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Abstract: Nest survival is most limited by nest predation, which often is increased by anthropogenic
causes including habitat fragmentation, mesopredator release and predator subsidies. In mallards
and other upland-nesting duck species in the North American prairies, the rate of nest survival is the
vital rate most influential to population dynamics, with 15%–20% survival required for maintenance
of stable populations. Predator removal during the nesting season has increased duck nest survival
on township-sized (9324 ha) areas of agricultural ecosystems in eastern locations of the prairie pothole
region (PPR). However, predator removal has not been evaluated in western parkland habitats of the
PPR where three-dimensional structure of vegetation is considerably greater. During 2015–2017, we
evaluated nest survival on control and predator-removal plots at two study areas in the parklands of
central Alberta, Canada. In the second year of the study, we transposed predator removal to control
for habitat effects. Estimates of 34-day nest survival did not significantly differ between trapped
(x = 20.9%, 95% CI = 13.2%–33.7%) and control (x = 17.8%, 95% CI = 10.5%–30.0%) plots in any year.
We do not recommend predator removal be continued in Alberta parklands due to its ineffectiveness
at improving duck nest survival at the local scale.

Keywords: Anas spp.; nest survival; nest predation; predator removal; prairie pothole region;
compensatory predation

1. Introduction

In mallards (Anas platyrhynchos) and presumably other duck species, nest survival is the most
important vital rate influencing population dynamics in the Prairie Pothole Region (PPR) [1].
Maintenance of stable dabbling duck (Anas spp.) populations requires ~15%–20% annual nest
survival [2–4]; success herein defined as the hatching of at least one duckling. Low nesting success is
usually attributed to degradation of breeding habitat, including the loss of nesting cover and wetlands
resulting from agricultural, industrial and residential land use [5,6]. Anthropogenic habitat alteration
also has led to increased nest predation [4,5,7].

Nest predation is the strongest limiting factor of nest survival in ducks [8], and indeed most bird
species [9]. Mesopredator release, resulting from the loss of regulatory influence by apex predators, can
contribute to enhanced richness and abundance of mid-trophic level predators [10,11]. Anthropogenic
resource subsidies, provided unintentionally as food or shelter, is another phenomenon that can benefit
generalist predators in highly altered habitats [12,13] like the PPR. Loss of cover, concentration of nests
in limited habitat, ease of travel by predators and loss of landscape heterogeneity can enhance foraging
efficiency of avian and mammalian predators [7,14–16]. A rich guild of nest predators, arising from
anthropogenic changes to the environment, will have a diversity of foraging behaviours that increases
the risk to all nests regardless of nest distribution strategy [17,18].

Where substantial numbers of ducks breed in areas of suitable habitats, but nest survival remains
suppressed due to high nest predation rates, intensive predator management can be an effective
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tool to mitigate nest losses [19]. The goals and policies outlined in the North American Waterfowl
Management Plan [20] aim to improve waterfowl populations across the continent using strategies
based on habitat conservation. However, for some areas, habitat-based strategies alone have proven
inadequate in meeting local management goals; in such cases, short-term intensive management
might be warranted and can be beneficial [6]. Lethal trapping of predators is flexible in its application
in regards to space and time [19] and has been shown to increase nest survival for waterfowl and
other avian species [21,22]. For example, predator removal resulted in increased dabbling duck nest
survival in prairie ecosystems of Saskatchewan [23] and North Dakota [19,24–26], even when done at
the relatively small scale of 259 ha [27]. In the Saskatchewan parklands, however, predator removal
was associated with higher dabbling duck nest survival in only one of three monitored years [28].
Prevalence of results indicating successful implementation of predator removal may reflect publication
bias towards significant results, otherwise known as the “file drawer effect” [29]. Most evaluation
of predator removal to improve duck nest survival in North America has been conducted in prairie
ecosystems dominated by agriculture with fewer data from parkland habitats.

Predator removal is done at substantial economic, social and potential ecological cost, and often
must be continued perpetually to maintain results [22]. Documenting its effects is essential prior
to implementation, to avoid unintended consequences and because predator removal can result in
economic trade-offs with other initiatives such as habitat acquisition [6,30]. Potential exists for predator
removal to be ineffective due to compensatory predation [31–33], immigration [34] or increased
reproductive output by predators in response to higher mortality [35,36]. Other unintended but
potential consequences of perturbing complex ecosystems with predator removal include competitive
release of alternative prey [37] or trade-offs within vital rates of the species meant to benefit. For example,
nesting exclosures were found to be successful in increasing hatching rates of snowy plovers (Charadrius
alexandrinus), but were associated with increased adult mortality, the vital rate to which snowy plover
populations are most sensitive [38].

