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Abstract: Prioritizing the prevention and control of non-native invasive species requires understanding
where introductions are likely to occur and cause harm. We developed predictive models for Eurasian
watermilfoil (EWM) (Myriophyllum spicatum L.) occurrence and abundance to produce a smart
prioritization tool for EWM management. We used generalized linear models (GLMs) to predict
species occurrence and extended beta regression models to predict abundance from data collected
on 657 Wisconsin lakes. Species occurrence was positively related to the nearby density of vehicle
roads, maximum air temperature, lake surface area, and maximum lake depth. Species occurrence
was negatively related to near-surface lithological calcium oxide content, annual air temperature
range, and average distance to all known source populations. EWM abundance was positively
associated with conductivity, maximum air temperature, mean distance to source, and soil erodibility,
and negatively related to % surface rock calcium oxide content and annual temperature range.
We extended the models to generate occurrence and predictions for all lakes in Wisconsin greater
than 1 ha (N = 9825), then prioritized prevention and management, placing highest priority on lakes
likely to experience EWM introductions and support abundant populations. This modelling effort
revealed that, although EWM has been present for several decades, many lakes are still vulnerable
to introduction.

Keywords: species distribution model; SDM; species abundance; Eurasian watermilfoil; EWM;
Myriophyllum spicatum; non-native species; invasive species; aquatic plants; aquatic macrophytes

1. Introduction

Non-native species are a leading driver of global environmental change. They can alter ecosystem
structure and function and decrease global biodiversity [1–4]. They are economically costly and can
pose hazards to human health [5,6]. Invasive species have been recorded from over half the extant
phyla and divisions, and their modes of impact are as diverse as the invaders themselves [7–10]. Thus,
the vulnerability of any given area to invasive species is a central concern for ecologists and natural
resource managers.
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Assessing lake-specific invasion vulnerability requires understanding three filters that mediate
species invasions. The first filter relates to likelihood of species introduction, the second includes the
probability that the introduced species establishes a self-sustaining population, and the third relates to
its likely impact [11]. In other words, lakes in which a non-native species is likely to arrive, survive,
and thrive are considered vulnerable. Predicting which lakes are vulnerable is helpful for management;
it allows the informed and efficient application of limited resources for prevention and control, thereby
minimizing adverse ecological and economic effects.

Predicting whether a lake is vulnerable first requires predicting where that species is likely to
occur. Species occurrence is mediated by the first two invasion filters related to a species’ ability to
arrive and survive. Important factors to consider include the potential for propagules to disperse,
climate, and the availability of critical resources; these are reviewed elsewhere [12]. By mathematically
relating species occurrences and spatial and environmental characteristics within a known sample of
lakes, we may predict species distributions for the population [13]. Including dispersal-related factors
is especially important when a species range is changing, as is the case for many non-native species,
but dispersal is not routinely accounted for in species distribution models [14–16].

The second critical step in assessing lake-specific invasion vulnerability is to determine whether
the species is likely to have adverse effects. The effects of non-native species are generally more difficult
to forecast than their distributions and, as a result, they are not often predictively modelled [17–19].
A promising solution is to use abundance as a proxy for impact because it is more tractably modelled
as a function of explanatory variables [14]. For most invasive species, abundance and impact are
positively related, although the precise shape of that relationship can take different forms [19–22].

The central goal of this study was to describe lake-specific vulnerability to Eurasian watermilfoil
(EWM), a non-native invasive macrophyte. We extended prior work to predict EWM occurrence by
adding an empirical abundance model [23–25]. We predicted species occurrence and abundance as
a function of water quality, land use, dispersal potential, geology, and climate variables. Predictors
were selected for their link to EWM environmental suitability or aquatic invasive species (AIS)
occurrence [24,26–28]. We then united predictions of occurrence and abundance in a prioritization
framework to identify lakes at risk for developing abundant EWM populations. We separated
vulnerable lakes into tiers of increasing management priority and thereby offer a simple tool to
prioritize prevention efforts and management actions that reduce the impact of EWM.

2. Materials and Methods

2.1. Invasion History of Eurasian Watermilfoil

Eurasian watermilfoil is an invasive aquatic plant that can grow to high abundance in certain
freshwater systems. Native to Europe, Asia, and North Africa, the precise date of introduction to
the United States is unknown but probably occurred between 1880 and 1940 [29]. It has since spread
throughout the continental US and Canada [30]. In Wisconsin, it is present in over 800 waterbodies
and has steadily expanded its range northward following introduction in the south-central region
during the 1960s [31]. When at nuisance levels, EWM forms thick mats at the surface that prevent
navigation, reduce property values, and affect native species [32,33].

