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Abstract: Consumer communities play an important role in maintaining ecosystem structure and
function. In seagrass systems, algal regulation by mesograzers provides a critical maintenance
function which promotes seagrass productivity. Consumer communities also represent a key link in
trophic energy transfer and buffer negative effects to seagrasses associated with eutrophication. Such
interactions are well documented in the literature regarding temperate systems, however, it is not
clear if the same relationships exist in tropical systems. This study aimed to identify if the invertebrate
communities within a tropical, multispecies seagrass meadow moderated epiphyte abundance under
natural conditions by comparing algal abundance across two sites at Green Island, Australia. At each
site, paired plots were established where invertebrate assemblages were perturbed via insecticide
manipulation and compared to unmanipulated plots. An 89% increase in epiphyte abundance was
seen after six weeks of experimental invertebrate reductions within the system. Using generalised
linear mixed-effect models and path analysis, we found that the abundance of invertebrates was
negatively correlated with epiphyte load on seagrass leaves. Habitat species richness was seen to
be positively correlated with invertebrate abundance. These findings mirrored those of temperate
systems, suggesting this mechanism operates similarly across latitudinal gradients.

Keywords: epiphyte–grazer interactions; trophic interactions; ecosystem function and services;
invertebrate assemblages

1. Introduction

Both empirical and theoretical studies showed that consumer communities play an important
role in maintaining ecosystem structure and function [1–3]. Consumers act as regulators within
systems by moderating the biomass and structure of lower trophic levels [4–6]. Regulation can arise
through the control of competitively superior species at population levels that prevent exclusion of
less competitive ones, as well as through physical disturbances which maintain the persistence of
pioneer-type species [2,3,5,7]. In plant–herbivore interactions, both of these processes act to increase
plant richness within a system, which is positively linked to primary productivity, making herbivorous
consumer communities critical to ecosystem function [1,2,7,8].

In marine environments, seagrass meadows are one system in which the occurrence of a rich
and abundant community of organisms that consume primary producers is known to maintain
and increase ecosystem functions, such as overall productivity, stability and resource use [6,9–11].
A large body of experimental research identified the important role that both large herbivores, such as
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green turtles, dugong/manatees, fish and sea urchins [6,12–14], as well as small invertebrate grazing
communities (commonly referred to as mesograzers) [15–17], have on the structure and maintenance
of seagrass meadows.

Algal grazing by mesograzer communities within seagrass meadows is an important function,
providing a key link in trophic energy transfer within seagrass ecosystems and buffering negative effects
to seagrasses associated with eutrophication and an overabundant epiphytic algae community [18,19].
For example, in eutrophication experiments, ambient grazing pressures associated with mesograzers
promoted increases in both seagrass and grazer biomass [17,18]. However, when mesograzer abundance
was reduced, algal dominance increased and seagrass abundance and biomass declined [18–20].
Mesograzer abundance alone may be inadequate to fully characterise the observed process. Richness
within grazer communities, primarily in gastropod and amphipod taxa, was also shown to increase
the efficiency of grazer consumption [19,21,22]. Previous experimental work regarding these systems
also demonstrated an effect from primary diversity, whereby seagrass plots with higher genotypic
richness recruited more abundant invertebrate communities and more diverse grazing communities
were more effective at consuming epiphytic algae [23–26].

Seagrass ecosystems recently experienced significant global decline, with anthropogenic stressors
being linked as the major drivers [27]. The complex interaction between seagrass, epiphytes and
mesograzers is of particular interest as both nutrient enrichment and overfishing, two of the major
anthropogenic stressors affecting coastal habitats [28,29], have strong cascading and direct effects on
these interactions [30–33]. Experimental work on the seagrass–mesograzer interaction is strongly
biased towards temperate systems, where seagrass meadows are generally monospecific [18,34].
Typically, tropical systems contain higher biodiversity than their temperate counterparts [35,36]. Work
on herbivory was previously conducted in tropical seagrass systems, however the focus was generally
on the effects of large herbivores, such as fish, turtles and dugong, as they are believed to play primary
roles in structuring tropical and subtropical seagrass systems [10]. From the limited tropical studies
available, the role of mesograzers in seagrass and epiphyte dynamics is unclear and may be confounded
by the low epiphyte and mesograzer densities present at some study sites [17]. This leaves a critical
gap to be filled exploring the role of mesograzers within these systems and how they interact with
both the seagrass and the epiphyte communities [10].

