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Abstract: Genetic studies on model plants and crops in the last few decades have uncovered
numerous genes that play vital roles in plant tolerance to adverse environments. These genes could
be used as targets for genetic engineering to improve plant tolerance to abiotic and biotic stresses.
Recent advances in CRISPR-based genome editing have accelerated modern plant breeding and
wild-species domestication. However, the stress regulators in many crops and horticultural cultivars
and their wild species remain largely unexplored. Thus, transferring the accumulated knowledge
of these molecular regulators from model plants to a wider range of other species is critical for
modern plant breeding. Phylogenetic analysis is one of the powerful strategies for studying the
functional conservation and diversity of homologous gene families among different species with
complete genome sequences available. In addition, many transcriptome datasets of plants under
stress conditions have been publicly released, providing a useful resource for addressing the stress
response of given gene families. This Special Issue aims to illustrate the phylogenetics of molecular
regulators with potential in contributing to plant stress tolerance and their stress response diversity
in multiple non-model plants.
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Plants encounter numerous environmental stresses throughout their lives because of their immobile
nature. Unfavorable environments include abiotic stresses such as aberrant temperatures (cold or
heat), drought and hypertonic stress, and biotic ones such as infections by viruses, bacteria and
fungi. Although plants have evolved a variety of strategies to adapt to their growth environments,
these stresses have led to massive yield losses, and global climate change is expected to limit
crop production further. Thus, breeding stress-resistant crops to maintain or increase yields under
challenging environments is essential for feeding a growing population. To date, numerous genes that
contribute to plant stress tolerance and defense have been revealed in model plants and a few crops
through genetic studies. The discovery of these molecular regulators opens a window for molecular
breeding to improve plant resilience to stresses. As the most powerful genome editing tool, the CRISPR
(clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated protein) system
has accelerated modern plant breeding and wild-species domestication [1,2]. However, the majority of
these important gene families have not yet been investigated in a large range of crops and horticultural
plants including vegetables, flowers and trees.

Phylogenetic analysis is a powerful method for translating the accumulated knowledge of
molecular stress regulators in model plants to other plant species. Additionally, with the advances in
high-throughput sequencing, the genome assembly of many plants has been completed, and subsequent
transcriptome profiles under different environmental stresses are publicly available, providing an
important data resource for illustrating phylogenetic trees and exploring the expression patterns
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of given gene families. These include transcriptional regulators such as transcription factors that
regulate the expression of hundreds and thousands of downstream genes, playing a critical role in
plant responses to stress signals. More specifically, heat shock factors (HSFs) are well known to
promote plant tolerance to extremely high temperatures [3], while WRKY transcription factors function
in diverse stress responses including abiotic and plant immunity responses [4,5]. Correspondingly,
the phylogenetic analysis of HSFs and their expression profiling under heat stress have been performed
in tomatoes [6], and the phylogenetic tree of the WRKY gene family and the responses to multiple
stresses have also been demonstrated in non-model plants such as the wild potato [4,7]. Besides,
some transcription factors are critical in plant development, but the same family members are also
responsive to specific stresses, indicating a key role in balancing plant development and stress responses.
For example, previous studies of TCP transcription factors were more focused on their function in
controlling plant development [8], but expression pattern analysis showed that the transcription of TCP
genes was induced or repressed by drought and cold in cassava [9]. Given the progresses achieved,
there is still much left to learn about the functional conservation and genetic diversity of transcription
factors among different plant species.

In addition to transcriptional regulators, many post-transcriptional regulators contribute to plant
stress tolerance as well. For instance, the post-transcriptional gene silence (PTGS) system plays a
vital role in plant defenses against viral infections [10], and many small RNAs function in plant stress
tolerance through PTGS [11]. Therefore, the key components of small RNA biogenesis pathways provide
potential targets for genome editing. Regarding this, the essential small RNA biogenesis genes Dicer-like
proteins (DCLs), Argonautes (AGOs) and RNA-dependent RNA polymerases (RDRs) were identified
genome-wide in three legume crops, and their roles in biotic stress responses were uncovered [12].
Recent findings have evidenced that several RNA modifications, such as N6-methyladenosine (m6A)
and 5-methylcytosine (m5C), can influence plant responses to salt, high temperatures and virus
infections [13–15]. Thus, the key components and complexes known as writers, readers and erasers
of these RNA modifications are also potential editing loci for improving plant yields for confronting
environmental stresses. Given their importance, a phylogenetic tree of 278 YTH domain-containing
proteins (m6A readers) from 22 plant species was constructed [16], while the expression pattern of these
genes under stressful conditions in these species remains unclear. Overall, more post-transcriptional
regulators need to be characterized genome-wide in non-model plants and to be studied extensively
for their response to stresses.

The molecular regulators contributing to stress tolerance also include post-translational regulators
such as autophagy pathway players [17], metabolic enzymes [18] and genes involved in phytohormone
signaling pathways. For instance, as a plant stress hormone, abscisic acid (ABA), plays a critical role in
plant responses to multiple abiotic stresses [19]. Therefore, the genome-wide characterization of the
ABA receptor PYL gene families and their stress responses in rice provides useful information for the
further application of PYL gene editing in crops [20]. Furthermore, this study also identified single
amino acid polymorphisms of these OsPYLs across different rice genotypes [20], which could be used
as base editing targets. Therefore, detailed information of genetic variations within the same species
and among different species will provide potential precise editing loci for breeding stress-resistant
crops. Still, there are many stress regulators left to be uncovered in depth through phylogenetic studies
in non-model plant species.

Taken together, this Special Issue aims to collect a vast set of work by providing insights into
the phylogenetics and stress-response diversities of molecular regulators, which could be potentially
applied in genetic engineering to improve plant stress tolerance.
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