Eurasian watermilfoil is a costly and time-consuming management challenge [34]. From 2018 to
2020, over half of Wisconsin’s total funding for Aquatic Invasive Species control grants supported EWM
control, amounting to over $500,000 USD annually. This figure excludes additional private expenditures
for prevention, planning, and control. Eurasian watermilfoil management can also have significant
non-target effects. Common management tools such as herbicides and mechanical harvesting have
been associated with negative ecological effects on native plant communities [35–37]. Given the high
economic and ecological cost of the species and its management, preventing the spread of EWM to
uninvaded lakes is a priority. However, containing the species to the more than 1000 locations in which
it is found in Wisconsin, or shielding the other 15,000 lakes from future introduction are both efforts
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that vastly exceed available funding. We used predictive modelling to identify vulnerable lakes where
EWM is likely to be introduced and become abundant. We hope our findings will increase the efficiency
of prevention and control funding, focusing it on the most vulnerable uninvaded waterbodies.

2.2. Occurrence and Abundance of Eurasian Watermilfoil

We used aquatic plant survey data obtained from the Wisconsin Department of Natural Resources
(WDNR) to generate EWM occurrence and abundance models. WDNR staff and partners working under
a long-term aquatic plant management research and monitoring program conducted standardized and
repeatable plant surveys on a total of 657 waterbodies distributed across Wisconsin’s three lake-rich
ecoregions. Lake surface area in the survey dataset ranged from 1.36 to 3958 ha, while watershed land
use ranged from pristine to nearly entirely developed [38]. Surveyors performed their work during
growing seasons from 1 May to 1 October 2005–2016, employing a grid-based point-intercept survey
method to observe species’ presence/absence at many sites per lake. The sampling window was selected
to minimize the variation in abundance over time during the growing season and thus reduce the
influence of seasonality on abundance estimates (unpublished data). The number of points sampled per
lake ranged from 32 to 4149, with a mean of 406 points [39]. We estimated species-specific abundance as
littoral frequency of occurrence in the littoral zone using the following method. At each sampling point,
observers used a double-sided bow rake attached to a 4.5 m pole to collect macrophytes from a ~0.3 m2

area. A similar rake head attached to a rope was used to collect macrophytes from sites deeper than
4.5 m [40]. All live macrophytes detached by the rake were identified to species [41,42]. We then defined
littoral zones per lake based on sampled depths that were equal to or shallower than the 99th percentile
of ordered depths at which macrophytes were observed. On average, 234 sample points fell within
lake littoral zones. For each species, we calculated abundance as the number of occurrences divided
by the total number of littoral points in each lake. To reduce the number of false absences resulting
from sparse EWM populations that were below the plant survey’s limit of detection, we augmented
the dataset’s presence/absence observations using a list of verified population records obtained from
the WDNR. Verified records are confirmed by management staff who review observations originating
from several sources, including citizen reports, routine monitoring by WDNR staff, and formal Aquatic
Invasive Species detection surveys. This procedure added presence observations for 92 surveyed lakes
with a 0 for EWM abundance, resulting in a total number of 385 lakes with verified populations out of
a total of 657 surveyed.

2.3. Explanatory Variables

Our goal was to predict EWM occurrence and abundance on lakes statewide. We compiled
information on factors thought to predict EWM occurrence and abundance if they were available for at
least 7000 of the 9285 Wisconsin lakes greater than 1 ha surface area. Predictors represented a suite of
factors related to water quality and lake morphometry as well as regional variables related to dispersal,
land use, geology, and climate (Table S1, Supplementary Materials). We used watersheds delineated
by Menuz et al. to calculate variables expressed at the watershed scale [43]. We extracted climate
variables at lake centroids from WorldClim (worldclim.org). We described watershed geological
characteristics using the whole-rock percentage of calcium oxide (CaO) in near-surface geology and
soil erodibility (K-factor) [44,45]. High surface rock calcium oxide content relates positively to surface
water conductivity, acid neutralizing capacity, and calcium content, whereas highly erodible soils
are linked to increased runoff, sedimentation, and nutrient loading [44,46]. We calculated percent
agriculture (crops and pasture) and percent urban land use in the watershed [47]. As a proxy for
dispersal potential or propagule pressure, we computed the mean distance (km) between a lake’s
centroid and all other Wisconsin lakes with EWM [48]. Factors related to vector pressure included
nearby road density and lake surface area [26,49]. We calculated the density of vehicle roads (m/m2)
in a 500 m buffer around each lake [50] and lake surface area extracted from the 24k hydrography
dataset and maximum depth from the WDNR Register of Waterbodies [51,52]. Spatial analyses were
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conducted using the R packages ‘rgdal’ (v. 1.2–5), ‘raster’ (v. 2.5–8), ‘sp’ (v. 1.2–4), and ‘rgeos’ (v. 0.3–22)
and ArcGIS (v. 10.2.2, Environmental Systems Research Institute, Redlands, CA, USA) [53–56]. Finally,
a comprehensive database of limnological parameters provided water conductivity (µS/cm), alkalinity
(mg CaCO3), pH, and satellite-estimated Secchi depth (m) for Wisconsin lakes [57].

