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Abstract: Though mostly soil dwelling, oribatid mites are found in all kind of habitats, with several
species exclusively living on trees. Using previously published DNA sequences and eco-morphological
data available from the literature, we inferred the number of transitions between soil dwelling to
a truly arboreal lifestyle in oribatid mites and the shape evolution of a particular morphological
structure of a sense organ (bothridial seta (= sensillus) of a trichobothrium), the shape of which
was previously reported to be associated with an arboreal lifestyle. Our data suggest that a truly
arboreal lifestyle evolved several times independently in oribatid mites, but much less often than
previously proposed in the past. Even though all truly arboreal species indeed seem to possess a
capitate sensillus, this character is not exclusive for arboreal taxa. Nonetheless, since all truly arboreal
species do have a capitate sensillus, this might be considered an important (pre-)adaptation to a life
on trees. We further provide guidelines on how the term “arboreal” should be applied in future mite
research and emphasize the importance of exact microhabitat characterization, as this will greatly
facilitate comparisons across studies.

Keywords: lifestyle; tree related microhabitats; 18S rRNA; phylogeny; ancestral state
reconstruction; sensillus

1. Introduction

Forest ecosystems harbor a strikingly large number of mite species, with particularly high
biodiversity in forest soil. This tremendous species richness and adaptations to micro-environments
within this ecosystem have led researchers to emphasize the potential of mites as environmental
indicators [1–4].

For most tree-associated organisms, a tree is not a single, homogeneous environment. It comprises
different sub-areas or regions. For example, the tree trunk itself can be divided into a basal, median,
and upper part. The branches, twigs, and leaves of the canopy represent other distinct regions.
The ecologically most important structures, however, are the tree-related microhabitats, which are
natural, tree-borne features. They provide specific conditions and substrates, like different food
resources or structures for breeding and shelter. Since different types of microhabitat support different
organismic communities [5–7], they have gained considerable attention in forest management and
conservation, especially in the last two decades. While nests of birds and mammals serve as home
for nidicolous species, the boreholes and galleries of xylobiotic insects are important habitats and/or
food sources for special communities consisting of housemates, commensals, and parasites of these
xylobionts. Similar to knot-holes or holes in the trunk, which contain decaying and decomposed
organic material, so-called suspended soils developed on large trees with broad branch forks contain
their own, often specialized fauna.
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As already shown by Wunderle [8], trees provide a habitat for several primarily soil-dwelling
microarthropods, especially for oribatid mite species.

It has been known for a long time that Oribatida also occur on trees [9], and researchers soon
recognized that species composition differs between soil and tree canopy [10,11]. Since then, many
eco-faunistic studies targeted the diversity of oribatids on trees [12–15]. However, many previous
studies provided often confusing, disparate information on individual species or species communities
inhabiting trees, which indicates that abundance, distribution and diversity of tree-living species vary
considerably even under presumably similar conditions. These differences in community composition
can be mainly attributed to (i) habitat types (e.g., rain forest, “perpetual mist” forests, deciduous and
mixed forests; [16]), (ii) tree species (e.g., [8]), or (iii) zones and age of a tree, which determines tree
diameter and bark thickness and has significant impact on the number of available microhabitats [17].
Nonetheless, the diversity of tree-living oribatid mites is undoubtedly much higher than known so
far. Several recent studies showed the level of cryptic diversity is high in (tree-living) oribatids, even
in supposedly well known, common, and easily identifiably taxa [18–20], providing an important
contribution to our knowledge of the biodiversity in forest ecosystems.

While many eco-faunistic studies dealt with tree-living oribatid communities, only one study
aimed at a comprehensive analysis of arboreal lifestyle evolution in oribatids, focusing on the transition
from soil dwelling to arboreal life and potentially associated phenotypic adaptations [21]. Specifically,
the authors suggested that arboreal life evolved independently at least 15 times and that tree-living
is more common in evolutionary younger taxa with strong sclerotization, sexual reproduction, and
capitate sensilli [21].

