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Abstract: Deep-sea hypersaline anoxic basins (DHABs) are one of the most hostile environments
on Earth. Even though DHABs have hypersaline conditions, anoxia and high hydrostatic pressure,
they host incredible microbial biodiversity. Among eukaryotes inhabiting these systems, recent
studies demonstrated that fungi are a quantitatively relevant component. Here, fungi can benefit
from the accumulation of large amounts of organic material. Marine fungi are also known to produce
bioactive molecules. In particular, halophilic and halotolerant fungi are a reservoir of enzymes and
secondary metabolites with valuable applications in industrial, pharmaceutical, and environmental
biotechnology. Here we report that among the fungal taxa identified from the Mediterranean and
Red Sea DHABs, halotolerant halophilic species belonging to the genera Aspergillus and Penicillium
can be used or screened for enzymes and bioactive molecules. Fungi living in DHABs can extend
our knowledge about the limits of life, and the discovery of new species and molecules from these
environments can have high biotechnological potential.
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1. Introduction

Deep-sea ecosystems represent the last frontier of scientific research in marine ecosystems [1].
Compared to terrestrial and coastal ecosystems, the deep sea (beyond 200 m below sea level) hosts
some of the most extreme habitats, characterised by complete darkness, wide temperature ranges from
below 0 ◦C to 450 ◦C or more, and high hydrostatic pressure of average 400 atm [2,3]. The deep sea
also includes the deep-sea hypersaline anoxic basins (DHABs), which are depressions of the seafloor
found at more than 2 km below the sea level. Since DHABs were first discovered in the Red Sea [4,5],
more than 36 hypersaline basins have been observed in regions all over of the world (Figure 1), from
the Mediterranean Sea to the Gulf of Mexico and also in the Black Sea [6]. Although DHAB geological
features can change considerably from case to case, most DHABs originated from the re-dissolution
of evaporitic deposits buried under layers of sediments and exposed to seawater because of tectonic
activity [7]. Therefore, chemical and physical characteristics are specific to each DHAB ([6] and
references therein). Overall, salinity can vary from 240 to 500 PSU [7,8] with variable concentrations of
halite (NaCl-mineral) [9,10], kieserite (MgSO4-mineral) [9–11], sulphate [9,10] and other minerals, as
well as toxic compounds, such as hydrogen sulphide, ammonium, and manganese [6]. The dissolution
of the anciently buried evaporites creates a thick layer of brines, which are separated by a halocline
from the overlying oxygenated deep-seawater column [9]. Thus, microbial degradation of organic
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matter within the basin eventually consumes the oxygen available in the water, and since this cannot
mix with the overlying oxygenated water, the basin becomes ultimately anoxic. Anoxia and sulfidic
conditions combined with the high salinity and hydrostatic pressure and the absence of light, make
these deep, hypersaline, anoxic basins some of the most hostile environments on our planet.

Although life has been thought to be absent in such conditions, DHABs provided relevant insights
into the extent of life for all three domains, including the possible presence of living metazoans [8,10,12–20].
Other studies on molecular diversity, metabolic activities and microscopy analyses have revealed diverse
and abundant prokaryotic assemblages [18,21–25]. At the same time, investigations on eukaryotic life
obtained by ribosomal DNA analyses and microscopic images showed the presence of unexpected
micro-eukaryotic communities thriving in DHABs where fungi accounted for a high number of reads or
operational taxonomic units (OTUs)/phylotypes to the entire assemblage [12,26,27].

Fungi are essential decomposers of organic matter and play a key role in carbon cycling and
food web dynamics in terrestrial and marine ecosystems, also including mutualistic, parasitic and
pathogenic taxa [28,29]. In particular, saprotrophic fungi are known to produce a vast array of
organic compounds and enzymes able to decompose even the most recalcitrant fraction of natural and
human-made organic materials [30]. In the Tethis basin, the relative abundance of the rRNA reads of
fungi was high, especially in the lower halocline where the conditions of salinity and oxygen are more
challenging [31,32]. Since organic material accumulates at the halocline, fungi have been suggested to
be active remineralisers in such extreme conditions [31,32].

Fungi, among marine organisms, produce a large and diverse array of bioactive compounds
exploitable for several biotechnological purposes [33]. However, quantitative relevance, diversity,
ecological role and adaptations of fungi to the extreme conditions of DHABs are still largely unexplored.
Consequently, the bioactive compounds they produce remain still unexploited also. The present
review provides an overview of the fungal ecology and diversity in DHAB systems highlighting
their potential in producing enzymes and bioactive molecules for industrial, pharmaceutical and
environmental applications.

2. Fungi in DHABs

Advances in “omics” analyses, including next-generation sequencing, genome mining, and
bioinformatic tools revealed that fungi are an important eukaryotic group in several DHABs. Although
the information is still limited, Ascomycota and Basidiomycota fungi were identified in many DHABs
from the Mediterranean and Red Seas, mostly through high-throughput sequencing analyses (Table 1).
For example, fungi were found in the upper and lower halocline of L’Atalante basin [12,26] and in
the Thetis basin [27]. In the brine pool adjacent to Thuwal cold seep as well as in the Discovery and
L’Atalante basins, fungal reads contributed to 68 to 99% of the eukaryotic reads [26,34].
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Table 1. List of fungal taxa identified in deep-sea hypersaline anoxic basins. Taxa are expressed as Sub-Division (SD), Order (O), Class (C) and Family (F).

