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Abstract: The objectives of this study were to assess actinobacterial diversity in five Moroccan
extreme habitats and to evaluate their plant growth-promoting (PGP) activities. The soil samples
were collected from different locations, including soils contaminated with heavy metals, from a high
altitude site, from the desert, and from a marine environment. In total, 23 actinobacteria were isolated,
8 from Merzouga sand soil; 5 from Cannabis sativa rhizospheric soil; 5 from Toubkal mountain; 4 from a
Draa sfar mining site; and 1 from marine soil. Based on their genotypic classification using 16S rRNA
gene sequences, 19 of all belonged to the genus Streptomyces (82%) while the rest are the members
of the genera Nocardioides (4.5%), Saccharomonospora (4.5%), Actinomadura (4.5%), and Prauserella
(4.5%). Isolates Streptomyces sp. TNC-1 and Streptomyces sp. MNC-1 showed the highest level of
phosphorus solubilization activity with 12.39 and 8.56 mg/mL, respectively. All 23 isolates were able
to solubilize potassium, and 91% of them could grow under nitrogen-free conditions. The ability
of the isolated actinobacteria to form indole-3-acetic acid (IAA) ranged from 6.70 to 75.54 µg/mL
with Streptomyces sp. MNC-1 being the best IAA producer. In addition, all of the actinobacteria
could produce siderophores, with Saccharomonospora sp. LNS-1 synthesizing the greatest amount
(138.92 µg/mL). Principal coordinate analysis revealed that Streptomyces spp. MNC-1, MNT-1, MNB-2,
and KNC-5; Saccharomonospora sp. LNS-1; and Nocardioides sp. KNC-3 each showed a variety of
high-level plant growth-promoting activities. The extreme environments in Morocco are rich with
bioactive actinobacteria that possess a variety of plant growth-promoting potentials that can further
benefit green and sustainable agriculture.
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1. Introduction

Microorganisms can colonize various ecological niches, including extremophilic habitats, due to
their adaptive features, including structural as well as functional adaptations [1]. Several novel species
have been isolated from these extreme habitats, including Streptomyces thinghirensis [2] and Streptomyces
youssoufiensis [3]. Morocco possesses diverse ecosystems, many of which are considered extreme,
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such as high mountain peaks, arid deserts, and polymetallic mines, but the actinobacterial diversity of
these extreme habitats is lacking. These Moroccan untapped habitats represent hostile ecosystems
enriched with immense biodiverse values worthy of being explored. Actinobacteria which occur in
both terrestrial and aquatic habitats are among the most common groups of Gram-positive filamentous
bacteria with high guanine-cytosine (G-C) content in their genomes and are able to form spores [4].
They have also been found to colonize various ecosystems, including extreme environments, and to
produce extensive secondary metabolites with major importance for biotechnology and agriculture [5].
These bacteria have very high physiological and ecological plasticity, which makes them well adapted
to survive in environments where the conditions may be extreme [6]. Actinobacteria which have
incredible abilities to persist under extreme conditions have long been the focus of many studies and
have been harnessed as valuable sources of novel bioactive metabolites [7]. The exploration of extreme
habitats could even find new taxa. However, their ecological functions, which may be of benefit to
agriculture, are not well known.

One of the primary sources of income in Morocco is agriculture, which requires a high input
of chemical fertilizers resulting in a concomitant high cost of crop production. On the other hand,
microorganisms play a significant role in soil fertility through the management of nitrogen (N),
phosphorus (P) and potassium (K) cycles in the soil. For instance, some of the diverse bacteria called
plant growth-promoting (PGP) rhizobacteria, which live within the rhizospheres of plants, can support
plant growth by fixing atmospheric nitrogen and solubilizing inorganic P and K [8]. As with other PGP
bacteria, actinobacteria also employ both direct and indirect mechanisms to influence plant growth and
protection. The direct mechanisms involve the production of vigorous factors for crop growth, such as
phytohormones and advantageous actions such as N fixation, P solubilization, and iron acquisition [9].
Additionally, PGP actinobacteria indirectly influence plant growth by controlling and minimizing
the deleterious effects of external stresses from either biotic or abiotic sources [10]. Moreover, the
use of actinobacteria as biofertilizers or biocontrol agents for improving and protecting crop yield
has been highlighted in several research studies [11,12]. Streptomyces is the most abundant genus
of actinobacteria found in the plant rhizosphere, and it often promotes plant growth by producing
regulators such as indole acetic acid (IAA) that aid root growth, producing siderophores that can
improve nutrient uptake, or through biocontrol activity to protect host plants from phytopathogens [13].