Microhabitats are known to harbor a disproportionately high number of (likely unknown)
species, not only among oribatid mites. Therefore, it is important to recognize and conserve these
microhabitats [6,7]. So far, several studies have demonstrated the important role of tree-associated
microhabitats for the taxonomic diversity in oribatid mites [22–27]. In all these studies, the authors
use the term “arboreal” (= corticolous or arboricole), which means growing on or living in trees, to
indicate that a specimen/species was collected on a tree. However, the exact use of this term differs
among studies. Some use it to refer to strictly tree-living species, others apply it to more generalist
species found both in soil and on trees [10,28,29]. Moreover, it is still questionable whether the species
found on trees are tree or rather microhabitat specific (see also [30]). These uncertainties complicate
generalizations regarding the evolution of a tree-living lifestyle in oribatid mites.

Against this background and utilizing a comprehensive phylogenetic tree based on previously
published 18S rDNA sequences, the present study aims to (i) revisit the origin of a tree-living lifestyle in
oribatids, (ii) test the hypothesis (according to [11]) that a capitate sensillus is a special morphological
feature of arboreal life, and (iii) discuss and redefine the term “arboreal” in oribatid mites.

2. Material and Methods

2.1. Data Acquisition

We chose the 18S rRNA (18S) gene for our meta-analysis because of (i) the largest amount of
sequence data available for a particular locus, covering all major groups of the oribatid mite tree of life,
and (ii) its low substitution rate; the 18S gene is generally more suitable for resolving phylogenetic
relationships at higher taxonomic levels. Only sequences with a minimum length of 1600 bp were
obtained from GenBank. The final dataset included sequences of 165 oribatid species (see Table S1).
Based on Klimov et al. [31], we used three species of Paleosomata, Ctenacarus araneola, Palaeacarus
hystricinus, and Stomacarus ligamentifer as outgroup.

Prior to phylogenetic analysis, sequences were aligned using the MAFFT v.7 web version [32].
Poorly aligned regions were removed from the alignment using the program trimAl v1.2 [33] applying
the heuristic “automated1” method (final length of dataset = 1619 bp).
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Character coding of traits for ancestral state reconstruction (ASR) of lifestyle and sensillus type
was primarily based on Weigmann [34] as well as on original species descriptions. Additional literature
was only used in case of uncertainties or missing information (see Table S2). Ancestral character state
reconstruction for lifestyle was coded as follows: soil (0), tree- and soil-living (1), exclusively tree-living
(= arboreal, 2), littoral (3), mangrove (4), and limnic (5). The coding of the sensillus types followed
roughly the classification scheme of Aoki [11]: no sensillus present (0), capitate and strongly clavate
(1), clavate (2), slightly clavate (3), with rami (4), rod-like thin (5), and not specified (6, for details see
below) (Figure 1).

Figure 1. Drawing of sensillus types used for character coding in the present study.

2.2. Analysis

The best-fitting model of molecular evolution was selected based on the Akaike Information
Criterion (AIC) in the “Smart Model Selection” tool (SMS; [35]) implemented in the PhyML 3.0
online execution ([36]; http://www.atgc-montpellier.fr/phyml/). Phylogenetic inference was based
on Maximum Likelihood (ML), implemented in PhyML and Bayesian inference (BI), implemented
in MrBayes 3.2.7 [37], applying the GTR+I+G model selected by SMS. ML analyses were run under
default parameter settings and nodal support was assessed by means of bootstrapping (1000 replicates).
For BI analyses, posterior probabilities were obtained from a Metropolis-coupled Markov chain Monte
Carlo simulation (2 independent runs; 4 chains with 25 million generations each; trees sampled every
1000 generations). Run convergence and stationarity of parameters were checked in Tracer v1.7 ([38];
available at http://beast.community/tracer) and by means of the standard deviation of split frequencies
(<0.01) in MrBayes. The first 12,500 (25%) trees were discarded as burn-in prior to constructing an
“allcompat” consensus tree from the remaining 37,502 trees.

