
also analyzed.

In this study, the developed network analysis was used to show the microbial interactions under
different CO2 concentrations. The obtained results support the hypothesis that microbial interactions
vary across CO2 concentrations. The overall network properties changed across the five concentrations
(Table 1), and the species involved in microbial interactions changed with leakage concentration, as
proved by variations in dominant phyla (high node degree) (Figure 1). In the networks, it was assumed
that community stability could be higher with increasing complexity, while the competition could
improve as well. The simple network structure (no connectors between modules and more sparsely
distributed species) and the extremely low competitive connections in the E network may lead to a
negative effect on the biogeochemical function, and indicate an unstable and vulnerable microbial
community in the extreme CO2 concentration when other disturbances occur. Microorganisms under
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this condition might be specialized to local environments and thus sensitive to environmental changes
since gas leakage occurred. Furthermore, the results indicate that the network interactions for some
microbial groups become more complicated under higher CO2 concentration, which is consistent with
our previous studies showing that microbial community structures were significantly changed by
higher CO2 concentration [46]. The present results also imply that external CO2 disturbance might
have significantly impacted the structure of the microbial communities and their network interactions.

The networks obtained here show the general features of many cellular networks, such as modular,
small-world, or scale-free [47]. A small-world pattern contributes to the efficient communication among
different members in the community, and so can quickly respond to external environmental changes
such as CO2 leakage. At the same time, the short path distance will allow the perturbations to reach the
network quickly, and thus the network structure, as well as the microbial functions, might be changed.
Furthermore, modularity can help to minimize the effects of perturbations on the community [48],
while the organization of different modules in the community makes the communication between
modules or network hubs respond quickly. Our results show that molecular ecological networks
were modular.

The network connections between two OTUs could describe the co-occurrence of the two OTUs
across different samples, which means that the two OTUs might respond to a common environmental
parameter instead of interacting directly [49]. It has been reported that the characterization of OTU
co-occurrence modules can be used to detect interactions in microbial communities. The changes
of OTU abundances with strong module memberships might be motivated by the same underlying
factors. Therefore, it can be inferred that OTUs with strong module memberships should have some
physical and/or functional relationship in the community. As shown in our study, the modularity,
module memberships, topological roles, and phylogenetic relationships of individual OTUs have
provided some information to identify the key OTUs. Thus, the interactions and ecological roles of
these microbial communities under CO2 leakage might have some implications for future CO2-EOR
projects. It can also be speculated that the network interactions among different OTUs are greatly
affected by CO2 leakage. This study may be the first one to present changes in network interactions
among different OTUs of microbial communities under CO2 leakage in the process of CO2-EOR.

The identification of the keystone microbial populations is very important in ecology; however,
it is not easy to achieve, especially considering the complexity, diversity, and uncultivated species
in microbial communities [50,51]. As shown in our study, the key microbes can be identified based
on the network topology, module memberships, and other information. In this study, there was an
interesting result that the keystone taxa belong to the microbial phyla Bacteroidetes, Proteobacteria,
Chloroflexi, and Planctomycetes, whereas the abundances of Chloroflexi, and Planctomycetes were not high,
which might suggest that there is no relation between the abundance and key functional importance.
Bateroidetes, a phylum containing anaerobic bacteria that are widely distributed in the soil environment,
and Proteobacteria have highly diverse physiology and are distributed in almost all different ecological
environments. Usually, leakage of CO2 might result in an anaerobic environment, and the relative
abundance of anaerobic bacteria such as Bacteroidetes and Chloroflexi would show an increasing trend.
Sáenz de Miera et al. showed that the abundance of the Proteobacteria phylum varied substantially under
an increasing CO2 concentration at a naturally occurring CO2 gas vent [7]. This study also indicated
that Proteobacteria is the key phylum at the CO2 leakage environment. Proteobacteria phylum contained
lots of microbes such as the aerobic methanol-oxidizing bacterium capable of degrading a variety of
nitrogen-containing contaminants, or the bacteria producing several oxidases that oxidize diverse
compounds, or some bacteria which could produce CO2 in an anoxic environment [11]. It can then be
speculated that increasing soil CO2 concentration could result in a more suitable environment for some
microbes belonging to Proteobacteria, and making Proteobacteria the keystone bacteria. Chen et al. have
reported that Chloroflexi increased with the increasing CO2 leakage, which indicated that this phylum
might be potentially important indicators for the detection and resolution of gas leakage. Although the
ecological function of this group was not clear, this phylum was still the keystone microbe, indicating
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that further study of the group’s metabolisms and diversity is needed [2]. Tait et al. have reported that
Planctomycetacia presented a notable increase after two weeks of CO2 exposure from a controlled CO2