Missing-at-random values comprised less than 3% of all observations. We imputed missing
variables using predictive mean matching and the package ‘mice’ (v. 2.30) over 50 iterations [58].
We log-transformed highly skewed numeric variables and square-root-transformed skewed percentages
(see Table 1). We computed variance inflation factors (VIFs) for each variable in the dataset using the
function ‘vif’ in the package ‘car’ (v. 2.1–4) [59]. We sequentially excluded variables with the largest
inflation factor until no inflation factor exceeded 10.

Table 1. Estimated coefficients for Eurasian watermilfoil (EWM) occurrence model developed using
data from 657 plant survey lakes. Coefficients expressed as odds ratios calculated for centered and
scaled predictors, profile confidence intervals in parentheses. Negative relationships are indicated by
odds ratios less than 1.

Predictor Coefficient

Intercept 0.13 *** (0.07−0.21)
Road density (log (m/ha +1)) 1.93 *** (1.42−2.74)

Surface area (log ha) 1.72 *** (1.33−2.31)
Maximum air temp. (◦C × 10) 1.69 ** (1.23−2.40)
Maximum depth (log m +1) 1.55 ** (1.20−2.06)

Conductivity (log µS/cm) 1.47 (0.72−3.20)
Alkalinity (log mg CaCO3 +1) 1.44 (0.67−3.03)

Soil erodibility (kwfact) 1.17 (0.93−1.49)
Watershed urban (

√
%) 1.07 (0.77−1.53)

pH 1.06 (0.80−1.41)
Secchi depth (log m +1) 0.85 (0.62−1.16)

Watershed agriculture (
√

%) 0.81 (0.58−1.10)
CaO (

√
%) 0.74 ** (0.57−0.92)

Annual temp. range (◦C × 10) 0.64 * (0.42−0.92)
Mean distance source (log m) 0.61 *** (0.45−0.82)

* p < 0.05, ** p < 0.01, *** p < 0.001.

2.4. Predicting Eurasian Watermilfoil Occurrence

We built species distribution models using logistic regression in a generalized linear modelling
framework applied to the EWM occurrence dataset. The procedure employs a maximum likelihood
optimization algorithm to estimate intercept and slope parameters

(
β0 , β j

)
for a set of j predictors (X)

to determine the probability (p) that a given lake (i) has been invaded. The equation linearizes the
response variable via a logit transformation.

yi = logit (pi) = ln
pi

1− pi
= β0 +

n∑
j=1

βi jXi j (1)

The probability is subsequently calculated as follows:

P(EWM presence) = ey/(1 + ey) (2)

Model fitting was performed using Firth’s method of bias reduction in R using the function and
package ‘brglm’ (v. 0.5–9) [60].

We used a 5-fold cross-validation procedure repeated 10 times to evaluate model performance.
We randomly split the data into 5 approximately equal parts (termed a fold) and developed a model five
times, once per each unique combination of N = 4 folds. For each run, we generated predicted values by
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applying the resulting model on the remaining fifth fold [61]. After each cross-validation, we evaluated
model performance. First, we conducted a receiver operating characteristic analysis as follows [62].
The logistic regression equation produces an estimate of the lake-specific probability of EWM presence.
One can use the probability of presence to determine predicted presence by selecting a probability
threshold above which one would assume the species is present. The threshold may be set at any point
along the range in probability from 0 to 1. Starting at 0, we incrementally increased the threshold
value and compared the resulting list of predicted presences to the observed presences, plotting the
percentage of true presences against true absences. A 1:1 relationship between true presences and true
absences would describe a model that is no better than random chance; the area under the 1:1 line is
0.50. One may plot a curve relating true absences and presences (AUC) as the threshold increases from
0 to 1. Values for the area under the curve (AUC) above 0.5 reflect predictive power that is better than
chance, and a value of 1 describes a model with perfect discrimination. We generated these receiver
operating characteristic curves using the function ‘roc’ in package ‘pROC’ (v. 1.9.1) [63]. We also
calculated overall model deviance, the percentage of deviance explained by the model (D2), and Tjur’s
coefficient of discrimination, which can be interpreted much in the same way as an R2 value for linear
regressions [64]. We averaged all model performance statistics across the 10 repeated cross-validations.

Next, we extended the model to predict probability of presence on all lakes larger than 1 ha in
surface area (N = 9285). Using the threshold values generated to evaluate the model, we selected the
value 0.246 to distinguish likely presences. We used this threshold to determine which lakes were
most vulnerable to EWM invasion and mapped occurrence probability using ESRI software (v. 10.2.2,
Environmental Systems Research Institute, Redlands, CA, USA) [55]. Our choice of threshold allowed
no more than 10% of the predicted absences to be false. Emphasizing model specificity over sensitivity
minimized the chance of classifying a waterbody as “safe” when it was, in fact, vulnerable; however,
see [24]. In addition, erring on the side of overpredicting may reduce bias related to survey detection
failures in the occurrence data. Our approach will result in overprediction of EWM occurrence, but
a less cautious prediction may be made by selecting a different threshold for the occurrence data
provided in Table S2, Supplementary Materials.