We traced the evolution of two characters (lifestyle, sensillus shape) over the molecular phylogeny
using maximum parsimony (MP) and maximum likelihood (ML)-based reconstructions conducted in
Mesquite v.3.51 [39].

We applied the “trace character over trees” option to account for topological uncertainty.
The Markov k-state 1 (Mk1) parameter model was employed for the analysis of both characters,
with equal probability for any particular character state. Both reconstructions were integrated over

http://www.atgc-montpellier.fr/phyml/
http://beast.community/tracer
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20,001 randomly selected post burn-in trees of the BI analysis and the ancestral states were summarized
on the BI consensus tree.

Due to intra-generic polymorphism of sensillus shape in the genera “Liodes” and Eremaeozetes ([34]
and Schatz pers. communication), we refrained from assigning a particular morphology to Liodes sp.
(The denomination Liodes sp. is not a valid name for a genus of the oribatid mite family Neoliodidae [40].
It is unclear whether this record in GenBank from 1997 refers to a species of Neoliodes or to another
genus) and Eremaeozetes sp. The higher-level classification of oribatids follows Schatz et al. [41].

3. Results

As both the ML and BI tree inference resulted in very similar tree topologies, only the Bayesian
consensus tree is shown (Figure 2). Compared to the traditional classification, our phylogenetic tree
revealed several discrepancies, for example the infraorders Parhyposomata and Mixonomata, as well as
the superfamilies Plateremaeoidea, Cepheoidea, Cymbaeremaeoidea, Licneremaeoidea, Gustavioidea
and Ameronothroidea appear as para- or polyphyletic, but often with only low statistical support,
indicating a fair amount of topological uncertainty (which was accounted for in our ASR analyses).

ASR of lifestyle and sensillus based on ML and MP reconstructions revealed very similar results,
except for some nodes that were reconstructed with greater uncertainty (equivocal) in the ML approach
(Figure 3, Figure S1). Our results clearly indicate that the preconditions for colonizing tree trunks
and canopies were already present in the ancestors of the higher Oribatida; e.g., Camisia species can
be found both in soil and tree samples (Figure 3a). Nevertheless, to live nearly exclusively on trees
seems to be the exception (see also [29]). However, our analysis suggests that arboreal life evolved
seven times independently within the investigated taxa. Furthermore, our analysis supports a multiple
independent evolution of the capitate sensillus (Figure 3b) and indicates that capitate sensilli are not
restricted to arboreal species.
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Figure 2. Bayesian “allcompat” consensus tree of 165 representatives covering all major groups of
the oribatid mite tree of life. The tree is based on sequences of the 18S rRNA gene. Symbols at nodes
represent posterior probability values (ppv) for Bayesian inference (BI) and bootstrap values (bv)
for Maximum Likelihood (ML). Symbols on the right side of the tree indicate para- or polyphyletic
superfamilies and mark their affiliation.
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Figure 3. Ancestral state reconstructions based on likelihood of (a) lifestyle and (b) sensillus type found
in oribatid mites. Tree-living taxa are highlighted in green.