Fungal Taxon/Closest Relative DHAB Site Depth Area Coordinates Reference

Malasseziales (O) Bannock Halocline 3330 Mediterranean 34◦17.488’ N 20◦00.692’ E [20]
Malasseziomycetes (C), Microbotryomycetes (C) and Dothideomycetes (C) Discovery Upper halocline 3582 Mediterranean 35◦17.150’ N 21◦42.308’ E [26]

Aspergillus and Penicillium Discovery Upper halocline 3583 Mediterranean 35◦17.150’ N 21◦42.308’ E [35]
Aspergillus and Penicillium Discovery Lower halocline 3586 Mediterranean 35◦17.150’ N 21◦42.308’ E [35]

Aspergillus, Penicillium, Sordaria, Rhodothorula glutinis, R. mucillaginosa
Ustilaginomycetes (C) L’Atalante Upper halocline 3499 Mediterranean 35◦18.865’ N 21◦24.338’ E [12]

Ustilaginomycetes (C) L’Atalante Lower halocline 3501 Mediterranean 35◦18.865’ N 21◦24.338’ E [12]
Malasseziomycetes (C), Microbotryomycetes (C) and Dothideomycetes (C) L’Atalante Upper halocline 3430 Mediterranean 35◦18.865’ N 21◦24.338’ E [26]
Malasseziomycetes (C), Microbotryomycetes (C) and Dothideomycetes (C) L’Atalante Lower halocline 3430 Mediterranean 35◦18.865’ N 21◦24.338’ E [26]

Aspergillus and several Ascomycota and Basidiomycota strains L’Atalante Lower halocline 3501 Mediterranean 35◦18.865’ N 21◦24.338’ E [35]
Fungi Thetis Lower halocline 3258 Mediterranean 34◦40.158’ N 22◦08.703’ E [31]

Rhodotorula mucillaginosa, Malasseziales (O) and Atheliaceae (F) Thetis Halocline 3258 Mediterranean 34◦40.189’ N 22◦8.728’ E [27]
Rhodotorula mucilaginosa, Rhodosporidium, Cladosporium, Aspergillus,

Candida, Pucciniomycotina (SD) and Atheliaceae (F) Thetis Brine 3415 Mediterranean 34◦40.189’ N 22◦8.728’ E [27]

Acremonium Thuwal brine pool
sediments Brine sediments 850 Red sea 22◦16’ N 38◦53’ E [34]

Malasseziomycetes (C), Microbotryomycetes (C) and Dothideomycetes (C) Urania Halocline 3468 Mediterranean 35◦13.784’ N 21◦42.308’ E [26]
Aspergillus and Penicillium Urania Middle halocline 3470 Mediterranean 35◦13.784’ N 21◦42.308’ E [35]
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Some of the fungal taxa found in DHABs were closely related to described species, widely
distributed in the deep sea, such as the genera Rhodotorula, Cladosporium and Aspergillus. However,
most of the observed fungal taxa were only distantly related to described species, which could represent
novel taxa even at high taxonomic levels [36]. In addition, the hypoxic/suboxic brine layer near the
Thuwal cold seeps in the Red Sea was characterised by abundant fungal taxa mostly affiliating with
the Acremonium genus, which includes several saprophytic species [34]. While Thetis and Thuwal
DHABs were characterised by abundant fungal genera belonging to Ascomycota [27,34], 18S rRNA
analyses of some Mediterranean DHABs (i.e., Discovery, Urania, L’Atalante) showed a large number of
reads affiliating to Basidiomycota, of which malasseziomycetes accounted for the largest majority [26].
Malassezia reads detected by [26] contributed to a significant proportion to the OTUs identified in the
lower haloclines of both Discovery and L’Atalante. These sequences were also related to phylotypes
reported from the anoxic lower halocline of the Thetis basin [27], the anoxic Cariaco Basin, the anoxic
fjord Saanich Inlet [37] and deep sub-surface marine sediments of Peru Margin [38]. This cosmopolitan
genus is probably of great importance in extreme deep-sea environments [26]. The diversity of habitats
in which malasseziomycetes were found suggests that this group may have a variety of trophic
strategies ranging from saprotrophy to biotrophy [39].

Microscopic analyses from three DHABs of the Mediterranean Sea (Discovery, Urania and
L’Atalante) revealed the presence of several filamentous hyphae, which were hypothesised as belonging
to fungi adapting to hypersaline environments [26,40]. In particular, several Ascomycota and
Basidiomycota fungi are known to tolerate high salinity [41–43]. Fungi, as osmotolerant organisms,
can balance the osmotic pressure of the surroundings by accumulating small organic molecules (i.e.,
glycerol, sugars, mannitol, arabitol) and thus maintaining low ion intracellular concentrations (such as
Na+, Mg2+, Ca2+) [44,45]. Particularly, halotolerant and halophilic fungi employ a strategy through
which the response to stress due to increasing concentrations of organic osmolytes or salt is under
the control of the high osmolarity glycerol (HOG) signalling pathway [44]. Consistently, microscopic
observations also provided evidence of the presence of both yeast and filamentous fungi on bottom
sediments of the oxycline and deep anoxic zones of the Black Sea [40]. Furthermore, the isolation of
specimens related to Sarocladium strictum and Acremonium sp. from the brine pool adjacent to the Thual
cold seep indicate that fungi might be active components of DHAB microbial assemblages [34].