Nest survival may account for nearly half (43%) of the variation in annual population growth rates
of midcontinent mallards in the PPR, according to sensitivity analyses by Hoekman et al. [1]. However,
breeding hen and duckling survival also were important vital rates accounting for 19% and 14% of
variation, respectively [1]. Outside the PPR, population growth of mallards in the Great Lakes region
of the United States was most affected by non-breeding hen survival (36%), duckling survival (32%)
and nest success (16%; [39]). Presumably, nest success, duckling and breeding hen survival also are
important parameters for other species of upland-nesting ducks in the PPR, and possible correlation
among them will further enhance their impact on population trajectories [40]. Therefore, it is important
to assess the influence of a management action on multiple population parameters [26], especially
due to the potential for opposing effects on multiple vital rates [38,41]. Apparent competition is an
example of a mechanism that may be unintentionally induced by predator removal with negative
consequences for adult hen or duckling survival. Apparent competition arises when enhanced predator
abundance results from an increase in a primary prey species and predation on other, secondary prey
species increases collaterally [42–44]. McCarter [45] found slightly higher raptor abundance on plots
where mammalian predators were reduced, because raptors were possibly attracted to these plots
by increased abundance of shared prey (though McCarter [45] suggests predominance of bottom-up
trophic forces). McCarter [45] illustrates an example of how a predator community could shift in
favour of principal hen and duckling predators with the removal of primarily egg predators.

Duck nest success in the Canadian PPR is generally below that seen in the American portion, due
largely to differences in habitat management [46–48]. At the northern extent of the PPR, the parklands
of Alberta contain important nesting habitats and predator removal has not been thoroughly evaluated
as a method for improving nest success. Most studies of predator removal to enhance dabbling duck
nest survival have occurred in prairie ecosystems, and the most recent evaluation in parkland habitats
did not find supporting evidence warranting predator removal [28]. Though both ecosystems are
dominated by agriculture, three-dimensional vegetation structure distinguishes the parklands from
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the prairies and the increased structural complexity provides more opportunity for compensatory
predation. Socio-economic constraints in Alberta further reduce the probability of effectiveness
of predator removal. Legal constraints necessitate partial predator removal, because species of
conservation concern including long-tailed weasel (Mustela frenata) and American badger (herein
referred to as badger; Taxidea taxus) could not be removed following provincial permit stipulations.
Logistic constraints in the form of fragmentation of land tenure restrict predator removal to small,
isolated land plots where access can be obtained and retained. Due to increased habitat complexity and
different socio-economic forces, findings from prairie-based studies in American jurisdictions cannot
be generalized to Canadian parkland habitats. Investigation of predator removal for enhanced duck
nest survival in the aspen parklands is needed prior to its implementation as a management practice.

Our primary objective was to evaluate the null hypothesis that predator removal would not
improve nest survival of upland-nesting ducks in central Alberta parklands as it has in U.S. prairie
habitats. Due to enhanced potential for compensatory predation resulting from abundance of
three-dimensional vegetation and constraints imposed by socio-economic forces, we predicted that
nest survival would not differ significantly between predator removal and control plots. In conducting
our experiment, we establish baseline nest survival estimates for our study areas in the absence of
predator removal. Additionally, we tested the null hypothesis that predation of nesting hens also
would not be affected by predator removal.

2. Materials and Methods

2.1. Study Area and Design

In June 2014, Delta Waterfowl Foundation biologists conducted ground and fixed-wing reconnaissance
surveys of aspen parkland habitats in central Alberta. High densities of both breeding ducks (>25
pairs/km2) and small (<2 ha) semi-permanent and permanent wetlands were confirmed near the
communities of Bashaw and Viking (unpublished data, [49]). Near each community, 30 quarter
sections (~64.7 ha parcels) were selected randomly with some constraints to serve as predator removal
(“trapped;” n = 20) and control (n = 10) plots. Quarter sections with more than 65% tree cover, complete
absence of water or unsuitable for trapping due to an occupied dwelling were excluded. Trapped and
control quarter sections were at least 3 km apart to maintain independence, a distance based on the
12-km2 home range of a resident coyote (Canis latrans) [50], the farthest-ranging mammalian predator
on the study areas. Within both sets of 20 predator removal plots, half were randomly chosen for
nest searching (the remaining 10 were trapped without nest monitoring) and all control plots were
monitored. Twenty-seven quarter sections were replaced during the study at the request of landowners.
Throughout the study, predator removal was annually transposed on quarter sections provided access
was retained; for example, a quarter section that was trapped in 2016 became a control plot in 2017
(Figure 1).

Both study areas (Bashaw and Viking) are dominated by agriculture which consists predominantly
of cattle grazing, cereal and oil seed production fragmented by a one-mile by one-mile road network
and interspersed with oil and gas infrastructure. The landscape is characterized by rolling hills, stands
of trembling aspen (Populus tremuloides), lakes and numerous pothole wetlands. Overwhelmingly,
land is privately owned; however, most data were collected on land managed for duck production by
Ducks Unlimited Canada (DUC). Such land was managed for maintenance of nesting cover and any
grazing or haying was delayed until after 15 July, when most nesting activity had ceased [51].



Diversity 2020, 12, 119 4 of 19

Diversity 2020, 12, x FOR PEER REVIEW 4 of 20 

 

  

  

  

Figure 1. Maps of Bashaw and Viking study areas through 2015–2017, where (A) Bashaw 2015; (B) 

Viking 2016; (C) Bashaw 2016; (D) Viking 2017; and (E) Bashaw 2017. Red indicates nest-searched 

areas; black borders indicate predator removal. 