This study aimed to identify the presence and drivers of the seagrass–mesograzer–epiphyte
interactions within a tropical multispecies meadow. To do this, a paired manipulative experiment was
deployed over a broad area within a tropical seagrass meadow. Grazer communities were perturbed
via the introduction of an insecticide, intended to reduce the abundance and richness of invertebrates in
manipulated plots compared to adjacent, unmanipulated control plots. Changes in epiphyte abundance
were then recorded. It was hypothesised that this would increase the epiphytic algal biomass relative
to control plots. Invertebrate and habitat assemblages were analysed to identify any structural changes
caused by the experimental treatment. Generalised linear mixed models and path analysis were
used to evaluate the primary drivers of assemblage structuring at each of the different trophic levels
in the study system and the interaction pathways identifying how they operate as a whole. It was
hypothesised that the epiphyte biomass within the system would be negatively correlated with grazer
richness and that habitat richness would be positively linked with grazer abundances.

2. Materials and Methods

2.1. Site Selection and Experimental Design

The study was conducted at Green Island, located approximately 25 km northwest of Cairns,
Queensland, Australia (~16◦45′19.19” S, 145◦58′15.59” E, Figure 1). The waters surrounding the island
were first declared as a marine park in 1974 and, to this day, are incorporated and managed within the
Great Barrier Reef Marine Park [37]. The island supports up to ten species of seagrass [38], six of which
were observed within the study sites: Cymodocea rotundata, Cymodocea serrulata, Halodule uninervis,
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Syringodium isoetifolium, Thalassia hemprichii and Halophila ovalis. All of these species possess similar
strap bladed growth form, with the exception of S. isoetifolium and H. ovalis, which are cylindrical and
ovoid, respectively.
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Two study sites were established in the intertidal, multispecies meadow on the north and
southeastern edges of the island (Figure 1). Sites were selected in an attempt to incorporate as much of
the natural variation in seagrass biomass and species composition as possible. Differences were present
in both the seagrass and invertebrate communities between sites. Each site covered approximately
2.5 ha, and 11 paired plots were established within each site. Each paired plot included a control
treatment and invertebrate reduction treatment (deterrent). Plots were defined by a 0.25 m2 quadrat,
and pairs were spaced two meters apart to prevent treatment contamination [26]. Deterrent treatment
was implemented by incorporating the degradable carbamate insecticide, Carbaryl, into a plaster
matrix at ~7.6% w/w to form dissolvable blocks [39]. This treatment method was previously shown to
be highly effective at reducing crustacean invertebrates within this 0.25 m2 treatment area [26]. In each
plot, two blocks were pegged 50 cm apart within the seagrass meadow and positioned so that they were
suspended at seagrass canopy height. Procedural control plots consisted of an identical arrangement of
plaster blocks without insecticide. Based on pilot studies, treatment and control blocks were replaced
every two weeks to ensure continuous delivery of insecticide. This study was conducted under strict
permitting conditions from the Great Barrier Reef Marine Park Authority (Permit: G17/38934.1).

2.2. Sample Analysis

Experimental trials ran for six weeks between November and December of 2018. Upon completion,
all aboveground biomass and associated invertebrate fauna were harvested from a 0.08 m2 area at
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the center of the treatment plot between the two plaster blocks by passing a sharpened metal plate
beneath a 16 cm diameter PVC core at sediment level to sever all aboveground seagrass biomass and
associated epiphytes and invertebrate fauna. The core was then inverted and the sample was drained
and collected in a 500 µm sieve. All sample materials collected were frozen prior to sample analysis.

In the laboratory, all invertebrates were separated from plant biomass by rinsing the sample through
a series of graduated metal sieves ranging from 1.4 mm to 500 µm. This resulted in all invertebrates,
and any sediment, larger than 500 µm being grouped together for processing. Invertebrates were then
removed and recorded manually using a microscope. Crustacean and gastropod taxa were recorded
and stored in 70% ethanol. These taxa constitute the majority of the gazers within the system; this
protocol was comparable to prior studies (see [19]). Epiphyte biomass was measured by manual
removal from all seagrass leaf blades using a microscope slide, which was then dried at 60 ◦C for
72 h and weighed, recorded as grams dry weight (gDW). Plant materials, including both seagrass and
macroalgae, were sorted into species, then dried and weighed (gDW).