So far, very little information is available on the specific eukaryotic metabolic activities in
DHABs [31], even though existing methods have been proven to be reliable for the identification of
eukaryotic-only transcripts (e.g., enrichment in eukaryotic transcripts in metatranscriptome data to
capture a higher fraction of eukaryotic sequences). Recently, the metatranscriptomic approach has
begun to blossom as a powerful method for the functional characterisation of complex microbial
communities [46] and has been carried out in different ecosystems, including non-marine subsurface
systems [47,48], marine deep-sea sediments [49,50]. The metatranscriptomic approach has several
advantages over DNA-based amplicon sequencing: It is less susceptible to amplification biases,
it captures only living organisms, and provides a larger set of genes, which can be exploited for
taxonomic identification [51]. In addition, the use of RNA-sequencing can reveal not only the
taxonomic composition but also the active biochemical functions of microbial assemblages living
in extreme environments [52]. The most critical step in such an approach is represented by the
assignment of putative assembled transcripts to specific functions, as many uncultured organisms
can be characterised by genomic novelties with no (or weak) similarity to genes and enzymes
available in public databases [53]. The lack of fungal reference genomes and specific pipelines make
analysis and interpretation of these datasets very challenging [35,54,55]. Therefore, the improvement
and advancement of scientific technologies for deciphering fungal activity and identity in DHABs,
also through the combination of multiple approaches (e.g., molecular-based and microscopic-based
technologies and fungal-specific stains), are needed [56].
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Eukaryotic metatranscriptome analyses performed on DHABs indicated that fungi are not only
present but also metabolically active [26,27,31,35]. In particular, the middle and lower haloclines
of the Urania and Discovery basins, respectively, were characterised by high metabolic potential,
amenable to Malasseziomycetes, Dothideomycetes and Microbotryomycetes as well as to Aspergillus
and Penicillium genera and various yeasts [26,31,35]. On the other hand, in the Discovery and Urania
basins, a relevant number of transcripts indicates their saprophytic habits [35]. For example, the
high expression level of a clathrin coat-binding protein of Aspergillus involved in clathrin-mediated
endocytosis suggests that saprophytic fungi are active at the middle halocline of the Urania basin [35].
Up-regulation of genes related to antibiotic production, including fusaric acid production by the
fungal genus Fusarium, has been reported in the upper and lower halocline of the Discovery basin
and in the middle halocline of the Urania basin, suggesting that fungi in DHABs could compete
with microorganisms [35]. Consistently, abundant mRNA sequences associated with the polyketide
synthase enzymes, which play a key role in the production of antibiotics and participate in other
secondary metabolite syntheses, were observed [35,57]. These results are also consistent with the
high number of transcripts related to mechanisms involved in anti-microbial resistance, including
drug resistance transporters, efflux pumps and multidrug resistance proteins [35,58]. Overall, these
results indicate that fungi are active components of microbial assemblages even in DHAB extreme
environmental conditions.

In anoxic conditions, fungi might act as a biological source of hydrogen, thus supporting
the growth of hydrogen-consuming prokaryotes [59,60]. Moreover, in such conditions, fungi and
chemoautotrophic prokaryotes might establish symbiotic relationships [59,61], enhancing the fitness of
microbial communities in challenging environments, such as the DHABs.

Overall, the available literature suggests that fungi can take advantage of the high concentration of
organic material in DHABs [31,32,62]. Thus they could play a role in carbon and nutrient cycling even
under such extreme ecosystems [29]. In addition, since previous studies reported that competition
could occur among different members of the microbial community (i.e., prokaryotes and fungi [35]), it is
possible that fungi in the different matrices of DHABs (i.e., upper water column, brines and sediments)
and at their interfaces can also be involved in ecological interactions with other microbes [35].

3. Biotechnological Potential of Fungi Inhabiting DHABs

Marine fungi are a potentially relevant source of bioactive molecules [33,63–65]. Since
extremophiles show unique capabilities and adaptations, which allow them to thrive in systems
characterised by harsh environmental conditions [66], halophilic and halotolerant fungi holding
alternative metabolic pathways and adaptive mechanisms have important applications in industrial,
pharmaceutical and environmental fields [67–69].

3.1. DHABs as Reservoirs of Fungal Amylases, Lipases and Esterases

Recent literature information reports that the extremophiles, such as fungi in DHABs, might
produce native proteins, homologous or heterologous recombinant enzymes for several industrial
applications, such as for “White Biotechnology” [70]. White Biotechnology, also defined as industrial
biotechnology, exploits living cells and enzymes to synthesise bio-based products, which are readily
biodegradable, thus requiring less energy and producing less waste [71]. Generally, enzymes
as industrial biocatalysts offer various advantages over traditional chemical processes concerning
sustainability and process efficiency [72] and are rapidly replacing chemicals counterparts [73–76].