Both study areas (Bashaw and Viking) are dominated by agriculture which consists 

predominantly of cattle grazing, cereal and oil seed production fragmented by a one-mile by one-

mile road network and interspersed with oil and gas infrastructure. The landscape is characterized 

by rolling hills, stands of trembling aspen (Populus tremuloides), lakes and numerous pothole 

wetlands. Overwhelmingly, land is privately owned; however, most data were collected on land 

managed for duck production by Ducks Unlimited Canada (DUC). Such land was managed for 

maintenance of nesting cover and any grazing or haying was delayed until after 15 July, when most 

nesting activity had ceased [51]. 

A B 

C 

E 

D 

Figure 1. Maps of Bashaw and Viking study areas through 2015–2017, where (A) Bashaw 2015;
(B) Viking 2016; (C) Bashaw 2016; (D) Viking 2017; and (E) Bashaw 2017. Red indicates nest-searched
areas; black borders indicate predator removal.

In 2015, nest searching was limited to the Bashaw study area with 45% on privately tenured land
actively grazed or hayed and 55% on land managed for duck production by conservation groups.
Beginning in 2016, work was expanded to the Viking study area. During 2015–2018, 61 quarter sections
were nest searched; most sites were managed as rotational pasture, with the remainder used for hay
production. A total of 32 quarters were monitored for nests under both treatment conditions for at
least one 3-month season each.

Dabbling ducks that were the focus of this research included mallard, northern pintail (A. acuta),
northern shoveler (A. clypeata), blue-winged teal (A. discors), American green-winged teal (A. crecca
carolinensis), gadwall (A. strepera) and American widgeon (A. americana). Nest or hen predators
observed daily by field technicians included American crow (herein referred to as crow; Corvus
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brachythynchos), black-billed magpie (herein referred to as magpie; Pica hudsonia), red-tailed hawk
(Buteo jamaicensis), Swainson’s hawk (B. swainsoni) and northern harrier (Circus cyaneus), while common
ravens (herein referred to as raven; Corvus corax) and great-horned owls (Bubo virginianus) also were
often observed. Other nest or hen predators occurring in our study areas were striped skunks (herein
referred to as skunks; Mephitis mephitis), raccoons (Procyon lotor), coyotes, red foxes (herein referred to
as foxes; Vulpes vulpes), Franklin’s ground squirrels (Poliocitellus franklinii), 13-lined ground squirrels
(Ictidomys tridecemlineatus), badger, long-tailed weasel, short-tailed weasel (Mustela erminea), American
mink (Neovison vison), Northern Goshawk (Accipiter gentilis), California gulls (Larus californicus) and
ring-billed gulls (L. delawarensis). Nest predators notably absent from our study areas include rats
(Rattus spp.) and egg-eating snakes [52,53].

2.2. Field Methods

One professional trapper was hired to remove nest predators in each study area, Bashaw and
Viking, and predator removal took place from 15 March to 15 July of each study year. Crows, ravens
and magpies were shot and targeted with Larsen and ladder traps. Skunks, raccoons, coyotes, foxes
and ground squirrels were targeted with snares, box traps, foothold traps and body-gripping traps.
Trapping was not standardized, and each professional trapper chose placement, density, type of trap
and use of bait based on preference. As per provincial permit guidelines, badgers were not specifically
targeted because they are provincially categorized as Sensitive [54]. Weasels (Mustela spp.) were not
targeted because the long-tailed weasel is provincially listed as May Be at Risk [54]. California gulls
and ring-billed gulls are other nest predators [55] that were excluded from removal efforts.

Upland nest-searching was conducted on each quarter section 2 to 3 times a season between 1
May–15 July, by dragging a 30-m chain between 2 ATVs [56]. Nest searching was limited to upland
areas; forested and riparian areas were not searched. Upon flushing, the hen was identified to species
and the nest was marked by GPS and with a thin metal rod at the nest bowl and a painted wooden
lathe 10-m north. In 2017, lathes were placed randomly at variable directions and distances [57] in an
effort to avoid “trap-lining” by corvids as reported by Picozzi [58], Buler and Hamilton [59] and others.
Upon discovery and during weekly nest visits, we candled eggs to determine incubation stage [60]
and monitored clutch sizes. At detection, visual obstruction was measured with a Robel pole at the
nest bowl from 4 m in 4 cardinal directions [17,61]. Nests were left covered and conspicuously marked
with 2 pieces of crossed vegetation; if the vegetation remained on the subsequent visit it indicated that
the hen had not returned after being disturbed and investigator-induced abandonment was assigned.
We revisited nests every 5–7 days to track incubation, until the nest either hatched or failed due
to predation or other causes. Reconyx HC500TM (Holmen, WI, USA) trail cameras were deployed
opportunistically at a small subsample of 35 nests to identify predators. Cameras were deployed at
both study areas on both predator removal and control plots and only on quarter sections where data
for at least ten nests had been collected. To reduce abandonment risk, cameras were restricted to nests
undergoing incubation [62,63] and limited to one per quarter section at a time to reduce the risk of
search-image formation by predators [63,64].