2.5. Predicting Eurasian Watermilfoil Abundance

Next, we developed a statistical model predicting EWM abundance using the same environmental
predictors on the 657 surveyed lakes. Exploratory univariate plots revealed curvilinear and unimodal
distributions, so we included quadratic transformations for all predictors. Littoral EWM abundance was
highly heteroskedastic, overdispersed, and right-skewed; accordingly, we selected the beta distribution
for the model, which has a flexible shape controlled by mean (µ) and precision (ϕ) parameters [65,66].
The model contains two submodels, i.e., one for the mean response and one for dispersion. We used
extended beta regression models with bias correction to estimate mean and precision parameters as a
function of predictors, thus modelling mean response, variable dispersion, and skewness [67]. Here,
for any fixed µ, greater ϕ relates to decreased variability in the response variable [68]. The expected
value and variance of the response variable y is determined by the following:

E(y) = µ (3)

var(y) =
µ(1− µ)

1 + ϕ
(4)

Using a logit transformation for the mean submodel and a log link for dispersion, the models are
specified as follows:

logit(µi) = ln
µi

1− µi
= β0 +

n∑
j=1

βi jXi j (5)
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lnϕi = θ0 +
n∑

j=1

θi jZi j (6)

The set of predictors (Xi, Zi)may vary by submodel but need not be mutually exclusive. We allowed
all predictors to contribute to both submodels. The range of the response variable included 0, so we
transformed it using the Smithson and Verkuilen method cited in Cribari-Neto and Zeileis [69,70].
Bias-corrected model fitting was performed using the function and package ‘betareg’ [69,71].

We then applied a 5-fold cross-validation procedure as described in Section 2.4. After each
cross-validation, we evaluated model performance using several metrics as follows: Pearson’s
correlation coefficient (r) to reflect concordance between observed and predicted values, Spearman’s
rank correlation (%) to test concordance among value ranks, and parameters m and b from a simple
linear regression to further describe the relationship between observed and predicted values. Given
perfect concordance among observed and predicted values, the intercept (b) and slope parameter (m)
would be 0 and 1, indicating no bias and a comparable range of observed values at all points along
the range of predicted values. Lower or higher values for b indicate model under- or overprediction,
while a different m reflects a bias that may differ in magnitude along the range of predictions [72].
We calculated the root mean square error among observed and predicted values. In all cases, model
performance measures were averaged across 10 repeated cross-validations. We used ESRI software
to generate maps of observed and predicted abundance (v. 10.2.2, Environmental Systems Research
Institute, Redlands, CA, USA) [55].

2.6. Defining and Prioritizing Management Targets

We extended the occurrence and abundance models developed on the 657 surveyed lakes to
produce occurrence and abundance predictions for 9825 lakes over 1 ha in size. We then split lakes
into categories of increasing invasion vulnerability by trisecting the ranges for predicted probability
of occurrence and predicted abundance. This resulted in three groups of lakes with low, medium,
and high vulnerability for EWM occurrence defined by occurrence probability thresholds at 0.496
and 0.746. For abundance, low, medium, and high vulnerability thresholds fell at 0.18 and 0.36.
By cross-tabulating the priority categories for both presence and abundance, we constructed a 3-tier
management priority matrix that may help direct work toward the highest-priority prevention and
management targets.

3. Results

3.1. Occurrence Models

Logistic regression models predicting EWM occurrence in surveyed lakes performed well,
with mean cross-validated AUC = 0.82. Variables positively related to occurrence probability included
road density, surface area, maximum air temperature of the warmest month, and lake maximum
depth, while factors that were negatively related included watershed % surface rock calcium oxide
content, annual temperature range, and mean distance from all source populations (Table 1). Mean
cross-validated deviance was 510, Tjur’s coefficient of determination was 0.33, and the amount of
deviance accounted for by the model was 23%.

Using a threshold probability of 0.246 to distinguish likely presences from absences resulted in
a model that was 72.6% accurate in its classifications (Figure 1, Table 2). We selected the threshold
probability to minimize false negatives, resulting in high model specificity. Overall, the true positive
rate (sensitivity) was 0.372, while the true negative rate was 0.97 (specificity). Modeled predictions per
lake are provided in Table S2 to allow alternate classifications.
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Figure 1. Eurasian watermilfoil (EWM) occurrence predictions for N = 657 surveyed lakes. Maps depict
true presences (a), true absences (b), false absences (c), and false presences (d). Binomial response
generalized linear models (GLMs) fit with Firth’s bias reduction method [24].

Table 2. Cross-validated confusion matrix relating observed to predicted EWM occurrence in the
657 surveyed lakes. We set the threshold for classifying the predicted probability as presence at 0.246,
a value that minimizes false absences to less than 10% of all predicted absences.