Extremophilic marine organisms, including marine fungi, are important sources of stable and
valuable enzymes [77]. Such molecules, defined “extremozymes”, can carry out the same enzymatic
functions as their non-extreme homologues, but they can catalyse such reactions in conditions which
inhibit or denature the non-extreme forms [78,79]. Some of these enzymes, in the form of isolated
molecules or directly produced by extremophilic fungi including those inhabiting DHABs, can
display polyextremophilicity, i.e., stability and activity in more than one extreme condition, including
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high salinity (2~5 M NaCl), acid or basic pH, high temperatures (55~113 ◦C) [80]. Several marine
extremozymes have been exploited for biotechnological research, whereas others for pharmaceutical,
biofuel, and textile industry [81]. Despite the important results obtained in the field of research on
extremophiles, the advantages of extremozymes over those of normal enzymes, the increasing demand
of biotechnological industries for novel biocatalysts only a few extremozymes are currently being
produced and used at the industrial level. Therefore, further scientific challenges need to be overcome
before it will be possible to fully realise the potential of extremozymes [82].

Typically, high salinity tends to inactivate the enzymes by altering protein structures [83]. Therefore,
the peculiar characteristics of fungal strains living in hypersaline conditions could represent a new
source for exploitable enzymes able to operate at extreme pH and high salt concentrations (Table
S1; [84]). Salt-tolerant enzymes are usually isolated from the marine environment, and halotolerant
fungi show extraordinary biotechnological potential compared to enzymes isolated from their terrestrial
counterparts [84]. These molecules have applications in all branches of biotechnology with significant
benefits for many kinds of industries (Table 2). In particular, they are employed in the Red Biotechnology
applied to pharmaceutical and medical fields (e.g., amylases, chitinase, cellulases, proteases, lipases,
tannase, inulinase, esterase, methioninase, asparaginase), Grey or environmental biotechnologies
(e.g., cellulase, chitinase, hydrolase, β-glucosidase, laccase, peroxidase, lipase, protease, hydrolase,
β-glucanase, feruloyl esterase), and in the Blue Biotechnology applied to aquatic organisms (e.g., lipase).

As an example of biotechnological application of enzymes, α-amylases (i.e., enzymes that catalyse
the hydrolysis the α-1,4 glycosidic linkages in amylose to release maltose and glucose, [85]) have been
first produced industrially from the fungus Aspergillus oryzae, whose genus has been identified in
the L’Atalante Upper halocline, Thetis brine and Urania Middle halocline, to be used as a digestive
aid ([86], Table 2). Nowadays, microbial amylases commercially available have replaced chemical
hydrolysis of starch in the processing industry [87]. Consistently, amylases are the most important
among the enzymes of industrial interest, accounting for approximately 30% of the world enzyme
market [86]. Polyextremophilic characteristics of α-amylases from marine fungi can be exploited for
biotechnological processes, being used, among others, in aquaculture, biofuel, textile, food, bakery,
anti-staling, fermentation, paper-making, pharmaceutical, detergent industries [88,89]. α-amylases can
hydrolyse starch, which has attracted industrial attention for the uses as additives in food or as a natural
ingredient but also for the production of renewable biofuels [79]. Although piezophilic and halophilic
enzymes have a great potential for industrial applications, little information on enzymes from extreme
environments is available [79]. For instance, the obligate halophilic Aspergillus penicillioides TISTR 3639,
isolated from an extreme hypersaline environment is able to produce an α-amylase, which can exhibit
high catalytic activity even at extreme salt concentrations (300–400 g mL−1 NaCl), much higher than
amylase activities reported from extreme halophilic marine prokaryotes as well as other halophilic
organisms [90]. The potential use of extremophilic α-amylase in the food industry was proposed by
Abe and Horikoshi demonstrating that α-amylase produces trisaccharide in place of maltobiose and
tetrasaccharide, with maltooligosaccharide as substrate, at great pressure and little energy, offering
great industrial and biotechnological possible applications [91].
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Table 2. Examples of enzymes produced by fungi genera found in DHABs, and their industrial applications. Stars indicate enzymes exploited as extremozymes.

Producing Fungus Enzyme Industrial Applications References

Aspergillus gracilis, A. penicillioides and A. oryzae Amylase * Foods, detergents, pharmaceuticals, and paper and textile [90,92,93]

Aspergillus niger, A. sydowii and A. terreus Cellulase * Biofuel production, food and feed industry, brewing, pulp and paper,
textile, laundry and agriculture [94–96]

Aspergillus terreus and Penicillium sp. Chitinase * Pharmaceutical and food [97,98]
Aspergillus aculeatus, A. fumigatus, A. niger, A. terreus and

Penicillium canescens β-Glucosidase * Biofuel production, pharmaceutical and food industry [99–103]

Aspergillus sclerotiorum, Cladosporium cladosporioides and
several strains Laccase, Li/Mn-peroxidase Bioremediation, pulp biobleaching, pollutant degradation,

biosensors, textiles, production of bioethanol and animal feed [104,105]