4. Discussion

4.1. Revisiting the Tree-Living Lifestyle in Oribatids

Ancestral state reconstruction can give important information on the history of traits that do
not fossilize, such as particular ecologies or behaviors [42]. However, consequently, inconsistent
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interpretation of morphological features can lead to erroneous results and conclusions. Notwithstanding
some discrepancies between our 18S phylogeny and classical taxonomy (partially apparent also
in [43,44]), which is due to a lack of resolution at some inner nodes and a partly inappropriate
classification scheme [45], our ancestral state reconstructions, taking topological uncertainty into
account, unambiguously indicate seven transitions between soil- and tree-dwelling lifestyle in the
present oribatid dataset (Figure 3a). These are much fewer transitions than inferred by a former study
that proposed that life on trees evolved at least 15 times independently in oribatid mites [21], even
though our study includes many more taxa. The different findings can be explained by different
character coding of the lifestyle type. Whereas [21] differentiated mite species into either soil- or
tree-living organisms, the majority of these taxa can be found both in soil and on trees. We used, apart
from the standard classification book for oribatids [34], additional literature in cases of uncertainties
(see Table S2). Moreover, we employed the character trait “tree-living” in a stricter sense, i.e., only
species exclusively found on trees were assigned this character trait. As in [21], however, we can
conclude that life on tree already evolved within the Crotonioidea. In this context it is also interesting to
note that representatives of Enarthronota and Mixonomata, Liochthonius sp., and Epilohmannia sp. have
been collected from suspended soil samples in North America [15,46], and Liochthonius pseudolaticeps
has been found on bark of trees in Spain [47]. This suggests that the preconditions for colonizing
tree trunks and canopies were already present in the early-derived oribatids, indicating a repeated
independent evolution of tree life.

Many taxa included in our study are known to occur both in soil and on trees, e.g., [15]; only 14 of
the 165 included species are almost exclusively tree-living. The occurrence of soil-dwelling oribatids on
trees might be explained for example by so called suspended soils on trees, which provide ecological
conditions similar to the forest floor [15]. Wallwork [48] and Gjelstrup [49] mentioned that mosses and
lichens on rocks and trees represent such suspended soils. Thus, different kinds of suspended soils
apparently facilitated the expansion of suitable habitats, especially for hemi- and epedaphic species.
Most of these suspended soil dwellers are also able to survive and reproduce on the ground; therefore,
many species can be found on trees as well as in soil samples. However, soil-dwelling species on trees
could also be the result of introduction by other organisms. In general, colonizing a tree takes place
mainly via three mechanisms: (1) the stem and suspended soils from soil and litter, (2) the upper stem
and canopy by wind, and (3) the upper stem and canopy by phoresy. It has been shown that especially
the transfer by birds [50,51] and by wind [52] might play an important role for the exchange of species
from soil to tree.

Of course, there are many more strictly tree-living species or species occurring both in soil and
on trees for which no genetic data are available so far [11,53–55]. Including an increasing number of
these species in future studies will be of great importance for providing a more accurate picture of the
evolution of arboreal life in oribatid mites.

4.2. Capitate Sensillus—A Special Morphological Feature of Tree-Dwelling Oribatid Mites?

Trichobothria of oribatids are complex sensory organs, highly mechanosensitive sensilli, which
are of both taxonomical and functional relevance [56,57]. They are regarded as vibration receptors
reacting to substrate vibrations or air currents [57]. These organs are constructed in a way that the
movement of the seta (sensillus) is allowed only in two directions [57]. The shape of the sensillus has
been proposed to correlate with the preferred habitat type. Aoki [11] already stated that the sensilli of
arboreal taxa tend to be short capitate to strongly clavate, suggesting a function as gravity receptors.
The directionality of the movement of the sensillus could be suitable to perceive the direction of
gravitation, especially if the distal end of the sensillus is capitate and therefore relatively heavy. In this
case, the animals would be able to “know” whether they are crawling up or down. Experimental data
to verify this assumption and the hypothesized correlation of sensillus type with (micro-)habitat [57],
however, are still lacking.
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In general, the sensilli of oribatid mites show a broad variety in shape from filiform to club-like
and globose. When the club is slender the sensillus is termed to be clavate, when the distal part
broadens quickly and shows an approximately rounded or spherical club it represents a so-called
capitate sensillus (see Figure 1). Clavate (large and often ornamented) sensilli were proposed to
predominate in ”wandering species” between soil and trees, whereas they should be capitate in
arboreal species [11]. Whether an associated shortening of the stalk of the sensillus, to reduce the
irritation by air currents [58]—in extreme cases the club disappears in the bothridium (e.g., in Camisia
abdosensilla [59])—represents a further adaptation to the life on trees needs to be tested in future
studies. Our study supports a multiple evolution of the capitate sensillus (Figure 3b) and indicates that
capitate sensilli are found in, but are not restricted to, arboreal species, a hypothesis already discussed
previously [14]. While all herein investigated arboreal species possess capitate sensilli, except for
Liodes sp. (but see Material and Methods), the same sensillus type can also be found in soil dwellers,
limnic and littoral species. Thus, even if particular sensillus types do not appear to be, associated with
particular habitat types (Figure 3), the fact that all truly arboreal species seem to possess a capitate
sensillus suggests that this sensillus type should indeed be considered an important (pre-)adaptation
to a life on trees.