Nest fates were determined from egg shell condition and other observations at the nest [56].
Nests were deemed either successful or failed, and failed nests were categorized 1 of 5 ways: (1)
destroyed by a predator; (2) abandoned due to a predator; (3) abandoned due to investigator activity;
(4) abandoned for unknown reasons; or (5) destroyed by an investigator. Abandoned nests contained
intact eggs that were cold and no longer developing when characterized as failed. Predator-induced
abandonment required evidence of predator activity in the form of missing eggs, partial egg depredation
or remains of depredated hens. Investigator-induced abandonment was concluded when vegetation
left conspicuously on the nest by investigators remained on the subsequent visit, indicating no return
of the hen post-disturbance. Nests abandoned for unknown reasons were revisited by hens following
the latest visit (ruling out investigator-induced abandonment) and were subsequently abandoned but
showed no evidence of predator activity. Destroyed nests had no intact eggs remaining when failure
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was determined. A nest was deemed successful if evidence indicated that at least one egg hatched.
Nests abandoned during the hatching phase (i.e., all ducklings died while pipping) were categorized
as failed nests. When eggs were damaged by investigators they were removed from the nest bowl to
reduce olfactory cues.

Nest monitoring was approved by University of Alberta’s Animal Care and Use Committee
(AUP00001473) and permitted by Alberta Environment and Parks (Research Permit #57638 & Collection
Licence #57639). Predator removal was implemented by Delta Waterfowl Foundation and permitted
by Canadian Wildlife Service (Permit #15-AB-SC004) and Alberta Environment and Parks (Research
Permit #57626 and Collection Licence #57624).

2.3. Nest-Survival Modelling

Nests that were successful, or failed through destruction or abandonment due to predators,
were included in nest survival analyses; nests that failed due to investigator activity or unknown
causes were excluded. Nests that were monitored by a trail camera also were excluded from analyses
because the presence of a camera can positively bias nest survival by reducing predation by neophobic
predators [63]. Alternatively, cameras can negatively bias nest survival if they are used as visual cues
by predators [57–59].

The RMark [65] nest survival package [66] was used to evaluate competing models describing daily
survival rates (DSR) of nests as a function of individual-, group- and time-specific covariates [67,68].
This generalized linear modelling approach is equivalent to a known fate model with staggered entry,
and uses the logit link to relate DSR and selected covariates [68,69]. Thus, DSR was estimated by back
transformation as:

DSR =
1

1 + exp
{
−

[
β̂0 + β̂1x1 + β̂2x2 + . . .+ β̂nxn

]} (1)

where β̂0 is the intercept and β̂i is the coefficient of covariate xi for n covariates [67]. We made five
assumptions in using this nest-survival model: (1) nests were accurately aged; (2) nest fates were
attributed correctly; (3) discovery and monitoring of nests did not bias survival; (4) nest fates were
independent of each other; and (5) daily survival rates were homogeneous [67,68]. All analyses were
carried out in R [70] using the RMark package [65].

Nest survival analysis was restricted to nests from quarter sections that were studied under
both control and predator removal treatments (n = 32). Spatial and habitat differences were largely
accounted for by transposing treatment, so model covariates focused on temporal variation in nest
survival: initiation date, age found, seasonal trends and year. Study area (Bashaw or Viking) and
treatment (trapped/control) also were included as covariates. Year was treated as a fixed effect because
we were interested in the transposition of trapping, represented by the combination of year and
treatment. A linear time trend was modelled to represent increasing [19] or decreasing [46] survival
through the season. A quadratic time trend represented a peak of nest predation corresponding with a
peak for nest density at mid-season [51], or conversely, increased survival with nest density resulting
from predator swamping [25]. In models including factorial covariates, the intercept was removed to
avoid over-parameterization [65]. We used Pearson’s r coefficient to test for collinearity and did not
include covariates in the same model where |r| > 0.6 [71].

Akaike information criterion corrected for small sample sizes (AICc) was used to select the
most parsimonious model [72] from which maximum likelihood estimates of DSRs were derived.
On average, nests in our study (species pooled) took 34 days to hatch, so DSRs were raised to the
power of 34 to estimate nest survival. To evaluate differences between predator removal and control
plots, final nest survival estimates were compared within 2015 and across 2016–2017 using a series of
z-tests and application of a Bonferroni correction [73].
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2.4. Nesting Hen Mortality

We compared the number of nesting hens found depredated on transposed Bashaw control
and trapped plots using Cochran–Mantel–Haenszel (CMH) statistics. We excluded nests from the
Viking study area in hen mortality evaluation, because low trapping effort in 2016 (Table S1) and
potential observer-enhanced nest predation in 2017 [57] introduced biases. We analysed all nests from
transposed quarter sections in the Bashaw study area (n = 467) and stratified trapped and control plots
by year. The Breslow-Day test for homogeneity was used to determine whether the likelihood of hen
depredation in trapped versus control plots varied significantly across years [74]. A two-tailed CMH
test employing Yates’ continuity correction [75] was used to evaluate common odds ratios and 95%
confidence intervals for hen depredation in trapped versus control plots after adjusting for year [76].
The odds ratio produced reflected odds of breeding hen mortality in the predator-removal conditions
observed in our study, which we converted to probability of mortality following Equation (2):

P =
o

o + 1
(2)

where p is probability and o is odds. Analyses were carried out in R [70] using the vcd and
DescTools packages.