Candida intermedia, C. parapsilosis, C. quercitrusa,
Rhodotorula mucilaginosa, Aspergillus pullulans, A. awamori

and several strains from Antarctica
Lipase * Food, beverages, detergents, biofuel productions, animal feed,

textiles, leather, paper processing and cosmetics [106–108]

Aspergillus ustus, Penicillium chrysogenum, Rhodotorula
mucilaginosa and several strains from Antarctica Protease * Bioremediation, laundry detergents, degumming of silk and leather [106,109–111]

Aspergillus awamori, A. candidus, A. fumigatus and several
strains from Posidonia oceanica Tannase Food, feed, pharmaceutical, beverage, brewing and chemical [105,112–115]

Aspergillus niger, A. fumigatus, A. ochraceus, A. niveus and
several strains from Antarctica Xylanase * Paper and pulp and the feed and food [106,116,117]

Penicillium notatum Tannin acyl hydrolase Bioremediation, leather, food and beverage [118]
Aspergillus aculeatus, A. niger and Penicillium decumbens α-rhamnosidase Food and pharmaceutical [119–121]

Aspergillus fumigatus and A. terreus β-glucanase Textile industry, paper recycling, detergents, beverage, animal feed
additives and renewable energy [122–125]

Several strains of Aspergillus and Penicillium,
Candida membranifaciens and Cladosporium sp. Inulinase Food and pharmaceutical [126–128]

Aspergillus terreus Feruloyl esterase Food, pharmaceutical, pulp and paper, and biofuel [112,129]
Several strains l-asparaginase Food and pharmaceutical [130]

Several strains of Aspergillus l-methioninase Food and pharmaceutical [131]
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Lipase is a relevant enzyme with various industrial applications, which can be produced by some
fungal genera found in DHABs (i.e., Aspergillus, Candida, Rhodotorula) [106–108,132]. Lipases catalyse
the hydrolysis of lipids and remove fatty stains and are important compounds in the production of
polyunsaturated fatty acids, food, and biodiesel [133]. In 1935, for the first time, the fungal lipase
was extracted from Penicillium oxalicum and Aspergillus flavus [134]. Several genera belonging to
Aspergillus and Penicillium, as well as Candida and Rhodotorula, have been encountered in many DHABs
(see Table 1) [108,135], and can actively hydrolyse different oils, gaining a substantial interest due to
their end-use market potential for numerous products, such as animal feeds, detergents, biosensors,
diagnostic tools, oleochemicals and bioremediation agents [136,137].

In the Urania basin (Eastern Mediterranean Sea), extreme pressure, pH and salts can rapidly
inactivate most of the known enzymes, but here, tolerant esterases were identified [138]. Esterases
catalyse the hydrolysis of ester bonds in fatty acid esters with short-chain acyl groups which are
harnessed in the pharmaceutical, cosmetic and food industries [139]. In particular, in the Urania basin,
O.16 esterase, through mining metagenomic libraries, maintained remarkable properties as in the
original environment (i.e., 180× enhanced activity at 2 to 4M NaCl and functioning at 40 MPa; [138]).

3.2. Fungi in DHABs as Potential Producers of Biomolecules for Pharmaceutical and Clinical Applications

Within the area of Red Biotechnology, some investigations highlighted the potential of marine
fungi to produce compounds of clinical interest with a wide array of antibacterial, anticancer, antiviral,
and antioxidant applications [140–144]. In the last few decades, new antibiotics have failed due
to increasing antibiotic resistance [145], and the ever-increasing demand for new natural bioactive
compounds to provide benefits in all the aspects of human life has stimulated the exploration of other
different Earth environments for improving the safeness and effectiveness of these molecules [146].
Compared to their terrestrial counterparts, marine fungi are understudied although they can produce
a complex and diverse set of metabolites, whose functions remain largely undescribed [147].