sub-seabed leak in Ardmucknish Bay [25]. This might suggest that Planctomycetes could be significantly
influenced by CO2. On the other hand, the presence of microbes in the same modules might imply that
these microbial populations compartmentalize with each other for ecological niches. Additionally,
in Figure 4, Bacteroidetes and Proteobacteria were shown as the predominant phyla in the modules of
different networks, which implies that these two phyla might be useful in the future for forecasting
CO2 leak monitoring. This might also imply that CO2 concentration changed the network structure
and key bacterial populations. Furthermore, this result might provide important information about
candidate genes which are important to some ecosystem processes and functioning.

Understanding how microbial communities respond to environmental change, especially for
anthropogenic change, is critical in ecology [52]. The networks presented in this study may provide
an appropriate method to explore how environmental changes affect the structure of microbial
communities. Our previous studies have shown that the composition and structure of microbial
communities were significantly altered when the CO2 concentration increased, which might be due to
the increased input of C into the soil and associated chemical effect [2,4,11]. In this study, there were
strong correlations between the node connectivity and the selected soil variables such as soil OM or
nitrate content for the C network, while the pH value was significantly related with some modules in
the L, M, H, and E networks. On the other hand, based on the relationships between microbial network
interactions and soil properties, some network studies have been established. For the control site, pH
was not presented as a node, while it was a node in other leakage networks. This result implies that
the pH value played an important role in the network structure. In the E network, pH node showed a
positive relationship with the phyla Verrucomicrobia and Bacteroidetes; however, presented a negative
relationship with the phylum Proteobacteria (Figures S6–S10, see Supplemental Material). This result
might indicate that the high CO2 concentration affected the network interactions among different
microbial groups, and such changes might correlate with some soil properties, such as pH value.
Chen et al. have expressed that the Bacteroidetes was the most affected phylum in response to CO2

variation. Furthermore, a negative concentration between pH value and the CO2 flux appeared [4].
Fernández-Montiel et al. showed that soil pH could change the slightly acidic environment to the acidic
condition under higher CO2 flux pressure [23]. Sáenz de Miera et al. concluded that CO2 injection
introduced a decreasing pH value relative to a zero CO2-addition control [24]. The results in this study
also implied that both pH value and CO2 leakage concentration affected the microbial and network
structures. Soil organic matter represents an important index to estimate the soil carbon storage
and to evaluate soil fertility and quality. In the current study, there was no significant correlation
between organic matter and network modules under higher CO2 concentrations. Furthermore, an
increased CO2 concentration in the soil can influence nitrogen content through affecting nitrogen
fixation, nitrification, denitrification, anaerobic ammonium oxidation, and other biochemical processes.
However, there is no relationship between the nitrate-nitrogen content and network modules.

However, information about the presence of bacteria related to keystone microbes such as
Bacteroidetes, Chloroflexi, and Planctomycetes phyla are still not sufficiently available for the networks.
The high-throughput 16S RNA gene sequencing only provided extensive information about the taxa
present in bacterial communities under different CO2 leakage concentrations, and gave few insights
into the functional roles of these phyla in this study. The ecological function network analysis of these
microorganisms, and more extensive research of their metabolism and diversity might be investigated
in the near future with the technology of Geochip.

5. Conclusions

In summary, this study demonstrated microbial interactions and their relationships under different
CO2 leakage concentrations. Understanding how the microbial communities responded to the elevated
CO2 concentration is critical for ecologists. Moreover, the results presented here might be important
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for studies on ecology and microbiology. This study demonstrated that the network interactions for
most of the microbial groups became less complex under higher CO2 concentration. To our knowledge,
this is the first study to demonstrate changes in the network interactions of microbial communities
in a CO2-EOR project. These results of keystone species also suggest that different CO2 leakage
concentrations selected for different bacterial communities and that the interactions among different
microbial taxa in the soil bacterial communities were greatly changed by CO2 concentration. Moreover,
the results of eigengene network analysis and trait-based module significances showed that the soil
properties were significantly correlated with some OTUs. This study provides a novel conceptual
framework for studying network interactions among different microbial populations, which is an
essential component of biodiversity studies. Future work should focus on functional network analysis
at CO2 leakage areas to understand the mechanisms involved.
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