Observed

Absent Present

Predicted
Absent 100 11
Present 169 377

When the model was extended to all lakes over 1 ha in surface area, it revealed the potential for
EWM to continue to expand in Wisconsin. Eurasian watermilfoil is predicted to occur in 2357 lakes
where it is not currently known (Figure 1d). Vulnerable waterbodies were found statewide, but lakes
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with the greatest vulnerability for occurrence tend to occur in the south-central and southeast regions
of the state.

3.2. Abundance Models

Eurasian watermilfoil abundance models explained a small but statistically significant portion
of the observed variation (log-likelihood = 1856, pseudo R2 = 0.24; Table 3). Mean cross-validated
deviance was −2894, root mean square error was 15.7%, while cross-validated correlation coefficients
among observed and predicted abundance showed a moderate degree of concordance, with r = 0.43 and
% = 0.41. Mean EWM abundance generally increased with conductivity, road density, and maximum
air temperature, while abundance decreased with % lithological CaO and annual temperature range
(Table 3). Quadratic terms indicating curvilinear relationships were important for some predictors.
When all other variables were held at their mean values, abundance generally increased with increasing
conductivity, then decreased at the very high end of the range. For mean distance from source,
abundance first decreased, then increased, and for soil erodibility, abundance dropped at the low and
high ends of the observed range, displaying a peak at intermediate values. All other predictor variables
used in the model were not statistically significant. Significant precision terms were mostly negative,
indicating variables associated with decreased variability in the mean response. As conductivity,
alkalinity, and % watershed agriculture increased, so did the precision in the resulting estimates.
Soil erodibility had a positive linear precision coefficient, while that for mean distance was negative;
however, the degree to which precision changed varied across the measured range (i.e., the relationship
was curvilinear).

Table 3. Coefficients estimated using a beta regression model for abundance data on 657 surveyed
lakes. Coefficients and standard errors for mean (logit link) and precision (log-link) submodels
describe patterns and variability in the EWM abundance response. Negative linear coefficients for the
mean submodel indicate factors that predict lower EWM abundance, negative quadratic coefficients
describe concave-down relationships, and positive quadratic coefficients are concave-up. For a fixed
mean estimate in the precision submodel, a larger precision coefficient indicates lower variance in
the response.

Mean Submodel Precision Submodel
Linear Quadratic Linear Quadratic

Predictors Estimate SE Estimate SE Estimate SE Estimate SE

Intercept −3.71 *** 0.28 2.11 *** 0.31
Conductivity (log µS/cm) 1.27 *** 0.24 −0.52 *** 0.11 −1.74 *** 0.31 0.61 *** 0.14

Road density (log (m/ha +1)) 0.34 * 0.14 −0.06 0.06 −0.24 0.17 0.12 0.07
Alkalinity (log mg CaCO3 +1) 0.31 0.23 −0.01 0.11 −0.73 * 0.30 0.41 ** 0.14
Maximum air temp. (◦C x 10) 0.28 * 0.11 −0.11 0.10 0.00 0.12 0.15 0.11
Mean distance source (log m) 0.22 0.16 0.19 * 0.09 −0.30 0.18 −0.23 * 0.10
Watershed agriculture (

√
%) 0.10 0.13 0.03 0.08 −0.31 * 0.15 0.02 0.09

Watershed urban (
√

%) 0.10 0.14 0.02 0.04 −0.23 0.16 0.00 0.04
Maximum depth (log m +1) 0.07 0.11 −0.10 0.06 0.09 0.13 0.11 0.07

Soil erodibility (kwfact) 0.04 0.08 −0.23 ** 0.09 −0.03 0.09 0.37 *** 0.10
Surface area (log ha) 0.02 0.19 0.02 0.05 0.09 0.22 −0.02 0.06

Secchi depth (log m +1) −0.08 0.10 −0.09 0.06 0.00 0.11 0.03 0.06
pH −0.11 0.11 0.01 0.05 0.27 0.15 −0.06 0.06

CaO (
√

%) −0.23 * 0.10 0.06 0.05 0.22 0.12 −0.06 0.05
Annual temp. range (◦C x 10) −0.54 * 0.21 −0.05 0.07 0.42 0.23 0.05 0.07

Log-likelihood 1856
Df 58

Pseudo R2 0.24

* p < 0.05, ** p < 0.01, *** p < 0.001.
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Observed and predicted EWM abundances were highly correlated (r = 0.51, % = 0.52), although
cross-validated performance indicated uncertainty in modelled predictions. With respect to observed
abundance, predictions were relatively unbiased (b = −0.004) and reasonably consistent (m = 0.99).
In the surveyed lakes, EWM abundance ranged from almost 0 to 1, with low abundances consistently
observed in northern Wisconsin (Figure 2a). Predicted abundance mirrors that of observed abundance
but tends to underpredict when EWM abundance is high (Figure 2b). Modelled predictions never
exceeded an abundance of 0.46, but 33 out of the 657 lakes with EWM populations had observed
abundance values ranging from 0.46 to 0.96.
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3.3. Statewide Predictions