Over the last years, marine fungi have offered new incentives for research on marine natural
products for Red Biotechnology, becoming a storehouse of bioactive metabolites [65,148–151]. Since
the discovery of penicillin, fungi have been established as good producers of antibiotics, which
are low-molecular-weight organic natural products with antibiotic activity, which exert their effect
at low concentration against other microbial organisms [152]. Fungi are considered as not only
sources of antibiotics but also producers of anti-inflammatory inhibitors, anticancer drugs, and
hypercholesterolemia treatment agents (Table 3). Some of the most promising molecules derived from
marine fungi, particularly from deep-sea sediments, also have anti-tumoural activities. For example,
a new tetranorlabdane diterpenoid, asperolide E was isolated from the deep-sea sediment-derived
fungus Aspergillus wentii SD-310, showing cytotoxicity against cervical, breast, and lung cancer cell
lines [153]. This fungal genus identified in the Discovery, L’Atalante and Urania basins, also produces
Asperethers A-E, five new 20-nor-isopimarane diterpenoids, which displayed cytotoxicity toward
human pulmonary adenocarcinoma cell line [153]. Aspergillus westerdijkiae SCSIO 05233 cultures
isolated from deep-sea sediments in the South of China, can produce Circumdatin G, which owns
antiproliferative activity against myelogenous and promyelocytic leukemia cell lines with IC50 values
ranging between 25.8 and 44.9 µM [154]. Similarly, Penicillium commune SD-118, whose genus was
identified in DHABs (Discovery, L’Atalante and Urania), produces Xanthocillin X, chrysogine, and
meleagrin which show antiproliferative and cytotoxic activities. Xanthocillin X resulted in the most
promising secondary metabolites extracted from this fungus for displaying an antiproliferative activity
against liver, prostate, and breast cancer cell lines. Similar effects were observed with meleagrin
on the prostate cancer cell line [155,156]. In addition, Aspergillus dimorphicus SD317, isolated from
deep-sea sediments of South China Sea, whose genus identified in DHABs (i.e., L’Atalante, Thetis
and Urania), produced anti-tumour agent Wentilactone A and B [157]. While Wentilactone A induced
apoptosis inhibiting G2/M cell cycle through the stabilisation of the p53-p21 dimer within human
lung carcinoma cells [158], Wentilactone B blocked proliferation and migration of human hepatoma
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cells [159]. Finally, one of the most important anti-cancer compounds employed for the production of
drugs with an estimated value of millions of dollars is Taxol® (generic name Paclitaxel) [160]. Since its
discovery in 1993 by Stierle et al. [161], many fungi showed the ability to synthesise this molecule,
improving the synthesis at an industrial scale [161–163]. Interestingly, it was recently reported that
Aspergillus aculeatinus Tax-6, whose genus was also found in Discovery, L’Atalante and Urania basins
could increase taxol production [164].

Table 3. Examples of bioactive molecules for therapeutic use isolated from marine fungi belonging to
the genera found in DHABs.

Fungi Product Bioactivity Source Reference

Aspergillus terreus, Penicillum
citrinum and P. purpurogenum Lovastatin Cholesterol-lowering agent Marine sediments [165,166]

Aspergillus sp. 16-5C Asperlones A and B Anti-tuberculosis drugs Mangrove [167]
Aspergillus versicolor, A.
ochraceus, A. ostianus,

Cladosporium herbarum and
Penicillium sp.

Various Antibacterial Marine sponges, coastal water [148]

Several strains Various Antibiotic Deep subseafloor fungal [168]

Penicillium sclerotiorum Penicilazaphilone C
Antibiotic, cytotoxic,

anti-inflammatory and
antioxidant

Rotted leaves in coastal water [169,170]

Acremonium sp. LL-Cyan416
and Penicillium sp. LL-WF159

Anthraquinones and
flavomannin Antibiotic n.a. [171]

Aspergillus, Cladosporium and
Penicillium species Taxol (paclitaxel) Antitumoural Plants [162,172]

Aspergillus fumigatus, A. ustus
and Penicillium citrinum

Tryprostatins A and B,
phenylahistin

Antitumoural and
anti-inflammatory inhibitor

Stichopus japonicus (Sea
cucumber) salt water [173]

Aspergillus quadricinctus, and
Rhodotorula pilimanae Siderophores Anticancer and

antimicrobial n.a. [174]

Aspergillus ungui NHK-007 7-Chlorofolipastatin Anticholesterolemic Deep-sea sediments [175]

Several strains n.a. Antimicrobial and
antifungal Deep-sea sediments [176]

Penicillium chrysogenum PgAFP Antifungal Tedania anhelans (marine sponge) [177,178]
Aspergillus nidulans Anidulafungin Antifungal n.a. [179]

Penicillium sp. Cycloexpansamines A and B Anti-inflammatory Bryozoa [180]

Penicillium chrysogenum Sorbicillactone A Antileukemic and antiviral Ircinia fasciculata (marine
sponge) [181,182]

Penicillium sp. Penicyrones A and B Antifungal Marine [183]
Aspergillus versicolor phenolic compounds Antioxidant Marine sediments [144]
Aspergillus versicolor Anthraquinone Antioxidant Deep-sea sediments [184]
Penicillium citrinum Sorbicillinoid derivative Antioxidant Marine sponge [185]

Aspergillus westerdijkiae Circumdatin G Antiproliferative Deep sea [154]
Aspergillus sp. Avrainvillamide Antitumoural n. a. [186]

Aspergillus ustus Phenylahistin Antitumoural Mangrove [187]

Aspergillus wentii 20-Nor-isopimarane
diterpenoids Antitumoural Deep-sea sediments [153]

Penicillium sp. Breviones I Antitumoural Deep-sea sediments [188]
Aspergillus versicolor ZBY-3 various Antitumoural Deep-sea sediments [189]

Aspergillus sp. Dihydroxy-fumitremorgin C Antitumoural Coastal sediments [190]

Penicillium paneum Penipacids A and
Penipacids E Antitumoural Deep-sea sediments [191]

Aspergillus sulphureus KMM 4640 Decumbenone C Antitumoural Marine sediments [192]
Aspergillus sp. Furanocoumarin Antitumoural Mangrove [193]

Penicillium oxalicum Oxalicumone A Antitumoural Marine [194]
Aspergillus wentii SD-310 Asperolides A-E Antitumoural Marine derived endophyte [158]

Penicillium commune SD-118 Xanthocillin X, Meleagrin Antitumoural Deep-sea sediments [155]