Hoekman et al. [1] conducted sensitivity analyses of a stage-based matrix model describing the
relationship between vital rates and population growth rate (λ) for female midcontinent mallards. We
adjusted breeding hen survival for both stage classes (second year (SY) and after second year (ASY) to
reflect our estimated probability of mortality in predator removal conditions. We retained Hoekman et
al.’s [1] original parameter values for all other vital rates, including nest survival (0.13 for both SY and
ASY) and re-calculated the fecundity and survival transitions constituting the stage-based matrix. We
then calculated stable stage distributions and projected population growth rates using stage-based
matrices representing our lower, upper and mean estimates of breeding hen survival. This was done as
an exercise to demonstrate and contrast population impacts of lowered breeding hen survival and was
not intended to represent accurate population growth estimates for reasons discussed below. Analysis
was done using the popbio package [77] in R [70].

3. Results

Through 2015–2017, a total of 1136 nests were found and monitored; of these 1041 were suitable
for analyses. Nests that were completely destroyed by investigators (n = 25), abandoned due to
investigator activity (n = 38), monitored with a trail camera (n = 35) or found during hatching (n = 1),
were excluded from analyses. Nests that were partially damaged by investigators (n = 48) were
retained, as a chi-square test showed no significant difference in fates (hatch vs. failure) of damaged
and undamaged nests (χ2 = 1.3746, p = 0.241, df = 1, n = 1041). A total of 893 nests occurred on quarter
sections that had treatment transposed at least once. Blue-winged teal nests were the most common
(n = 555); fewer than 30 nests were found for green-winged teal, American widgeon and northern
pintail (Table 1). Mean nesting period for all nests pooled was 34 days.

A large proportion of nests were depredated or abandoned with evidence of predator activity
(60.1%); see Table 1 for nest fates by duck species. Within the Bashaw study area between 2016 and 2017,
the number and proportion of nests hatching and failing were very similar despite the transposition
of predator removal (Figure 2). Private land under active hay and cattle production comprised a
substantial portion (45%) of the 2015 study area, compared to 2016 and 2017 where 97.5% and 100% of
quarter sections were owned by DUC, respectively. DUC delays haying or grazing until 15 July, after
the nesting season, so differences in management regimes affecting nests studied in 2015 eliminates a
direct comparison of nest fates between 2015 and 2016–2017 (Figure 2).
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Table 1. Species composition of fates and total count of nests monitored in Bashaw and Viking study
areas, 2015–2017. Nests abandoned or destroyed due to investigator activity not included. Reason
for nest abandonment was attributed to predator if there was evidence of predator activity, and as
unknown cause otherwise.

Species Destroyed Hatched
Abandoned

Total
Predator Unknown

American green-winged teal 1 4 0 0 5
American widgeon 8 4 1 2 15
Blue-winged teal 275 192 41 47 555

Gadwall 57 49 15 7 128
Mallard 58 30 10 8 106

Northern pintail 1 0 0 0 1
Northern shoveler 94 58 22 7 181

Unidentified 41 4 2 3 50
All species combined 1041
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Figure 2. Fates of duck nests (abandoned, destroyed by predator or hatched) in central Alberta
parklands by study area, year and treatment (n = 1041).

Through 2015–2017, 940 predators were removed. Removals consisted primarily of coyotes
(17.2%), skunks (15.1%), black-billed magpies (20.9%), American crows (22.6%) and common ravens
(21.7%); the latter 3 species herein referred to collectively as corvids. Red fox (0.4%), Franklin’s
ground squirrels (1.2%), raccoon (0.3%), American badger (0.5%) and long-tailed weasel (0.1%) were
removed in negligible numbers between 2015–2017 (Figure 3). See Table S1 for complete summary of
predator removals.

3.1. Nest Cameras

Between 2016–2017, Reconyx HC500TM wildlife cameras were deployed at 35 individual nests
for varying amounts of time. Predators were photographed at 12 nests; near Bashaw these included
corvids, striped skunks and long-tailed weasels, while 13-lined ground squirrels and striped skunks
were detected near Viking (see Table S2 for complete summary). Predators commonly made multiple
visits to a nest over hours or days, and multi-species predation events occurred at 33% of the nests
where predation was photographed. Two nests were abandoned following camera deployment. Over
time, vegetation often obscured the lens, and smaller predators low to the ground would not have
been captured by most cameras.
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Figure 3. Nest predator species removed through 2015–2017 from Bashaw and Viking, Alberta study
areas (n = 940).