Furthermore, extremophilic actinobacteria have been thoroughly investigated for their unique
mechanisms of adaptation to extreme environments, and also because they produce several unusual
metabolites especially for the inhibition of human pathogens [14,15]. Numerous studies have
investigated the ecology of actinobacteria, typically within common habitats [16]. However, very little
data is available on the diversity and ecological functions of actinobacteria inhabiting soils from
Moroccan extreme sites. The aims of this study were to: (1) investigate the generic diversity of
culturable actinobacteria in different Moroccan extreme ecosystems (i.e., Toubkal mountain, Merzouga
desert, Rif rhizospheric soil, Marchica marine environment and Draa Sfar mining site); and (2) evaluate
the PGP potentials (i.e., N fixation, solubilization of P and K, and production of IAA and siderophores)
of these bacteria.

2. Materials and Methods

2.1. Study Sites, Sample Collection, and Isolation of Actinobacteria

Five soil samples were collected at a depth of about 6 to 8 inches from different Moroccan
ecosystems (Table 1). Immediately after their collection, the samples were stored at 4 ◦C before the
isolation of actinobacteria.
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Table 1. Origins and characteristics of the five Moroccan sites explored.

Sample Origin Site Characteristic Geographic
Coordinate

Physicochemical Property

pH EC (mS/ms) TOC (%)

Mountain
soil Toubkal

Highest mountain
peak in Morocco

and the Arab world

4167 m;
31.05917′′ N
−7.91583′′ W

7.9 2.14 1.02

Desert soil Merzouga Highest dunes in
Morocco

150 m;
31.147643′′ N
−3.974280′′ O

8.04 0.95 0.96

Rhizospheric
soil Rif

Rhizosphere of
Cannabis sativa

grown in Rif plains

34.920059′′ N
−4.561078′′ O 8.62 4.99 1.58

Marine soil Marchica Largest lagoon in
Morocco

35.156468” N
−2.904342′′ W 8.31 20.41 0.34

Mining soil Draa Sfar Significant potential
for polymetallic ore

31.704270′′ N
−8.135748′′ W 5.4 6.5 1.13

EC: electrical conductivity; TOC: total organic carbon.

Each soil sample (10 g) was suspended in 90 mL of a sterile saline solution (0.9% (w/v) NaCl in
distilled water). The homogenous soil suspension was 10-fold serially diluted with the same sterile
saline solution, and 0.1 mL of each dilution was spread onto saline nutrient agar for the marine soil [17]
and onto Bennett agar [18] or chitin-vitamin agar [19] for the rest soil samples. The media were
supplemented with nalidixic acid (100 µg/mL) and cycloheximide (50 µg/mL) to prevent the growth of
Gram-negative bacteria and fungi, respectively. The seeded agar plates were incubated for 3 weeks at
28 ◦C and the colonies that developed were examined by light microscopy. After isolation, the purified
isolates were stored in 25% (w/v) glycerol at −20 ◦C as the primary stocks.