From these data, several metrics were calculated to use in the models. Epiphyte biomass was
standardised by the total aboveground seagrass biomass to obtain a relative measure of epiphyte
abundance for each sample, namely, epiphyte load (gDW epiphyte. gDW seagrass−1). This metric was
used in similar experiments [18,19] and found to be collinear with other seagrass metrics. e.g., surface
area. Habitat (seagrass and macroalgae) richness (S) and diversity (Shannon–Wiener index (H′)) and
invertebrate richness and diversity (H′) were also calculated (Table 1). Data is available at the Tropical
Data Hub [40].

Table 1. The variables measured within the study for each of the three levels within the invertebrate–
seagrass–epiphyte interaction. Each variable was modelled using all variables from the groupings
below it, e.g., epiphyte load (gDW·gDW−1) was modelled using all invertebrate and habitat
community variables.

Interaction Grouping Variables Included within Models

Epiphytes Epiphyte Load (gDW·gDW−1)

Invertebrate Assemblages Invertebrate Abundance Invertebrate Richness (S) Invertebrate Diversity (H′)
Habitat Community Habitat Biomass (gDW) Habitat Richness (S) Habitat Diversity (H′)

2.3. Statistical Analysis

Paired and two-sample t-tests were used to identify the effects of both site and application of
the deterrent treatment on all variables measured. For the analysis of the invertebrate community
composition, a species accumulation curve was generated to assess how well the sampling effort
represented the true invertebrate community within the system studied using the vegan package [41]
in the statistical software R [42]. Resampling methods were used to calculate expected community
maxima and confidence intervals, against which observed estimates were compared. Ordination plots
were then used to estimate similarities and differences in the invertebrate and habitat community
between sites and between treatments.

The variables measured within this study form a complex theoretical interaction web separated
into three levels (Table 1). The first and second levels represent the primary habitat (seagrass) and
invertebrate community, respectively. For both habitat and invertebrate communities, we characterised
three variables, namely, diversity (H′), species richness (S) and biomass (gDW). The third level
was epiphytes, which was characterised by a single variable, i.e., epiphyte load (gDW·gDW−1).
We characterised each interaction by generating a generalised linear mixed-effect model (GLMM),
which included all variables from lower levels.

2.3.1. Model Selection

To remove unnecessary model complexity and avoid overfitting problems, a model selection
process was performed to assess which of these variables should be included or removed from the final
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path analysis. As epiphyte load (gDW·gDW−1) was the primary response variable of this study, this was
modelled first. Following this, model selection was undertaken using invertebrate abundance, richness
(S) and diversity (H′) as response variables. Habitat variables were treated as predictor variables
only within this system. This approach was considered the most appropriate, as the relatively short
timeframe of the study meant that habitat variables were not likely to be impacted by the treatment
effects due to the lag in growth responses of seagrass as a result of epiphyte pressures [19].

To identify the predictors of epiphyte load (gDW·gDW−1), we used a generalised linear mixed-effect
model (GLMM), which was generated using the lme4 package [43] in the statistical software R [42].
‘Site’ was included as a random factor to account for any nonindependence and possible differences in
abiotic factors influencing the two study sites. All other measured variables (Table 1) were included
as predictors within this ‘global’ model, except the deterrent treatment. Deterrent was excluded as
it does not directly affect epiphyte growth and has an influence only indirectly via changes in the
invertebrate community. Preliminary exploratory analysis of the variables [44] showed different ranges
and distributions and, as such, all predictor variables were standardised using z-score transformations
in order to allow for direct comparison of model coefficients.

Model fitting began by generating a single global model that included all response variables
retained after the selection process described above. We used the dredge function from the MuMin
package [45] to generate all possible model combinations from the global model. All models were then
assessed based on Akaike’s Information Criteria corrected for small sample size (AICc) [46–48]. As the
majority of the candidate models were very poor at explaining the data, a subset were selected using
AICc ∆ weights ≤ 3 [47], which were then averaged to obtain a final model that contained only those
predictor variables and variable combinations that best described the data. This process was repeated
to determine the predictor variables required to best describe invertebrate richness (S), diversity (H′)
and abundance.