3.2. Nest Survival

A total of 830 nests were used to test 13 candidate models characterizing nest survival. The
top-performing model of daily survival rates included year, study area and treatment as fixed-effects
(model weight = 1.00; Table S3). Mean 34-day nest survival in Bashaw control plots in 2015, 2016 and
2017, respectively was: 27.12% (95% CI = 15.24%–47.79%, n = 45); 28.79% (95% CI = 16.62%–49.42%,
n = 39) and 16.71% (95% CI = 11.44%–24.31%, n = 140; Figure 4). Mean nest survival in Bashaw trapped
plots in the same respective years was: 28.71% (95% CI = 17.98%–45.46%, n = 59), 19.52% (95% CI
= 13.04%–29.07%, n = 111) and 9.09% (95% CI = 3.47%–23.18%, n = 35; Figure 4). In Viking control
plots in 2016 and 2017, respectively, mean 34-day nest survival was 15.76% (95% CI = 8.97%–27.46%,
n = 65) and 0.44% (95% CI = 0.17%–1.16%, n = 153; Figure 4). In the same respective years, mean nest
survival in Viking trapped plots was 17.14% (95% CI = 11.11%–25.98%, n = 112) and 30.30% (95% CI =

20.10%–44.81%, n = 71; Figure 4). See Table S4 for corresponding daily survival rates.
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nest survival [2–4] converted to 34-day nest survival shown in grey. Confidence intervals = 95%, n = 830.
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Except for the Viking 2017 control group, all 95% confidence intervals for 34-day nest survival overlap
each other and include the 15%–20% threshold required for maintenance of stable populations [2–4]
(Figure 4). Converted to 34-day nest survival, this threshold is 15.84%–20.94%. A series of five z-tests
using a Bonferroni-corrected α-value of 0.01 revealed a significant difference in mean nest survival
only for the Viking 2016 trap-Viking 2017 control spatial-pairing. For this cohort, nest survival was
significantly lower under control conditions (z = 7.13, p < 0.001, Table 2) due to observers negatively
affecting nest survival in the control group [57]. No other significant differences were found among the
5 pairings of nest survival estimates (Table 2).

Table 2. Statistics generated from five z-tests comparing mean nest survival within 2015 and across
transposed 2016 and 2017 treatments, using a Bonferroni correction of α = 0.01.

Study Area Year-Treatment Pairing z-Score p-Value

Bashaw
2015 control-2015 trapped −0.16 0.88
2016 control-2017 trapped 2.12 0.03
2016 trapped-2017 control 0.56 0.57

Viking 2016 control-2017 trapped −1.92 0.06
2016 trapped-2017 control 7.13 0.00

Exceptionally low nest survival in Viking 2017 control plots appeared to drive model selection,
so we modelled nest survival a second time in the absence of that cohort. With the removal of these
outlier values, model weight was more distributed, and 5 candidate models had ∆AIC values of <2
(Table S5). Models containing treatment as a covariate performed poorly with model weights of <0.02
(Table S5). Of the top 5 performing models, we selected nest survival as a function of nest age at the
time of discovery as the most parsimonious model. Nest age upon discovery was positively skewed,
with median age of 10 days (interquartile range = 6–17). Mean 34-day nest survival for nests found at
10 days of age was 21.12% (95% CI = 17.92%–24.87%, n = 677). Age of nest when found was weakly
associated with higher daily survival rates (Figure 5), with 34-day nest survival estimates ranging from
19.60% (95% CI = 8.60%–43.84%) to 23.55% (95% CI = 9.73%–55.76%) with a mean of 21.66% (95% CI =

21.23%–22.10%).
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3.3. Nesting Hen Mortality

Controlling for year and transposing treatment, the common odds of nesting hen mortality due to
predation were significantly higher in trapped plots (OR = 2.60, 95% CI = 1.03–6.58, n = 467, Table 3)
for the Bashaw study area. The increased odds of hen mortality in trapped plots were similar in all 3
years (Breslow-Day χ2 = 0.7133, p = 0.7, df = 2, n = 467, Table 3) and significantly higher relative to
control plots when year is controlled (Cochran-Mantel-Haenszel χ2 = 3.7413, p = 0.0531, df = 1, n = 467;
Table 3). See Table S6 for a species breakdown of depredated hens.

Table 3. Counts of surviving and depredated nesting hens by treatment and year from transposed
plots near Bashaw, Alberta.

Treatment Hen Killed
Year

2015 2016 2017

Predator Removal
Yes 4 9 5
No 60 115 33

Control
Yes 1 2 6
No 50 40 142

The probability of survival for nesting hens in predator removal plots was 0.50 (95% CI = 0.28–0.71).
Should an entire population experience the rate of breeding hen survival observed in our predator
removal plots, population growth rate (λ) estimated for female midcontinent mallards would be 0.566
(95% CI = 0.320–0.813; Figure 6). For comparison, Hoekman et al.’s [1] λ estimate of 0.824 was based
on 0.72 probability of breeding hen survival and represented an approximate population growth rate
in the absence of predator removal. Our highest estimate of breeding hen survival in predator removal
conditions (0.71) results in a 1.1% lower population growth rate compared to Hoekman et al.’s [1]
benchmark estimate.
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4. Discussion