2.2. Molecular Identification of Actinobacterial Isolates

Each actinobacterial isolate was grown in 100 mL of Bennett broth at 28 ◦C for 5 days. Its genomic
DNA was extracted using a Bacterial DNA kit (MPure™, Ottawa, ON, Canada) according to the
manufacturer’s instructions. The 16S rRNA gene was amplified by PCR using universal primers:
FD1 (5′AGAGTTTGATCCTGGCTCAG3′) [20] and S17 (5′CGGTCACGTTCGTTGC3′) [21]. The PCR
reaction with a final volume of 50 µL contained GoTaq Reaction Buffer (Promega®), 1.5 mM of MgCl2,
200 µM of each desoxyribonucleotides (dNTP), 1 µM of each primer, 0.5U of Taq DNA polymerase,
and 1 µL (500 ng) of the purified bacterial DNA template. The amplification was carried out in a
thermocycler (Thermo Scientific™, Munich, Germany) with the following profile: an initial denaturation
at 95 ◦C for 5 min, 30 cycles of denaturation at 95 ◦C for 30 s, annealing at 53 ◦C for 30 s, extension at
72 ◦C for 1.5 min, and a final extension at 72 ◦C for 5 min. PCR products were separated using 1%
(w/v) agarose gel electrophoresis and visualized by ultraviolet (UV) fluorescence (UV-transilluminators,
CA, USA).

The same primers were then used separately in two sequencing reactions from the two ends of the
amplified fragment (Eurofins Scientific, Berlin, Germany). The 16S rDNA sequences were compared
with the publicly available nucleotide sequences in the EzBioCloud database [22]. The sequences
were aligned using CLUSTAL W [23] in the Molecular Evolution Genetics Analysis (MEGA) software
version 5.0 [24]. Phylogenetic trees were inferred using neighbor-joining analyses [25] based on the
Tamura 3-parameter model.
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2.3. Evaluation of Plant Growth-Promoting Potentials

2.3.1. P Solubilization

Each actinobacterial isolate was grown in 100 mL of National Botanical Research Institute’s
phosphate growth medium devoid of yeast extract (NBRIY) broth, supplemented with tricalcium
phosphate (Ca3(PO3)2) as a source of inorganic phosphate [26]. The inoculum was incubated at 28 ◦C
on a rotatory shaker at 180 rpm. The pH of the culture broth was measured after 48 h up to 196 h with
a pH meter. Sterile NBRIY broth without inoculation served as a baseline control. Bacterial cells and
other insoluble materials were removed by centrifugation at 4830× g for 20 min, and the resulting
supernatant was filtered through a 0.45 µm filter. The concentration of soluble P in the supernatant
was measured using the molybdenum blue method described by Nagul et al. [27].

2.3.2. K Solubilization

The ability of each actinobacterial isolate to solubilize K was tested using Aleksandrov agar
medium (composition per l:5 g glucose, 0.5 g MgSO4·7H2O, 0.1 g CaCO3, 0.006 g FeCl3, 2 g Ca3PO4,
20 g agar powder, and 5 g of Mica powder as a source of inorganic potassium) [28]. A single
colony of each actinobacterium was streaked onto the agar medium and incubated at 28 ◦C for
7 days. The development of a clear zone surrounding a bacterial colony indicated a positive test for K
solubilization. The level of K-solubilizing activity was determined by the size of the clear zones formed.

2.3.3. N Fixation

Each actinobacterial culture was previously grown in Bennett broth at 28 ◦C with shaking at
125 rpm for 5 days. The liquid culture was centrifuged at 6574× g for 10 min. The cell pellets were
resuspended in sterile 0.9% (w/v) saline solution and streaked onto a solid N-free medium (NFM), then
incubated for 7 days [29]. N-fixing isolates are those able to grow on this medium.

2.3.4. IAA Production

Each actinobacterial isolate was grown in 100 mL of Luria Bertani (LB) broth [30] supplemented
with 1.02 g/L of L-tryptophan as a precursor of IAA. The culture broth was incubated at 28 ◦C with
shaking at 125 rpm for 4 days. Then, the bacterial cells were removed by centrifugation at 8217× g
for 10 min. The Salkowski’s reagent (10 mM FeCl3, 35% perchloric acid) and 2 drops of phosphoric
acid were added to 1 mL of the bacterial supernatant. The test solution was subsequently incubated
for 30 min in the dark before its absorbance was measured at 530 nm [31]. Sterile LB medium
served as a blank. The amount of IAA produced was calculated using a standard curve of known
IAA concentrations.