4.3. Discussing the Term “Arboreal” in Oribatid Mites

Oribatid mites can be frequently found on trees. When comparing the results of eco-faunistic
studies, however, it becomes apparent that abundance, distribution and diversity of tree-living species
varies considerably. Moreover, very often it is still unclear if the species found on trees are truly tree
dwellers or rather wandering species in search for food, mating partner, or shelter. It is therefore
necessary to clarify which species should be designated as arboreal taxa. In other words, when is a
species truly arboreal?

Arboreal species sensu stricto are herein defined as those taxa that live on the bark of stems and
branches without a layer of lichens or mosses, in the canopy, or on twigs and leaves. Furthermore, these
species should undergo their whole life cycle on the tree. Among the many oribatid species (~10,000
described species [60]), only very few can be classified as arboreal s.s. For example, Adhaesozetes
polyphyllos [53] as well as Phylleremus leei and Ph. hunti [61], all of which bear a short and capitate
sensillus, might be considered as strictly arboreal. Unfortunately, no genetic data are available for these
Australian species. All other tree-living species that also utilize different microhabitats on trees should
be referred to as arboreal sensu lato and they should be further defined by the microhabitat they inhabit.
These species are usually not found in litter and soil on the ground, except for, in rare cases, single
specimens probably fallen from the tree. Some of the taxa included in our study, such as Cymbaeremaeus
cymba, Camisia segnis, and Liebstadia humerata, can be found on stems or twigs without epiphytic layer
as well as in lichens. Therefore, these species should not be defined as arboreal s.s. according to the
above given definition. Taxa that are mainly associated with mosses or lichens on trees should be
referred to as by their substrate, thus muscicolous or lichenicolous, as e.g., Dometorina plantivaga, which
mainly occurs on lichens. All Paraleius species studied so far are associated with bark beetles and can be
found in their galleries, where the mites live and reproduce. According to their microhabitat, Paraleius
spp. should thus be defined as gallery-living species. Information on ecology and (micro-)habitat is
available for some species, allowing for a microhabitat-based classification. This, however, is not the
case for many other oribatids, which highlights the need for more detailed ecological investigations.
The application of our proposed classification system has of course the consequence that only few taxa
will be referred to as arboreal sensu stricto.

In the case of temperate and Mediterranean European forests, we suggest the application of
Larrieu et al.’s [7] scheme, categorizing the tree related microhabitats into 15 main groups according to
12 substrates and four microclimatic conditions. As conditions differ among ecosystems (e.g., rainforest
vs. temperate forest); however, one must also differentiate between the ecosystems. Due to different
environmental conditions like moisture, temperature, or radiation, it is likely that the number of
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existing microhabitats differs significantly. We expect a considerably higher number of microhabitats
in rainforests, even considering the suspended soils, the variety of epiphytes or the growth of the trees.
Previous studies have already shown that species found on trees are rather microhabitat specific than
tree specific [24,27,30,62], pointing to the need of standardized classification schemes of microhabitats
that will allow for a more straight forward and, importantly, comparable classification of tree-living
taxa. This in turn will facilitate a more accurate comparison between microhabitats of different tree
species, geographic areas, etc. Moreover, as mentioned at the beginning, microhabitats are important
substrates contributing to the internal heterogeneity of forests [7]. Their detection and investigation
will improve our knowledge about oribatid biodiversity in the future.