In accordance with our hypothesis, nest survival patterns indicated that predator removal was
ineffective. In all but one study area-year combination, we found no significant difference in nest
survival between control and predator removal plots (Table 2). The majority of research evaluating
predator removal to increase dabbling duck nest survival has found it to be effective when applied in
prairie habitats [19,23–27]; but publication bias towards significant results might have influenced the
prevalence of positive findings [29]. Ours is the third study to date demonstrating ineffectiveness of
predator removal for duck nest survival in Canadian parkland habitats [28,78], while Guyn [79] found
conditioned taste aversion ineffective in Saskatchewan parklands. Like Clark et al. [78] and Dassow [28],
we conducted partial predator removal within a rich predator community characteristic of the parkland
region [80] where ample opportunity for compensatory predation exists. Three-dimensional habitat
structure (aspen stands) and socio-economic drivers may enhance the potential for compensatory
predation relative to U.S. prairie habitats, where most successful studies have been carried out. Nest
abundance and proportion of fates was largely preserved within study area across years, regardless of
treatment (Figure 2), indicating that nest survival was driven by habitat characteristics, for which we
controlled by treatment transposition. Associations of habitats with nest predation risk are examined
in Blythe [81] and Blythe and Boyce [82].

A lack of response in nest survival does not necessarily preclude the depression of predator
abundance because of potential compensatory nest predation by species that were not removed [31–33].
Trail camera evidence demonstrated that species that were not targeted for removal were consuming
duck eggs (long-tailed weasels, 13-lined ground squirrels). Assuming effective removal of skunks,
coyotes and corvids, we believe other species might have been responsible for compensatory nest
predation which could have been facilitated through multiple mechanisms. Mesopredator release,
the expansion of distribution or density of a mid-trophic level predator resulting from the decline of
an apex predator (in our system, coyotes) [83,84], is known to benefit foxes (e.g., [85]), skunks [83],
ravens [86] and other nest predators. Given the short 4-month timeframe of predator removal each
year, a distribution expansion of the community of nest predators, induced by mesopredator release,
would probably occur largely through behavioural mechanisms [10,87]. The removal of more efficient
nest predators might have increased opportunity afforded to less-efficient species that do not key in on
duck eggs as readily [32,37].

The compressed temporal and spatial scale of our predator removal plots provided ample
opportunity for immigration and the creation of a core, predator-free area was unlikely [19]. Similar
to our study, Manton et al. [88] describe a predator assemblage shaped at the landscape scale
by socio-economic factors; in both cases a landscape approach is required to address impacts of
anthropogenic land use. The spatial scale and distribution of our predator removal was constrained
by land tenure; landowner concerns about the spread of clubroot (Plasmodiophora brassicae), a fungal
disease of canola, led to restrictions on accessing private land. The duration of predator removal was
constrained by cost; our implementation of predator removal represents the inherent logistic constraints
that also would characterize a long-term predator removal program in the Alberta parklands. When
applying small-scale predator removal on the prairies, Chodachek and Chamberlain [27] increased
duck nesting success on 259 ha parcels, while Sargeant et al. [89] saw slight increases when trapping
61–301 ha plots. The parklands are more complex in habitat structure than prairie ecosystems and
effective predator removal is challenging when conducted at small, widely distributed plots across
a productive landscape that supports many predator species [89]. The Alberta parklands may be
more vulnerable to the creation of a source-sink system where non-managed areas provide source
populations for immigration into predator-removal areas [36,90]. Lieury et al. [91] suggested that
immigration would quickly negate the effects of reducing red foxes at scales less than 10 km2, and that
spring culling is more conducive to compensatory immigration than post-dispersal culling.

Wide confidence intervals preclude us from determining whether baseline nest survival in our
study areas is above or below that required for population maintenance. All but one of our 10 nest
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survival estimates encompassed the 15.84%–20.94% 34-day threshold required for maintenance of stable
populations [2–4] and none fully exceeded it (Figure 4). As concluded in several other studies [19,67,92],
we observed that nest survival increased linearly with nest age. The 2017 Viking trapped plots had
the highest minimum survival estimate at 20.10%. With a maximum estimate of 1.16% nest survival
and 18 successful nests out of 153, the 2017 Viking control plot had the lowest survival. These results
indicate that predator removal in the Viking area might prove effective at increasing nest survival,
but this requires further investigation, especially because the 2017 Viking control plot was negatively
affected by nest marking [57]. In contrast, predator removal was ineffective in the Bashaw study area
and did not appear to be an effective management strategy.

We were surprised that significantly more nesting hens were depredated on trapped plots,
although low incidence and minimal influence on estimates of λ ultimately rendered this pattern
nonsignificant. Though predator removal did not depress nest predator abundance sufficiently to
improve nest survival, it appears to have influenced predator assemblage in favour of principal hen
predators, thereby increasing hen mortality. Mesopredator release and competitive release might have
shifted the relative abundance of mammalian predators. Coyotes were the apex predator in our system
but are not principal hen predators especially in comparison to red fox [55,85]. Coyotes limit red fox
abundance through interference competition that includes direct killing and instilling fear [10,85,93,94].
Areas where coyotes were reduced might have become attractive refuges for more important hen
predators like red fox and weasels [10,55], resulting in increased nesting hen mortality relative to
control plots. The dietary breadth of skunks is relatively high [95] and their niche overlaps that of
red fox [7], so competitive release resulting from skunk removal also could have benefited weasels
and foxes.