2.3.5. Siderophore Estimation

The supernatant (0.5 mL) of each actinobacterial isolate growing in LB broth at 28 ◦C for 5 days [32]
was mixed with 0.5 mL of Chrome Azurol S (CAS) reagent. After 20 min of incubation at ambient
temperature, the optical density of the test solution was measured at 630 nm [33]. The amount of
siderophore produced was determined from a standard curve prepared with desferrioxamine mesylate
as described by Baakza et al. [34].

2.4. Statistical Analysis

The results presented are means ± standard deviations (SDs) of four biological replicates per
treatment for the in vitro tests. Statistical comparison of means was performed using a one way
analysis of variance (ANOVA) with least significant difference (LSD) available in the COSTAT software.
The results were compared using a Student, Newmann, Keuls (SNK) test. Significant differences at
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p < 0.05 are indicated. P solubilization, siderophore, IAA production and their correlation with isolated
actinobacteria were subjected to principal component analysis (PCA) using XLStat software.

3. Results and Discussion

3.1. Actinobacterial Diversity in Different Moroccan Extreme Environments

We isolated 23 actinobacteria from five soil samples collected from various Moroccan ecosystems
(Table 2). All actinobacterial isolates belonged to one of five genera, namely: Streptomyces, Nocardioides,
Saccharomonospora, Actinomadura, and Prauserella (Table 2 and Figure 1). The genus Streptomyces was
found to be the most abundant actinobacteria, representing 82% of the total isolates. We also isolated
some rare actinobacteria belonging to Nocardioides (4.5%), Saccharomonospora (4.5%), Actinomadura (4.5%)
and Prauserella (4.5%) genera. Actinomadura sp. NDS-2 was isolated from Draa sfar, a heavy metal
polluted area containing lead, copper, zinc, and zinc oxide [35]. Three other actinobacteria belonging
to Streptomyces and Prauserella genera were also isolated from the same site. This result is consistent
with previous research that reported metal-resistant strains belonging to several actinobacterial genera,
such as Streptomyces, Amycolatopsis [36], Nocardia, Micromonospora [37], and Frankia [38].

Table 2. Molecular and plant growth-promoting (PGP) characteristics of the isolated actinobacteria.

Molecular Characteristics PGP Characteristics

Site of
Isolation

Isolate
Code

16 rRNA Gene
Accession Number

Similarity
% Closest Type Strain N2

Fixation
K

Solubilization

Rhizospheric
soil

KNC-1 MN161857 98.03 Streptomyces koyangensis DSM 41864T ++ +

KNC-2 MN161858 96.06 Streptomyces actinomycinicus RCU-197T +++ +++

KNC-3 MN161861 98.23 Nocardioides albus KCTC9186T ++ ++

KNC-4 MN161862 99.38 Streptomyces chartreusis NBRC 12753T +++ ++

KNC-5 MN161863 99.79 Streptomyces setonii DSM 40395T ++ ++

Desert soil

MNB-1 MN164446 96.20 Streptomyces graminifolii DSM 102004T +++ +

MNB-2 MN164450 99.31 Streptomyces luteus NRRL B-59117T +++ +++

MNB-3 MN164447 94.12 Streptomyces pratensis CH24T + ++

MNC-1 MN161860 97.76 Streptomyces asenjonii KMN35-1T ++ ++

MNC-2 MN161865 99.17 Streptomyces plicatus DSM 40319T +++ ++

MNC-3 MN161850 98.65 Streptomyces violascens ISP5183T +++ +++

MNC-4 MN161866 98.45 Streptomyces albidoflavus DSM 40455T +++ +++

MNT-1 MN161867 99.30 Streptomyces hydrogenans DSM 40586T ++ ++

Marine soil LNS-1 MN161851 95.39 Saccharomonospora azurea NA-128T + +

Mining soil

NDS-1 MN161854 97.80 Streptomyces asenjonii KMN35-1T + +

NDS-2 MN161853 98.03 Actinomadura napierensis B60T +++ ++

NDS-3 MN161864 99.68 Streptomyces albidoflavus DSM 40455T - -
NDS-4 MN161855 98.42 Prauserella soli 12-833T - +