Reliable interpretation of evolutionary trajectories crucially depends on exact and detailed
knowledge of the biological characteristics and the taxonomic classification/phylogenetic relationships
of the studied taxa. Unfortunately, in many instances important information is lacking. These
difficulties are exemplified by Micreremus brevipes, a well-known “arboreal” species, which has been
reported also from Svalbard (Norway) in a permafrost and tundra habitat with litter of mosses,
lichens, and vascular plants near the seashore, but definitively no trees [63]. One must assume that
such different habitats show morphologically very similar, but (genetically) different species. This
phenomenon of cryptic diversity might in part explain the presumed occurrence of one and the same
“euryoecious species” on the ground and on trees.

Compared to their soil-living relatives, tree-living microarthropods often have to cope with
markedly different climatic conditions, though this difference appears to be only minor in some
ecosystems. Salavatulin [27] hypothesized that only a few oribatid mite species adapted to a life
on trees. Reasons therefore would be an increased vulnerability of microhabitats to wind or solar
radiation, but also a more frequent change of dryness and moisture [27]. While this holds true for
habitats with extreme conditions, like forest-tundra [27] or exposed tree stands in alpine regions,
drought and drought resistance should not play an important role as limiting factor in tropical and
temperate rainforests. Because of the high phylogenetic age of oribatid mites, drought resistance might
have been evolved in pioneer species, which colonized raw soils with changing humid conditions in
ancient times. If this physiological feature is important for arboreal life, then the ability to survive
dry periods should be an ancient trait. Furthermore, the food resources on virgin soils are, similar to
those on the bark of trees, bacteria, algae, and lichens. The ability to feed on these food resources and
the drought resistance enabled species not only to colonize litter and upper layers of soil but also to
colonize trees and their different microhabitats (also see [64]).

5. Conclusions

To conclude, our analysis revealed that a truly arboreal lifestyle sensu lato is not particularly
common, evolved several times independently in oribatid mites, but much less often than formerly
proposed. We propose that only taxa that live on the bark of stems and branches without a layer of
lichens or mosses, in the canopy or on twigs and leaves and undergo their whole life cycle on the
tree should be regarded as “arboreal s.s.” A refined microhabitat-based classification scheme will be
particularly important for future comparative ecological and evolutionary (meta-)analyses, as the
different tree-associated microhabitats certainly require different phenotypic adaptations. Nonetheless,
the presence of a capitate sensillus appears to be a morphological (pre)-adaptation to life of trees
(arboreal s.l.), potentially functioning as gravity receptor. Yet, it is unlikely that this is the sole adaptation
to an arboreal lifestyle in oribatid mites and potential specific morphological adaptations for the life
on trees should be investigated in more detail, e.g., claws and adhesive organs on legs as well as the
ultrastructure and sensitivity of trichobothria.

The biodiversity of tree-living oribatid mites is undoubtedly much higher than known so far.
Especially the canopies of old trees in temperate deciduous forests are not investigated thoroughly.
It is well known that large old trees as well as tree-born structures represent ecologically important
sites [65,66]. So-called small natural features contribute to biodiversity in a disproportionate manner
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regarding their small size [67]. Therefore, a uniform classification scheme of microhabitats will be of
crucial importance in mite research, as these small natural features become more and more important
for preserving forest biodiversity.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-2818/12/6/255/s1,
Table S1. Specimens, GenBank accession numbers and coding of morphological characters for the analysed
samples. Table S2. Literature used for the character coding of morphological characters. Figure S1. Ancestral state
reconstructions based on parsimony of (a) lifestyle and (b) sensillus type found in oribatid mites.
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