Apparent competition [42] in the form of increased rodent abundance attracting duck predators
is another potential consequence of predator removal that could have occurred to the detriment of
nesting hen survival. Rodent species are an important prey for both coyotes and skunks [95], the
removal of which could have resulted in increased rodent abundance through both numerical and
behavioural responses [10,87,96]. Red fox, weasel and raptors are shared predators of rodents and
adult ducks [95,97–100] and an increase in their abundance is a plausible explanation for significantly
higher nesting hen mortality on trapped plots. In North Dakota, McCarter [45] observed slightly
higher abundance of raptors where mammalian predators were reduced, presumably in response to
increased prey.

Future evaluation of predator removal for increased duck production would be improved by
the collection of additional data. Information on predator abundance is essential for evaluating the
presence and degree of a decline induced by predator removal, and inferences are limited in its
absence. Beyond population size, trapper removals are influenced by effort which encompasses trapper
experience, and type and placement of traps and attractants [101], none of which were standardized in
our study design. Predator-removal methods must be standardized to allow for comparisons [102,103],
thus tracking trapping effort as well as removals over time could allow for indirect estimates of
predator abundance to be made through depletion modelling (T. Arnold, University of Minnesota,
personal communication). Relative importance of each nest predator species might help to elucidate
aspects of compensatory predation, but such data are difficult to obtain [104–106]. Disturbance from
trapping activity might cause nest abandonment; spatially recording trapper’s trails and sets could
allow researchers to quantify possible impacts of trapping on nest abandonment.

The failure of predator-removal programs intended to increase bird abundance because of
compensatory predation is well documented [45], especially when predator removal does not encompass
all predator species [22]. Where predator removal does increase nest survival, enhancements may not
translate into increases in recruitment to the local population due to a combination of low duckling
survival, limitations in breeding philopatry and territorial behaviour of breeding pairs [26,107]. A
measure of recruitment is critical to truly evaluate the effectiveness of predator removal intended to
increase not only nest survival but duck productivity [26,107]. A long-term predator removal program
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in North Dakota has produced marginal gains in population growth at high monetary cost, in part due
to low duckling survival dampening the effectiveness of high nest survival [26]. Duckling survival
benefited from predator removal in Saskatchewan [108] but not in North Dakota [109], where duck
populations appear to be controlled predominantly by bottom-up trophic forces not addressed by
predator removal [45]. In our study, duckling survival could have been reduced unintentionally
through the same mechanisms that led to a reduction in breeding-hen survival. Limitations in carrying
capacity due to finite food and habitat resources place constraints on recruitment that might ultimately
prevent increases in fall duck abundance resulting from increased nest survival [26,45].

5. Conclusions

Predator removal was ineffective at increasing duck nesting success and at time of writing
there are no plans to continue the predator-control program in the Alberta parklands. Prior to
implementing any form of predator management, the benefits should be assessed using a rigorous
study design and weighed against potential consequences, including those that might be unintentional
or counterintuitive [30]. The substantial resources required to implement predator removal could be
redirected at non-lethal mitigation methods that often can be more effective and less controversial [30]
with less risk of inducing unintended negative consequences. Predator removal should be continuously
monitored to ensure desired outcomes are being achieved. Determining prey survival at multiple life
stages is important due to the potential for opposing effects on different vital rates this study, [38,41].
Finally, retaining coyotes on the landscape might increase the success of a predator-removal program [25]
because coyotes effectively reduce the abundance of fox and other mesopredators, and coyote presence
is associated with higher nest survival [85].

In conclusion, current nest survival in the central Alberta parklands might be lower than required
for maintenance of stable populations [2–4] but our results do not indicate that nest survival would
benefit from local-scale predator removal. Our observations of a possible increase in nesting hen
mortality on predator removal sites raise new concerns and add to a growing body of literature
suggesting minimal gains from predator removal intended to increase duck production [26,45,107,109].
Habitat-based management alternatives might be a more effective approach for reducing nest-predation
risk [81,82].
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survival models for daily survival rates of duck nests (n = 830) on plots where predator removal was transposed
over >2 years in central Alberta parklands in 2015–2017, ranked by corrected Akaike’s Information Criterion
(AICc), Table S4: Daily survival rate (DSR) and standard error (SE) derived from top-performing RMark nest
survival model for daily survival rates of duck nests on plots where predator removal was transposed over >2
years in central Alberta parklands in 2015–2017, Table S5: RMark nest survival models for daily survival rates
of duck nests on plots where predator removal was transposed over >2 years in central Alberta parklands in
2015–2017, excluding Viking Control 2017 plots. Ranked by corrected Akaike’s Information Criterion (AICc),
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