After developing the occurrence and abundance models on the N = 657 surveyed lakes, we extended
model prediction to 9825 Wisconsin lakes over 1 ha in surface area (Figure 3). There was again a strong
clustering of lakes at risk for abundant EWM populations in the southeast corner of the state, while
northern lakes were generally less vulnerable to invasion, establishment, and abundant populations.
Because occurrence is generally easier to predict on a large scale than abundance, we examined
the relationship between predicted probability of occurrence and abundance, finding that predicted
occurrence probability was positively related to predicted abundance (F = 0.00015, p < 0.001, Radj = 0.62),
but that the relationship weakened when predicted occurrence probability was used to predict observed
abundance (F = 99.07, p < 0.001, Radj = 0.13).
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Figure 3. Occurrence and abundance models developed on N = 657 and extended to 9825 lakes over
1 ha in surface area. Eurasian watermilfoil occurrence predictions (a) generated using a bias-reduced
GLM. The probability threshold distinguishing likely presences from absences was set at 0.246 to
minimize the chance of false absences. Eurasian watermilfoil abundance predictions (b) generated
using a beta regression model.

3.4. Prioritizing Management

We combined statewide predicted occurrence and abundance estimates to describe overall
lake-specific vulnerability related to EWM’s ability to arrive, survive, and thrive. We examined
occurrence and abundance predictions for the 2357 uninvaded lakes where the occurrence model
predicted EWM was likely to occur and assigned lakes to one of three tiers of increasing management
priority (Table 4, Figure 4). Tier 3 comprises the lowest-priority lakes, including waterbodies with a
relatively low occurrence risk and which are also unlikely to support abundant populations. Over 78%
of lakes likely to be invaded fall into Tier 3. Of slightly higher prevention and management priority are
Tier 2 lakes with a moderate risk of occurrence and abundance, a high risk of abundance balanced
by a low risk of occurrence, or a high risk of occurrence balanced by a low risk of abundance. Tier 2
comprises 13% of lakes likely to be invaded. The most vulnerable lakes make up Tier 1; only 9% of
lakes likely to be invaded fall into this category. In these lakes, EWM is both likely to be introduced
and grow to high abundance. Tier 1 lakes occur mostly in the southeast region of the state, with
vulnerability decreasing as one moves in a northwesterly direction. It is our hope that this framework
along with the waterbody list presented in Table S2 can be used to inform prevention and management
actions to support the efficient use of limited prevention and control resources.
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Table 4. Three-tiered management priority matrix for uninvaded lakes that are vulnerable to EWM
invasion (N = 2357 lakes where probability of occurrence is above the threshold of 0.246). Tier 1
lakes are most likely to have EWM and support abundant populations; they are assigned the top
management priority. Tier 2 lakes have moderate risk for occurrence and abundance or a high risk
for either occurrence or abundance. Tier 3 lakes comprise the lowest-priority group, i.e., they are
still vulnerable to invasion but have a lower probability of occurrence and are less likely to support
abundant populations.

Abundance

High
(0.36–1)

Med.
(0.18–0.36)

Low
(0–0.18)

Presence

High (0.75–1) 28 188 227
Med. (0.50–0.75) 1 70 644
Low (0.25–0.50) 0 28 1171
Prevention and
Control Priority Tier 1 Tier 2 Tier 3
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Figure 4. Management priority tiers based on modelled risk of EWM occurrence and abundance
following the prioritization matrix in Table 4. Lakes shown are those not known to contain EWM
currently, but where occurrence models predicted it is likely to occur. Tier 1 (orange) lakes are the most
vulnerable. They are likely to support EWM at high abundance and have top priority for prevention
and management. Tier 2 lakes include those with moderate risk for EWM invasion and abundance. Tier
3 lakes are less likely to have EWM populations and are also unlikely to support abundant populations.

4. Discussion

Eurasian watermilfoil has been present in Wisconsin for at least 60 years and there are still many
lakes that are vulnerable to invasion [73]. However, very few vulnerable lakes are likely to support
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abundant populations. While some predictors of occurrence and abundance were the same, factors
related to environmental suitability, such as conductivity and soil erodibility, were uniquely predictive
of abundance, whereas factors related to visitation and recreational value, such as surface area and
maximum depth, emerged as unique predictors of occurrence [24,49,74]. Overall, the most vulnerable
populations were found in the south and southeast regions of the state, with vulnerability decreasing
northward. Lakes with a high likelihood of occurrence were not necessarily predicted to occur at
high abundance, and some lakes predicted to attain high abundance did not have a high likelihood of
occurrence. Our study highlights the importance of not conflating the likelihood of occurrence and
abundance, which are different aspects of invasive species’ success and influenced by different factors.