Mountain
soil

TNB-1 MN164448 96.05 Streptomyces jietaisiensis DSM 41866T +++ +

TNB-2 MN164449 98.85 Streptomyces albidoflavus DSM 40455T +++ +

TNB-3 MN161859 97.11 Streptomyces rutgersensis ATCC 3350T ++ +

TNC-1 MN161852 98.56 Streptomyces violascens ISP5183T +++ +++

TNC-2 MN161856 98.38 Streptomyces hydrogenans DSM 40586T +++ +++

-: Absence of activity; +: low activity; ++: moderate activity and +++: high activity. T: Type strain
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Toubkal mountain sample with five Streptomyces isolates. These results are in agreement with the 
studies of Harwani, [40] and Santhanam et al. [41], who reported that some Streptomyces species (e.g., 
Streptomyces deserti and Streptomyces bullii) were isolated from the hyper-arid Atacama Desert. 
Kurapova et al. [42] have previously reported isolating a moderately thermophilic xerotolerant 
Streptomyces sp. 315 from Mongolian desert soil. These authors also isolated other species of 
Streptomyces with Actinoplanes and Geodermatophilus from the Negev and Mojave desert soils [42]. In 
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Figure 1. Neighbor-joining phylogenetic tree based on 16S rRNA gene sequences (>1300 nt) showing the
relationships between 23 actinobacteria isolated from several Moroccan habitats and their closely related
species. The numbers at the nodes indicate the levels of bootstrap support based on neighbor-joining
analyses of 1500 resampled data sets. Bar, 0.05 substitution per nucleotide position.

Samples from the arid region “Merzouga” (desert soil), known for high temperatures, nanomolar
concentrations of nutrients, low water activity, and intense radiation [39], permitted the isolation
of eight isolates belonging to the Streptomyces genus. The same result was found for the Toubkal
mountain sample with five Streptomyces isolates. These results are in agreement with the studies of
Harwani, [40] and Santhanam et al. [41], who reported that some Streptomyces species (e.g., Streptomyces
deserti and Streptomyces bullii) were isolated from the hyper-arid Atacama Desert. Kurapova et al. [42]
have previously reported isolating a moderately thermophilic xerotolerant Streptomyces sp. 315 from
Mongolian desert soil. These authors also isolated other species of Streptomyces with Actinoplanes and
Geodermatophilus from the Negev and Mojave desert soils [42]. In addition, the Algerian Saharan soil
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reveled the existence of several actinobacterial strains, with some of them belonging to rare genera such
as Actinomadura, Nonomuraea, Nocardiopsis, Saccharothrix, Spirillospora, and Streptosporangium [43–45].

Unlike the mountain and the desert soils, the rhizospheric soil of Cannabis sativa exhibited the
presence of five actinobacterial isolates. Among them we could identify Nocardia, which is a rare
actinobacterium, in agreement with the study of Khamna et al. [46] who demonstrated that the
rhizospheric soil of 16 medicinal plants provided a rich source of actinobacterial diversity. Overall,
89% of all actinobacteria that were found in this study belonged to the genus Streptomyces, supporting
the suggestion that Streptomyces is the predominant actinobacterial genus in the soil [47,48].