2.3.2. Path Analysis of Combined Interaction Web

Based on the models identified above, the piecewiseSEM [49] package was used to perform path
analysis to characterise the relationships and mechanisms deemed to be influential in describing the
seagrass–mesograzer interaction within this system. Path analysis allows analysis of a complex set of
causal interactions and estimates their direct and indirect effects on multiple response variables [50].
Constructing individual GLMM regression models prior to incorporation into a single interaction
network allowed consideration of the unique variance, distribution and site differences of each response
variable, which strengthened the overall model fit [22,50,51]. Validity of the individual paths within the
model and overall model fit was tested using Shipley’s test for d-separation [51,52]. Both marginal and
conditional R2 values were produced for each of the response variables. Marginal R2 values explain the
variance in the response variable, which is explained by the predictor variables, whereas conditional
R2 values incorporate the random factor, in this case, the amount of variance in the response explained
by differences between sites [22].

3. Results

Differences in epiphyte load (gDW·gDW−1) were apparent between the two sites (t = −2.02,
df = 30.6, p = 0.05), and a significant increase was seen with the application of the invertebrate deterrent
treatment (t = −2.55, df = 29.9, p = 0.01) (Figure 2g,h). When the treatments were paired and the change
in (delta) epiphyte load (gDW·gDW−1) was analysed, no site difference was seen (t = 0.39, df = 15.6,
p = 0.7) (Figure 2i). This shows that despite differences between sites in other variables, the application
of the deterrent treatment effected the epiphyte load (gDW·gDW−1) equally across sites. A significant
increase in epiphyte load (gDW·gDW−1) (t = −2.94, df = 19, p = 0.008) was seen when the paired control
and deterrent plots were averaged over the entire study, which equated to an 89% mean increase in
epiphyte load (gDW·gDW−1).
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epiphyte load (gDW·gDW−1) between paired controls and treatment plots for each site.
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Habitat analysis found differences between the two sites sampled, as expected from the site
selection process. Across the sites, we found a total of five macroalgal species, two sponge species and
six seagrass species. When comparing sites using two-sample t-tests (Figure 2a–c), no differences in
habitat biomass were seen (t = −0.27, df = 40, p = 0.79), however, significant differences in mean habitat
species richness (S) (t = −3.53, df = 38.4, p = 0.001) and diversity (H′) (t = −2.75, df = 40, p = 0.008) were
found. Ordination analysis supported these findings, also showing differences in habitat composition
between sites (See Appendix A, Figure A1) (p < 0.001, r2 = 0.5805, stress = 0.20). Two-sample t-tests
also demonstrated that the application of deterrent treatment to the system did not affect the habitat
biomass (t = −0.12, df = 40, p = 0.90), richness (S) (t = −0.01, df = 40, p = 0.99) or diversity (H′) (t = −0.44,
df = 40, p = 0.66) when compared to control plots.

A total of 8404 individual invertebrates across 48 taxa were included in the analysis; Tenaidacea,
Thalassinidae, Copepoda, Anthuridea and several Grammaridea taxa made up the majority of the individuals
sampled, with low abundances across the rest of the taxa identified. Due to strict permit restrictions
on insecticide use, the number of replicates used was limited, therefore a species accumulation curve
(Figure A2) was produced. This showed species richness approaching an asymptote, suggesting nearly
all species were represented by sampling despite variability between plots and sites. Resampling
methods reinforced this, as the observed number of taxa fell within the confidence interval in three out
of four of the resampling methods (Table A1). Invertebrate abundance (t = −3.76, df = 33.5, p < 0.001),
richness (t = −5.11, df = 38.4, p < 0.001) and diversity (H′) (t = −3.50, df = 39.9, p = 0.001) were all seen
to be significantly higher in Site 2 compared to Site 1 using two-sample t-tests (Figure 2d–f). Significant
decreases in invertebrate abundances (t = 2.44, df = 19, p = 0.02), richness (t = 5.32, df = 19, p < 0.001)
and diversity (H′) (t = 3.83, df = 19, p = 0.001) were seen when comparing control to deterrent treatment
plots using paired t-tests. Ordination analysis showed significant differences between Site 1 and Site 2,
control plots and treatment plots (Figure 3), indicating that all four groups had significantly different
centroids (means) in the invertebrate communities sampled (p < 0.001, r2 = 0.5021, stress = 0.21).Diversity 2020, 12, x FOR PEER REVIEW 8 of 17 
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Figure 3. Ordination plot showing significant invertebrate community differences between Site 1,
control and treatment plots (1C and 1T respectively) and Site 2 control and treatment plots (2C and 2T
respectively) (p < 0.001, R2 = 0.5021, stress 0.21). Individual samples are denoted by black dots, which
are connected to their respective centroid. Lower and upper 95% confidence intervals (shaded area) for
each centroid are also shown.
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Changes in invertebrate richness were highly collinear with invertebrate abundance and diversity
(H′). As such, all three could not be included in the model explaining epiphyte load (gDW·gDW−1)
without significant variance inflation. Invertebrate richness was identified as the worst performing
variable and was subsequently removed, thereby reducing the variance inflation factor to acceptable
levels and leaving invertebrate abundance and diversity (H′) in the model. Habitat biomass was also
excluded as it was a measure from which epiphyte load was derived, therefore these two variables
were strongly collinear. The final epiphyte model included invertebrate diversity (H′), invertebrate
abundance, habitat diversity (H′) and habitat richness (S), with site as a random factor, all of which
were included after model averaging (Table 2a). Of these, only invertebrate abundance and site were
included in all final subset of models, and displayed the strongest coefficient values (−0.46 and −2.49,
respectively, Table 2a). Path analysis showed invertebrate abundance to be the primary driver of
epiphyte load (gDW·gDW−1), with marginal and conditional R2 values of 0.26 and 0.41, respectively
(Figure 4b). The differences in these values reflected the effect that site had on epiphyte loading within
the system (Figure 2g). Habitat richness (S), habitat diversity (H′) and invertebrate diversity (H′) all
only appeared in a single candidate model and showed weak coefficient values (all < 0.1), and were
therefore not considered to be primary drivers in path analysis (Figure 4b).