4.1. Occurrence Models

Models were developed to maximize predictive power rather than test ecological relationships,
but several interesting relationships indicated by model coefficients warrant discussion. Factors
associated with species transport and arrival were important predictors of EWM occurrence. Higher
occurrence probability was predicted for larger and deeper lakes with more nearby roads. Larger
lakes generally attract more traffic, resulting in higher propagule pressure [49]. In addition, higher
spatial heterogeneity in large lakes may reduce the number of stochastic extinction events and enhance
population persistence [75]. In addition, roads make lakes more accessible to humans, who are
implicated as an important vector of invasive species transport [76]. Finally, invaded lakes had
a smaller average distance to other established EWM populations. Dispersal probability declines
with distance, such that distance from established populations is often helpful in predicting invasive
species occurrence [16,77]. Distance from established populations in the occurrence model may
capture constraints related to dispersal, but it may also reflect spatially auto-correlated environmental
conditions that are difficult to disentangle [48].

After an invasive species arrives at a location, its survival is in part determined by local
environmental conditions. Early work to model the distribution for EWM found environmental factors
to be more important than those related to human activity, while a later study identified the additional
importance of human activity and dispersal [23,24]. New drivers revealed by this study further add
to our understanding of what controls EWM occurrence and abundance; for example, calcium oxide
surface rock content predicted low occurrence probability. This variable exhibited a strong spatial
pattern associated with the presence of a large dolomite deposit in eastern Wisconsin. Marl lakes
occur in abundance in this region, and they have unique biogeochemical qualities. Calcium carbonate
in these high-alkalinity, high-pH lakes is plentiful, but rapidly co-precipitates with phosphorus and
dissolved organic material. The low concentrations of free CO2, phosphorus, iron, and manganese in
the water of marl lakes can limit macrophyte growth [78]. Maximum air temperature was positively
associated with EWM occurrence, whereas annual temperature range was negatively related. Eurasian
watermilfoil can grow in a wide range of temperatures with populations extending up to 68.8◦N
latitude [79]. Temperature is unlikely to be a limiting factor for this species in the spatial extent
considered by this study. In addition, these climate factors may be co-linear with a set of uncaptured
variables related to environmental conditions or invasion history.

Other environmental factors such as conductivity, alkalinity, and water clarity were not significant
predictors of EWM occurrence. This may be due to the species’ broad environmental tolerances and
the fact that environmental variables were mostly within published tolerance ranges [28]. That said,
dissolved inorganic carbon is an important nutrient source for the species; alkaline lakes are generally
considered more suitable. In our dataset, EWM never occurred when conductivity was below 16 µS/cm
or when alkalinity was below 4 mg CaCO3/L. Around 6% of lakes statewide had conductivity below
16µS/cm and 7.5% had alkalinity below 4 mg CaCO3/L. Additional work is necessary to determine
whether this threshold is biologically relevant for EWM or an artifact of the distribution of values
within our sample.



Diversity 2020, 12, 394 13 of 19

Species occurrence models typically assume a population is at equilibrium, but this assumption
is violated in the case of a range-expanding species like EWM. The inclusion of true absence data
along with spatial variables related to dispersal allows us to reduce the bias that would otherwise be
present [16]. Still, it is likely that our training set includes occurrences that have not been detected,
leading to some degree of error in our predictions. While the extrapolated statewide predictions we
present can be useful in planning prevention and management activities, it is important to treat them
as indicators of a likely but uncertain future state.

4.2. Abundance Models

Once probability of introduction and survival is known, the remaining question is one of impact:
if the species is introduced and survives, is it also likely to cause problems? While impact is arguably
the most important filter to consider, it is often the most difficult to predict [20]. Eurasian watermilfoil
has been associated with several effects on native flora, macroinvertebrates, habitat, and water
quality [35,80–83]. Eurasian watermilfoil has also been associated with recreational impairment and
decreased lake property value [37,84,85]. That said, the magnitude of its socioeconomic and ecological
effects are most likely directly related to abundance [19].

In contrast to the EWM occurrence model, several local environmental variables were uniquely
predictive of abundance (Table 3). Conductivity was positively associated with M. spicatum abundance.
Centered and standardized predictors allow model coefficients to be interpreted as effect sizes,
and conductivity had one of the largest effects observed. The influence of conductivity is strong; it is
often considered a “master factor” driving landscape-scale species distributions [74]. In particular,
the strong effect makes sense for EWM, which can use bicarbonate as a source of carbon dioxide, thus
attaining a competitive advantage in high-conductivity and high-alkalinity lakes [86].

Soil erodibility displayed a concave-down curvilinear relationship such that lakes in watersheds
with moderate soil erodibility supported more abundant populations. EWM is tolerant of nutrient
enrichment and prefers moderately enriched lakes [28]. Phosphorus in surface water is often derived
from rock and soils and is generally higher when watersheds are comprised of highly erodible soil [87].
Erodible soil is also often favored for agriculture, where exogenous additions of fertilizer further
enrich surface waters [88]. As nutrient content in water increases, so does primary productivity;
abundant plant populations are often found in enriched waters. However, beyond a certain level of
enrichment, filamentous and planktonic algae begin to dominate, resulting in water with low light
transmission. Macrophytes then decrease in abundance, unable to survive in these turbid, highly
enriched waters [89,90].