The composition of the actinobacterial community may be affected by several environmental
parameters, such as salinity [49], temperature [50], and heavy metals [51]. Furthermore, the apparent
diversity may be affected by the nutrient composition of the culture media used during the isolation
process [52]. In the marine soil sample, we successfully isolated a rare actinobacterium belonging
to Saccharopolyspora. This isolate was able to grow in seawater, consistent with several studies that
have discussed the isolation and diversity of actinobacteria in marine areas [53,54]. New marine
actinobacterial taxa have been recovered, including Salinispora, the first marine obligate actinomycete
isolated from ocean sediments [55], as well as from a sponge [56]. Many authors have reported
Streptomyces as the major actinobacterial population in both terrestrial [57] and marine ecosystems [58,59].
Nevertheless, marine actinobacteria may have different characteristics from terrestrial ones and therefore
might produce novel bioactive compounds, including new antibiotics [60].

3.2. PGP Potentials of Extremophilic Actinobacteria

The use of PGP actinobacteria as an alternative to chemical fertilizers is potentially a key strategy
to enhance sustainable plant production and protection. The solubilization of inorganic P by the
newly isolated actinobacteria is shown in Figure 2. After 8 days of incubation, the available P released
ranged from 2.11 to 12.39 mg/mL with variations among different isolates. Streptomyces sp. TNC-1 and
Streptomyces sp. MNC-1 were the most efficient isolates in releasing soluble P into the culture broth
(12.39 and 8.56 mg/mL, respectively). The P solubilization by these isolates was often accompanied by
a significant drop in the pH from an initial pH of 7.5 to as low as 4.83, after 192 h of incubation. With
Streptomyces sp. TNC-1, the highest amount of soluble P was associated with a decrease in the pH to
4.93. These data indicate that the solubilization process of P is consistent with the bacterial excretion of
substances that acidified the culture broth [61]. Several reports indicate that organic acid (OA) and
siderophores production are among the mechanisms underlying inorganic P solubilization [62,63].

Diversity 2019, 11, x FOR PEER REVIEW 7 of 15 

 

of them belonging to rare genera such as Actinomadura, Nonomuraea, Nocardiopsis, Saccharothrix, 
Spirillospora, and Streptosporangium [43–45].  

Unlike the mountain and the desert soils, the rhizospheric soil of Cannabis sativa exhibited the 
presence of five actinobacterial isolates. Among them we could identify Nocardia, which is a rare 
actinobacterium, in agreement with the study of Khamna et al. [46] who demonstrated that the 
rhizospheric soil of 16 medicinal plants provided a rich source of actinobacterial diversity. Overall, 
89% of all actinobacteria that were found in this study belonged to the genus Streptomyces, 
supporting the suggestion that Streptomyces is the predominant actinobacterial genus in the soil 
[47,48]. 

The composition of the actinobacterial community may be affected by several environmental 
parameters, such as salinity [49], temperature [50], and heavy metals [51]. Furthermore, the apparent 
diversity may be affected by the nutrient composition of the culture media used during the isolation 
process [52]. In the marine soil sample, we successfully isolated a rare actinobacterium belonging to 
Saccharopolyspora. This isolate was able to grow in seawater, consistent with several studies that have 
discussed the isolation and diversity of actinobacteria in marine areas [53,54]. New marine 
actinobacterial taxa have been recovered, including Salinispora, the first marine obligate 
actinomycete isolated from ocean sediments [55], as well as from a sponge [56]. Many authors have 
reported Streptomyces as the major actinobacterial population in both terrestrial [57] and marine 
ecosystems [58,59]. Nevertheless, marine actinobacteria may have different characteristics from 
terrestrial ones and therefore might produce novel bioactive compounds, including new antibiotics 
[60].  

3.2. PGP Potentials of Extremophilic Actinobacteria 

The use of PGP actinobacteria as an alternative to chemical fertilizers is potentially a key 
strategy to enhance sustainable plant production and protection. The solubilization of inorganic P by 
the newly isolated actinobacteria is shown in Figure 2. After 8 days of incubation, the available P 
released ranged from 2.11 to 12.39 mg/mL with variations among different isolates. Streptomyces sp. 
TNC-1 and Streptomyces sp. MNC-1 were the most efficient isolates in releasing soluble P into the 
culture broth (12.39 and 8.56 mg/mL, respectively). The P solubilization by these isolates was often 
accompanied by a significant drop in the pH from an initial pH of 7.5 to as low as 4.83, after 192 h of 
incubation. With Streptomyces sp. TNC-1, the highest amount of soluble P was associated with a 
decrease in the pH to 4.93. These data indicate that the solubilization process of P is consistent with 
the bacterial excretion of substances that acidified the culture broth [61]. Several reports indicate that 
organic acid (OA) and siderophores production are among the mechanisms underlying inorganic P 
solubilization [62,63].  