Table 2. List of variables included, regression coefficients, degrees of freedom (df) and Akaike’s
Information Criteria corrected for small sample size (AICc), for all candidate models and averaged final
model for each of the response variables within the path analysis. (a) Epiphyte load, (b) invertebrate
abundance and (c) invertebrate diversity (H′).

(a) Epiphyte Load (Epiphyte gDW/Seagrass Biomass gDW−1) Model Coefficients

Model # Site
(Intercept)

Habitat
Diversity

Invertebrate
Diversity

Invertebrate
Abundance

Habitat
Richness df AICc ∆ Weight

1 −2.49 NA NA −0.46 NA 4 −127.1 0

2 −2.49 NA NA −0.42 −0.07 5 −124.8 1.53

3 −2.49 NA 0.06 −0.47 NA 5 −124.8 2.08

4 −2.49 0.02 NA −0.47 NA 5 −124.6 2.98

Averaged
Model −2.49 0.02 0.06 −0.46 −0.07

(b) Invertebrate Abundance Model Coefficients

Model # Site
(Intercept)

Habitat
Diversity

Habitat
Richness (S)

Habitat
Biomass (gDW) Deterrent df AICc ∆ Weight

1 5.46 NA 0.57 −0.23 −0.55 6 498.5 0

2 5.46 0.22 0.23 NA −0.56 6 499.9 1.36

3 5.46 0.13 0.44 −0.18 −0.56 7 500.4 1.86

4 5.45 0.37 NA NA −0.53 5 500.8 2.22

5 5.45 NA 0.40 NA −0.52 5 500.9 2.43

Averaged
Model 5.46 0.23 0.45 −0.22 −0.55

(c) Invertebrate Diversity (H′) Model Coefficients

Model # Site
(Intercept)

Habitat
Diversity

Habitat
Richness (S)

Habitat
Biomass (gDW) Deterrent df AICc ∆ Weight

1 0.54 NA NA NA −0.27 4 44.3 0

2 0.55 0.06 NA NA −0.28 5 44.5 0.17

3 0.54 NA NA 0.05 −0.28 5 44.8 0.47

4 0.55 0.06 NA 0.05 −0.28 6 45.2 0.85

5 0.54 NA 0.05 NA −0.27 5 45.7 1.40

6 0.55 0.12 −0.10 0.09 −0.29 7 46.3 2.02

7 0.55 0.06 0.01 NA −0.28 6 47.2 2.91

Averaged
Model 0.55 0.07 −0.01 0.06 −0.28
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Figure 4. Path analysis of combined interactions. (a) Full theoretical interaction web of measured
variables and treatment effects and (b) final path model. Thickness of positive (black) and negative
(red) paths is proportional to their standardised path coefficients. Dashed lines represent indirect paths.
Marginal and conditional (respectively) R-squared values are displayed above each of the response
variables measured. Primary drivers are indicated by (*).