Temperature, calcium oxide surface rock content, and distance from established populations were
significant predictors of both occurrence and abundance. Higher air temperature and lower annual
temperature range were associated with higher abundance. Eurasian watermilfoil has a relatively
high optimum temperature for photosynthesis, and warmer temperatures likely enhance productivity
and expansion [91]. Surprisingly, as distance from invaded systems increased, so did abundance.
This may be explained by a relationship between distance from established populations and time since
introduction—reflecting the “boom” typically exhibited by EWM populations preceding a decline that
often occurs around 10–15 years following invasion [31,92,93].

4.3. Management Prioritization: Uniting Occurrence and Abundance

Many lakes are vulnerable to EWM introduction, but of the 2357 lakes in which EWM is likely
to occur, only 245 have the highest priority for prevention and management given their combined
risk of occurrence and abundance. Moreover, of the 245 Tier 1 lakes singled out for action, only 29
(12%) are in the highest abundance risk category. This makes sense, given that we know species
abundance distributions for non-native and native species are similar—they are “commonly rare and
rarely common” [94]. This also aligns with our understanding of EWM abundance distributions—of
388 surveyed lakes with EWM populations, only 50 (13%) are in the highest abundance category
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(>0.36). In light of our predictions, we recommend enhancing monitoring and prevention programs on
the 29 highest-priority lakes to help offset large future costs and improve management efficiency [34].
The remaining Tier 1 lakes that are vulnerable to EWM introduction but which have a lower risk for
abundant populations may present opportunities for public engagement through community-based
science and prevention.

A key implication of our study is that even though EWM invaded Wisconsin decades ago, there
remain many uninvaded lakes that are predicted to be suitable for establishment, but significantly
fewer lakes where the species is expected to reach high abundance. Given this finding, these models
may be an important tool for prioritizing resources. Considering that the species has been present
and spreading for decades, one might expect EWM to be largely saturated on the landscape, having
already established itself in most suitable lakes. The lesson here applies to other invasive species—just
because an invader has been long present in a region does not mean that it has established itself in all
suitable habitat. There is value in efforts to prevent or slow further spread, even for long-established
non-native species.

Management of EWM can be costly. Placing equal priority on all lakes fails to take advantage
of the fact that, for most lakes, EWM abundance is low. Yet managers are justifiably risk-averse,
and proactive management to keep populations small in case the population can attain high abundance
is understandable. The approach we present here, to combine occurrence and abundance predictions,
allows researchers and lake managers to empirically determine a management strategy appropriate
for a recent introduction based on evidence; a wait-and-see approach may be appropriate when the
likelihood of achieving abundant populations is low, while a more aggressive or proactive approach
would make sense when the predicted abundance is high. Better justification for planning a proactive
versus reactive strategy will hopefully result in more efficient allocation of limited management funding.

Understanding multiple levels of the invasion process helps generate realistic predictions of
system-specific risk [11,95]. Few efforts to date have produced risk assessments that integrate occurrence
and abundance, but see [19]. We could improve on this assessment of vulnerability with a more
nuanced understanding of species’ impacts across systems. We selected risk thresholds to determine
management priority by simply trisecting the observed range in predicted occurrence and abundance,
assuming adverse effects have a simple positive linear relationship to abundance. An improvement
to this work would be to select prioritization thresholds in consideration of the actual shape of the
impact–abundance relationship(s) [19,21,22].

A final caveat in using these predictions to direct management effort is the following: the EWM
occurrence model explained 32% of observed variation and correctly classified 75.6% of surveyed lakes.
The abundance model explained 25% of the observed variation. At a statewide scale, occurrence and
abundance predictions allow strategic use of limited resources despite the uncertainty in the model.
However, when evaluated at the individual lake scale, error in the model should be recognized to
appropriately characterize risk. The most conservative option for a less vulnerable Tier 3 lake with
energetic and willing volunteers may still be to support active prevention.

In conclusion, understanding lake-specific vulnerability in light of predicted occurrence and
abundance is a promising approach to effective management of AIS across a landscape. Prevention and
control funding and volunteer effort are precious resources that should be directed to the most vulnerable
waterbodies. Smart prevention and prudent control guided by a clear prioritization framework will
save money, minimize non-target effects, and hopefully result in better management outcomes.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-2818/12/10/394/s1,
Table S1 summarizes the variables used to predict EWM occurrence and abundance. Table S2 displays observations
and modelled predictions for EWM occurrence and abundance for all 9287 study lakes. Also presented are the
final management priority tier assigned by the prioritization framework and the relative lake-specific risk for
EWM occurrence and high abundance. Lakes are identified by the WDNR waterbody identification code, lake
name, and county.
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