 
Figure 2. Determination of P solubilization and the evolution of pH in the culture supernatant of
actinobacterial isolates. Means (±standard deviations) with in the same graphic followed by different
letters are significantly different at p < 0.05.



Diversity 2019, 11, 139 8 of 15

Isolates belonging to Streptomyces, Arthrobacter, Rhodococcus and Micromonospora genera have been
reported to solubilize inorganic P [9,64,65], which is consistent with our results. El-Tarabily et al. [66]
demonstrated that Micromonospora endolithica has the capacity to solubilize P and improve the growth
of bean plants. However, there has been very limited research on the P-solubilizing efficiency of
actinobacteria isolated from either marine or arid environments [67,68].

Next, the isolates were screened for K solubilization ability (Table 2). Among all isolated
actinobacteria, only one isolate was unable to form a significant zone of clearance on modified
Aleksandrov agar plates, while six isolates (Streptomyces sp. KNC-2, Streptomyces sp. MNB-2,
Streptomyces sp. MNC-3, Streptomyces sp. MNC-4, Streptomyces sp. TNC-1 and Streptomyces sp. TNC-2)
showed relatively large zones of clearance. Currently, little information is available on K solubilization
by rhizospheric actinobacteria. They may solubilize K and make it available to growing plants using
various mechanisms, including the production of inorganic and organic acids and polysaccharides [69].
A wide range of rhizospheric bacteria have been reported as K solubilizers, including Burkholderia,
Acidithiobacillus ferrooxidans [70], Arthrobacter sp. [71], Enterobacter hormaechei KSB-8 [72], Paenibacillus
mucilaginosus and Paenibacillus glucanolyticus [73,74], and Aminobacter and Sphingomonas [75].

N fixation capacity was observed in 91% of the actinobacterial isolates (Table 2). Currently,
there is no known N-fixing Streptomyces, other than the thermophilic, autotrophic Streptomyces
thermoautotrophicus [76]. To our knowledge this is the first report of nitrogen fixation by the rare
actinobacteria including Nocardioides, Actinomadura and Saccharomonospora. In addition, Frankia,
a versatile N-fixing actinobacterium, fixes N under both free-living and symbiotic conditions [10].
It infects the root cells of actinorhizal plants through either intracellular root-hair infection or intercellular
root invasion [77]. Moreover, various other endophytic actinobacteria have the ability to fix N, including
Arthrobacter, Mycobacterium and Propionibacteria [78]. Additionally, other bacterial genera were reported
as N-fixing actinobacteria, such as Agromyces, Microbacterium, Corynebacterium and Micromonospora
isolated from root nodules of leguminous and actinorhizal plants [79].