As the epiphyte model only contained two invertebrate variables (abundance and diversity (H′)),
only these two variables were modelled. Habitat variables important in determining invertebrate
abundance and diversity included; habitat biomass (gDW), habitat diversity (H′), habitat richness (S)
and deterrent (Table 2b,c), again with site included as a random factor. The invertebrate abundance
model showed a strong coefficient for site (−5.46, Table 2b), however, path analysis showed that this
had little explanatory power when modelled within the system as a whole, as both the marginal and
conditional models resulted in R2 values of 0.57 (Figure 4b). Deterrent treatment had a strong negative
influence on the abundance of invertebrates (−0.55), and habitat richness (S) displayed the strongest
positive coefficient (0.45) of all the habitat variables. As such, both were identified as primary drivers
in path analysis. Of the remaining treatments, habitat biomass and habitat diversity (H′) were both
positively linked to invertebrate diversity (H′) (Table 2c, 0.06 and 0.07, respectively), while habitat
richness (S) displayed a minor (−0.01) negative influence on invertebrate diversity. The application
of the deterrent treatment exhibited a strong negative impact on invertebrate diversity (H′) (−0.28).
Including site as a random factor was also shown to explain some of the diversity within the system,
as shown by the increase from a marginal to conditional R2 of 0.32 to 0.41.

4. Discussion

This study found that the invertebrate assemblages within Green Island’s multispecies seagrass
meadow play a significant role in reducing epiphyte loads within the system. Despite differences
in both the seagrass and invertebrate assemblages between sites, consistent increases in epiphyte
load (gDW·gDW−1) were seen after application of the invertebrate deterrent treatment (Figure 2h).
On average, epiphyte load (gDW·gDW−1) increased by 89% between control and treatment plots,
which was slightly higher than the effect found by Campbell [10] in subtropical and tropical seagrass
meadows. This was shown to be much lower than in temperate systems, where up to six-fold increases
in epiphyte biomass were reported [18,26].

Differences in primary producer communities were seen between sites, primarily due to the
inclusion of more opportunistic seagrass species, such as Halodule uninervis and Halophila ovalis at
Site 2, as a result of increased natural levels of disturbance of the areas rather than as a result of any
experimental effects manipulating the invertebrate community. This difference in primary habitat
composition may have been the cause of the difference in invertebrate assemblages between the
sites. Differences in seagrass meadow structural complexity and composition were shown to affect
invertebrate assemblages in other studies, suggesting that niche partitioning causes different taxa to
thrive in unique areas within a system [53,54]. Others did not find this to be the case, suggesting
seagrass structure within a meadow has no effect due to the mobility and rapid life histories of
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mesograzers [55,56]. Natural spatial variation within the invertebrate communities or differences in
abiotic factors may also have driven this dissimilarity between sites.

Invertebrate abundance was identified by pathway analysis as the primary driver controlling
epiphytic loads within the system (Figure 4). Direct competition between the seagrass habitat and
epiphytes was also apparent, as highlighted by the negative term between habitat richness and epiphyte
load. This was expected, as seagrasses, macroalgae and microalgae all compete for, and utilise, the same
light and nutrient resources within the system [56,57]. One extension of this current study would be an
experimental design capable of linking the epiphyte loading to the biomass and species composition of
the habitat, exploring these competitive effects, also seen in other systems, in more detail [58].

The positive link between invertebrate diversity and epiphyte load (gDW·gDW−1) suggested
that not all invertebrate taxa identified were consuming epiphytes (Appendix C). Copepoda, Tanaidacea
and Grammaridea formed the majority of invertebrates identified. All of these crustacean groups were
reported as mesograzers in other studies [22,59], although there are potentially a variety of functional
roles occurring within each group [60,61]. The strong negative interaction term between invertebrate
abundance and epiphyte load suggested the same is true for Green Island. These taxa are also known
to have varied diets, so may not all feed exclusively on epiphytes or may be specific in the types of
epiphytes they consume [60]. Future studies using selective removal or molecular marker analyses
could help to confirm this hypothesis by identifying the dietary preferences of the most abundant
invertebrate taxa. Stable isotope ratios of carbon (δ13C), nitrogen (δ15N) and sulphur (δ34S) from animal
tissue could be compared with those of likely food items (e.g., seagrass leaves, epiphytes, macroalgae,
seston, microphyobenthos) using mixing models to determine the relative contributions of each source
to their diet [62,63]. Combining this with analyses of the fatty acid composition of key consumers
and looking for biomarkers of major food sources increases the predictive power for identifying their
dietary components [64,65]. Given the evidence we found to suggest this is the case in tropical systems,
we highlighted the need to develop a more detailed understanding of niche partitioning and feeding
habits of mesograzers within these seagrass communities. Identifying the key taxa within them would
also be beneficial for the potential for faunal communities to be used as bioindicators in seagrass
monitoring efforts [66].