Penicillium sp. PR19N-1 Sesquiterpene, Eremofortine
C Antitumoural Antarctic deep-sea [195]

Aspergillus nidulans Asperfuranone Antitumoural Marine [196]
Aspergillus sp. Terrequinone A Antitumoural n.a. [197]

Penicillium sp. Chromanone A Antitumoural and
antioxidant n.a. [198,199]

Penicillium and Aspergillus sp. Ergot alkaloids Precursors of drugs Marine [200]

Penicillium chrysogenum Hexadentate siderophores

Protective agents of LDL
oxidation and

anti-atherosclerotic
metabolites

Tedania anhelans (marine sponge) [201]

Aspergillus nidulans and
Penicillium chrysogenum Penicillin Antibiotic Marine [202,203]

Marine fungi identified in DHABs can also produce other types of biomolecules of interest
for Red Biotechnology. For instance, the isolated deep-sea fungus Aspergillus versicolor, which was
also found in the Thetis basin, has shown high antifungal efficacy against human pathogens for the
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secretion of PeAfpA protein, becoming a promising candidate for its application in medicine [204].
The Aspergillus versicolor is also able to produce antioxidant compounds with potential therapeutic use
or preventive agents for ROS-associated pathologies, such as neurodegenerative diseases (Alzheimer’s
and Parkinson’s diseases) [144,184,205]. Other metabolites extracted from Aspergillus nidulans has
shown the ability to inhibit the aggregation of tau filaments within neurons, which is the primary
cause of Alzheimer’s disease or other related dementias. Moreover, some intermediates produced
by Candida antarctica are used for the synthesis of anti-Alzheimer’s drugs [206]. (±) Asperlone A-B
and (−)-mitorubrin, extracted from Aspergillus sp. 16-5C exhibited potent inhibitory activity against
Mycobacterium tuberculosis protein tyrosine phosphatase B, which is encouraging for the elaboration
of new anti-tuberculosis drugs [167]. Other investigations revealed that cholesterol-lowering agents
extracted from fungi could inhibit the activity of HMG-CoA reductase, a key enzyme in the biosynthesis
of cholesterol in the human liver, whose high levels in plasma are major risk factors for the onset of
heart diseases [207,208]. For example, lovastatin, isolated from Aspergillus terreus was the first agent to
be approved by the Food and Drug Administration (FDA, Silver Spring, MD, USA) in 1987, when it
became available as a hypercholesterolemia lowering drug in the market [166,209]. Molecules with
such properties were also isolated by other fungal strains belonging to Penicillium identified in the
Atalante, Urania and Discovery DHABs ([165] and references therein).

Overall, evidence suggests that DHABs fungi may produce bioactive molecules, which can
be employed as new drugs or pharmaceuticals with upgraded features (safer, more effective and
with broader spectrum). The expanding number of extremophilic genomes and metagenomes from
DHABs samples can provide important information for the identification of novel fungal enzymes and
molecules applicable for biotechnologies.

As the biosynthesis of fungal metabolites depends on even small alterations in environmental
factors, and ecological and biological interactions [210], it can be expected that DHABs differing in
physical and chemical conditions and characterised by different microbial assemblages may host fungi
with different biotechnological potential. This suggests that investigating the diversity and functioning
of fungal assemblages in a wider array of DHABs locations and environmental settings may lead to a
more complete understanding of the biotechnological potential of DHABs fungi.

3.3. Can DHABs Fungi Be Exploited for the Bioremediation of Polluted Environments?

Grey biotechnology is dedicated to environmental applications and focuses on recycling, treatment
of waste or bioremediation purposes. Chemical and solid waste management have become an
important topic of debate since the environment is being overloaded with a variety of contaminants
and toxic compounds, such as polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs),
polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and heavy
metals. However, many established methods of treatment or removal of pollutants are not conceivable
for applications on a large spatial scale [211,212]. In recent years bioremediation has emerged as an
environmental-friendly and cost-effectively strategy for transforming pollutants into non-dangerous
products by applying natural biological processes, especially in contaminated land and water [213]. This
method can be applied in polluted hypersaline environments by adding appropriate microorganisms,
such as haloalkaliphilic fungi, which perform specific physical and chemical reactions as a part of their
metabolism, thus degrading, removing and/or reducing the toxicity of pollutants [214,215].

Fungi represent a promising biotechnological alternative for achieving pollutants degradation
or transformation into less toxic compounds with greater solubility in water, which, in turn, are
degraded by the action of other microbial entities [216,217]. Absorption, degradation and accumulation
are biological mechanisms employed by fungi for removing recalcitrant dyes from surrounding
environments [212,213,218]. Moreover, halophilic fungi and their salt-tolerant enzymes (mainly
lignin-degrading enzymes) seem to have great ability in bioremediation processes [219], and several
fungi are well-known to degrade persistent pollutants, such as toxic dyes and PHAs [220]. As textile
processes produce effluents characterised by extreme salinity and pH values, fungi from DHABs able to
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thrive under such conditions could represent an important biological source for bioremediation of such
effluents. Fungal taxa found in DHABs can carry out dye decolourisation through oxidative reactions,
which, in turn, generate non-toxic derivatives [221]. In this regard, some isolated species belonging to
Aspergillus and Penicillium genera identified in the Mediterranean DHABs (see Table 1) were tested in
laboratory showing decolourisation activity against Congo red dye (used in clothing manufacture,
histology and microscopy), which has been reported to jeopardise the environment and the presence
of an azo-functional group [222,223]. A strain of Rhodotorula mucilaginosa isolated from the Pesqueria
River in Nuevo León, Mexico, and also found in the Thetis DHAB, can aid the efficient removal of
another widely used and highly toxic colourant, methylene blue. This fungus, when exposed to
stressful conditions in the presence of high metal concentrations produces an exopolysaccharide, which
in turn can absorb methylene blue [224].