Quantitative estimation of IAA production by actinobacterial isolates in the presence of
L-tryptophan is shown in Figure 3. The IAA values ranged from 6.70 to 75.54 µg/mL after eight
days of incubation. Isolate Streptomyces sp. MNC-1 isolated from the Merzouga desert produced the
highest amount of IAA (75.54 µg/mL), followed by isolates: Streptomyces sp. MNB-2 (50.32 µg/mL),
Saccharomonospora sp. LNS-1 (49.46 µg/mL), Streptomyces sp. MNT-1 (46.41 µg/mL) and Streptomyces sp.
KNC-5 (41.92 µg/mL). Streptomyces MNC-1 has a similar level of IAA to the previously-reported work
of Khamna et al. [46]. The lowest IAA production was observed for isolates Streptomyces sp. TNC-2 and
Streptomyces sp. MNC-3 with 8.30 µg/mL and 6.70 µg/mL, respectively. These results agree with those
reported by Anwar et al. [76] and Rodrigues et al. [31]. Several Streptomyces species, such as Streptomyces
olivaceoviridis, Streptomyces rimosus, Streptomyces rochei, Streptomyces griseoviridis, and Streptomyces lydi
also have the ability to produce IAA and promote plant growth [80–82]. In fact, the majority of
actinobacteria produce IAA, which is responsible for an increased number of adventitious roots and
root exudates [83]. In addition, IAA can also act as a signal for the production of secondary metabolites
and sporulation of actinobacteria [84,85].
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The results of siderophore production in liquid medium by the isolated actinobacteria are shown
in Figure 3. Isolate Saccharomonospora sp. LNS-1 was the highest siderophores producer (138.92 µg/mL),
followed by isolates Streptomyces sp. MNT-1 (127.37 µg/mL) and Streptomyces sp. MNC-1 (120.35
µg/mL), while isolate Streptomyces sp. MNC-3 was the lowest siderophore producer (63.80 µg/mL).
Siderophores help to satisfy an organism’s iron needs by chelating it from inorganic sources and
making it available to both bacteria and plants [86,87]. Siderophore production is implicated in
growth promotion and in biocontrol of phytopathogens [33]. Numerous strains of actinobacteria
have been reported as siderophore producers [13]. Oliveira et al. [88] found that Saccharopolyspora
erythraea produces a hydroxamate type siderophore designated as erythrobactin. Similarly, the marine
actinobacterium Citricoccus sp. KMM3890 produces a cyclic siderophore, nocardamine [89], while
Actinomadura sp. DSMZ13491 produces the cyclic heptapeptide GE23077 with antibacterial activity [90].
Moreover, the novel heterobactin analog siderophore JBIR-16 is produced by Nocardia tenerifensis [91].
Kodani et al. [92] found that Streptomyces sp. TM-74 produces the siderophore tsukubachelin B.

Principal coordinate analysis (PCA) was used to select which isolates better expressed PGP
activity (Figure 4). The two dimensions of the PCA (F1 and F2) were responsible for 91.19% of the
total variation, with first axis accounting for 58.98% and the second axis for 32.21% of the variance.
The PCA showed that isolates with higher activity in term of P solubilization, IAA and siderophores
production were on the right of the first axis (F1), that is, they corresponded to isolates Streptomyces sp.
MNC-1, Saccharomonospora sp. LNS-1, Streptomyces sp. MNT-1, Streptomyces sp. MNB-2, Streptomyces
sp. KNC-5 and Streptomyces sp. KNC-3. Meanwhile, isolates with lower PGP activity are on the left
in Figure 4. In comparison to the second axis, isolates Saccharomonospora sp. LNS-1, Streptomyces
sp. MNT-1 and Streptomyces sp. KNC-5 displayed better production of IAA and siderophores and a
medium level of P solubilization. In addition, isolates Streptomyces sp. MNC-1, Streptomyces sp. MNB-2
and Streptomyces sp. KNC-3 revealed better P solubilization than the other isolates. It’s important to
note that P solubilization ability is negatively correlated with IAA production. According to the results,
we suggest that the most promising isolates were isolated from the desert soil, marine environment
and rhizospheric soil of C. sativa. The interesting PGP activities of the promising isolates might be
explained by their exhibition of a diversified metabolism and a strong enzymatic activity.
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4. Conclusions

Our findings revealed that the extreme ecosystems in Morocco are a rich source of valuable
actinobacteria, especially for rare genera. This study is the first to report the discovery of Nocardioides,
Saccharomonospora, Actinomadura, and Prauserella from a variety of extreme terrestrial and marine
habitats in Morocco. Every actinobacterial isolate obtained exhibited distinctive PGP activities (i.e.,
IAA and siderophore production, P and K solubilization, and N-fixation), which can potentially be a
promising microbial resource for optimizing green and sustainable agriculture in Morocco.
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