The positive link between invertebrate diversity and epiphyte load also indicated that predatory
species were likely included within the invertebrate community samples. This point was supported by
the inclusion of small crabs and shrimp, which are often thought to be predatory in seagrass systems,
and therefore used in experimental work [22]. Due to limited taxonomic information surrounding the
invertebrate communities in tropical seagrass in the region, we restricted analyses to include broad
taxonomic groups within crustaceans and gastropods, identifying individuals to the highest resolution
possible with the keys and literature available before separating them into taxa based on morphology.
As species functional information increases in future, greater refinement in taxonomic classification
according to feeding guild is expected to bring greater precision to studies similar to this.

The richness of primary producers (seagrass and macroalgae combined) was positively linked
and the main driver of invertebrate abundance within the system (Figure 4b). Habitat diversity
(H′) showed a similar, but weaker, influence. As seagrass and macroalgae were not partitioned in
the analysis, their individual effects could not be derived, however, the positive linear relationship
among primary producers suggested that macroalgae may also play a contributing role in determining
the structure and composition of invertebrate communities within seagrass meadows. A recent
meta-analysis showed that secondary foundation species (e.g., algae species nested in seagrass beds)
enhances the richness and abundance of associated organisms living in the habitat greater than primary
foundation species alone [67]. Diversity of primary producers was previously identified as the driver
of invertebrate communities [19], showing that increased genotypic richness within monospecific
Zostera marina meadows recruited more abundant invertebrate communities. This study suggested
that increased invertebrate biomass was linked to the availability of a genotypically varied diet [54].
The multispecies habitat assemblages of our study site and other tropical seagrass habitats also
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provide a more heterogeneous living environment for invertebrate communities than low-diversity
assemblages, thereby greatly increasing the available niche space for individuals in conjunction with
providing a more complex environment to avoid predation [68–70]. The outcome of this is more
abundant and species-rich invertebrate assemblages are able to coexist within the system.

These results were similar to general trends reported from analogous studies in temperate
areas [23–26]. Strong evidence suggests that the diversity of primary producers affects the invertebrate
community positively, as seen across both the tropics and temperate areas. Similarly, top-down control
of epiphytic algae by marine invertebrates is an important aspect of seagrass ecology in general.
In temperate systems, the seagrass–mesograzer interaction was shown to buffer seagrass systems
against low to medium levels of nutrient loading [59,71], resulting in a net increase in both primary
and secondary productivity [23]. These findings are unlikely to be universal for all tropical seagrass
meadows, however, where there is great diversity in meadow form and associated ecology and trophic
interactions. Understanding the varying response across different seagrass meadows and determining
the potential for this interaction to buffer or ameliorate the effects of nutrient loading is an important
next step regarding tropical systems. While not investigated in this study, our results suggest this
ability to operate. This should be a priority for future studies, as eutrophication associated with
coastal development and agriculture is a major risk leading to seagrass loss both in the tropics and
globally [27,72].
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Figure A1. Ordination plots of seagrass and macroalgal community between sites at Green Island.
Ordination showed significant community differences between Site 1 and 2 (p < 0.001, R2 = 0.5805,
stress = 0.20). Individual samples are denoted by black dots, which are connected to their respective
centroids. Lower and upper 95% confidence intervals (shaded area) for each centroid are also shown.
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Appendix B

Species accumulation curve (Figure A2) and resampling methods (Table A1) used to validate
the sampling effort undertaken in the study. We found the observed number of taxa approaching an
asymptote and falling within the confidence interval of the predicted number of taxa with three out
of the four resampling methods used. This was done using the vegan package [43] in the statistical
software R (R core team 2016).
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