The biodegradation of organic pollutants by fungi mainly occurs through the catalytic action
of extracellular enzymes released by the fungi. Lignin peroxidase and manganese peroxidase
enzymes are the main extracellular enzymes purified by fungi, which are believed to be responsible
for the degradation of PAHs [104]. Moreover, the laccase enzyme secreted by fungi is generally
used in environmental remediation processes [225]. Laccases are copper-containing oxidases,
which can transform various compounds, such as some toxic chemical wastes (e.g., polycyclic
aromatic hydrocarbons, chlorinated aromatic compounds, nitroaromatics, and pesticides) and
dyes, into less harmful products [226]. Moreover, three additional enzyme families are produced
by fungi for bio-remediation: Esterases, glutathione S-transferases (GSTs) and cytochrome P450
monooxygenase [227]. Accounting for this enormous set of enzymes, extremophilic marine fungi
are suitable for the bioremediation of polluted saline environments due to their tolerance to
high-salt conditions, thus becoming an essential resource in bioremediation of marine PAH-polluted
environments [228,229]

Some marine fungal species found in the Mediterranean and Red Sea DHABs, belonging
to Aspergillus, Penicillium, Candida and Rhodotorula genera, have been reported to degrade some
hydrocarbon compounds [230,231]. In particular, Rhodotorula glutinis identified in the DHAB L’Atalante
has been reported to actively reduce oil compounds in petroleum polluted soils [232]. The salt-tolerant
fungus, Aspergillus sclerotiorum CBMAI 849, whose genus was found in Discovery, L’Atalante and Thetis
basins, showed a great ability to degrade 99.7% of pyrene and 76.6% of benzo[a]pyrene after 8 and 16
days, respectively [219]. Furthermore, it has been demonstrated that Aspergillus sclerotiorum CBMAI 849
could metabolise pyrene to pyrenylsulfate and benzo[a]pyrene to benzo[a]pyrenylsulfate, suggesting a
possible implication of this fungal cytochrome P-450 monooxygenase enzyme in the detoxification of
polycyclic aromatic compounds [219]. Aspergillus sp. BAP14 isolated from coastal Chinese marine
sediments, and also identified in the Atalante basin was able to degrade benzo[a]pyrene, removing
approximately from 30% to 60% of Pyrene and benzo[a]pyrene (10 µg mL−1) after 3 and 12 days,
respectively [233].

Fungi inhabiting DHABs can also tolerate the presence of high concentrations of heavy metals. In
particular, previous investigations revealed that species of Aspergillus and Penicillium genera showed
good growth ability in the presence of arsenic, with particular regard to Aspergillus sydowii, which
exhibited a remarkable tolerance toward trivalent as well as pentavalent arsenic at a concentration
of 2 mg mL−1 [234]. This fungus is a good candidate for arsenic bioremediation for its ability to
volatilise ca. 16% of supplied Arsenic (III) [212,235]. Other studies reported that Aspergillus is one
of the most promising fungal genera found in DHABs for the bioremediation of heavy metals. In
particular, Aspergillus niger is not only able to thrive in the presence of hexavalent chromium, but it can
be employed as a biosorbent of this compound [234,236–238]

4. Conclusions and Future Directions

Marine fungi are a source of novel enzymes for different biotechnological applications, ranging
from medicine to environmental fields. DHABs ecosystems are still largely underexplored for many
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microbial components, and data on fungal diversity and ecology in deep-sea hypersaline anoxic
basins are even scanter. Therefore, the knowledge of their biotechnological applications is still limited.
However, the extreme and diverse environmental features of the DHABs make these habitats unique
and able to select for highly specialised organisms, which display extreme morphological, physiological
and molecular adaptations. The metabolic adaptations of fungi include the ability to break down a
wide range of compounds with novel enzymes, as well as the production of antibiotics, antitumoural
drugs and other metabolites which can be exploited for the development of new Blue Biotechnologies.
The present review provides extensive information on the biotechnological potential of fungi in
DHABs, highlighting that the genera Aspergillus and Penicillium are among the most promising taxa
for biotechnological applications. At the same time, this review highlights that no specific tests
have been made on DHAB fungi yet. Thus, specific investigations on fungal assemblages inhabiting
these peculiar systems can lead to new and unpredictable discoveries of biotechnological interest.
Further scientific studies should be carried out in this direction for promoting the development of
DHAB Biotechnologies.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-2818/11/7/113/s1,
Table S1: Enzymes potentially produced by DHABs fungi: bioactivity and environmental conditions
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