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Abstract: One of the many taxonomic challenges found in the Dendropsophus microcephalus species
group is the Dendropsophus walfordi distinction from D. nanus. Recent phylogenetic inferences have
indicated the paraphyly of these species, although they were not designed to assess this issue. To
contribute to the delimitation of these species, we analyzed the 12S, 16S and COI mitochondrial
genes, the morphological traits, and the advertisement calls of specimens from northern Amazonia
to Argentina, including the type localities of D. nanus and D. walfordi. Paraphyly of D. nanus with
respect to D. walfordi was inferred by maximum-parsimony and Bayesian analyses, and five major
clades exhibiting nonoverlapping geographic distributions were recognized. The bPTP and ABGD
analyses supported the existence of five independently evolving lineages in this complex. Acoustic
and morphological data clearly distinguished the clade that included the topotypes of D. walfordi
from the others, corroborating the validity of this species. To avoid the paraphyly of D. nanus with
respect to D. walfordi, we recognize the clade distributed from central-southern Brazil to Argentina
as D. nanus, the clade distributed in Amazonia as D. walfordi, and discuss the existence of unnamed
cryptic species closely related to D. nanus and D. walfordi.

Keywords: phylogenetics; Anura; Hylidae; Dendropsophus microcephalus group; bioacoustics;
morphology

1. Introduction

The Neotropics harbor a great diversity of frogs, and the recognition of valid species
can be very challenging. Phylogenetic approaches are powerful tools for species delim-
itation [1,2], and DNA sequence analysis has allowed a significant improvement in this
context, either by revealing previously undescribed species (e.g., [3–6]) or supporting
synonymizations (e.g., [7]). Such DNA-based analyses, however, are accessory tools in
taxonomic studies and should not be taken separately from other sources of data, including
acoustic and morphological ones (for a review, see [8]).

The hylid frogs Dendropsophus nanus (Boulenger, 1889) [9] and D. walfordi (Bokermann,
1962) [10] show relevant taxonomic issues and are good candidates for comprehensive
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research that combines DNA-based analyses with morphological and acoustic studies. In
previous studies, Jansen and colleagues [11] and Schulze and colleagues [12] suggested
the presence of unnamed species related to D. nanus in Bolivia, and phylogenetic anal-
yses based on DNA sequences have recovered D. nanus as paraphyletic with respect to
D. walfordi [4,13]. Although the phylogenetic analysis conducted by Medeiros et al. [13]
comprised specimens of D. nanus and D. walfordi from 55 localities, including the type
locality of D. walfordi (i.e., Forte Príncipe da Beira, in the city of Costa Marques, state of
Rondônia, Brazil [10]), a more comprehensive specimen sample including exemplars from
the type locality of D. nanus (i.e., Colonia Resistencia, Chaco, Argentina [9]) is still necessary
for proper evaluation of the genetic variation in this group. Furthermore, an integrative
analysis of the phylogenetic inferences and morphological/acoustic data for these frogs is
also lacking.

Morphological and acoustic studies of Dendropsophus nanus and D. walfordi are scarce
and fragmentary. These species are morphologically very similar, which led Lutz [14]
to consider D. walfordi a junior synonym of D. nanus. Langone and Basso [15], however,
mentioned personal communication from Adão J. Cardoso about the advertisement call of
D. walfordi specimens from Rondônia-Brazil, supporting D. walfordi as a valid species and
suggested the revision of D. nanus and D. walfordi throughout their geographic distribution.
The advertisement call of topotypes of D. nanus has been described [16], but the call of
D. walfordi remains unreported. Although a single advertisement call was previously
assigned to D. walfordi by De la Riva et al. [17], a reanalysis conducted by the authors [18]
proved that this call belonged to Dendropsophus tritaeniatus.

In this study, we revisited the taxonomic questions concerning Dendropsophus nanus
and D. walfordi using an integrative approach that combines analyses of acoustic and
morphological traits with a genetic/phylogenetic analysis based on improved molecular
character sampling and expanded sampling areas.

2. Materials and Methods

We used mitochondrial DNA sequences to infer the phylogenetic relationships and
genetic diversity in the Dendropsophus nanus–D. walfordi species complex and to run two
tests of delimitation of independently evolving lineages. We analyzed the acoustic and
morphological variation in this species complex in an attempt to identify putative traits
that could differentiate any of the candidate species inferred from the DNA-based tests.
Finally, we proposed some taxonomic decisions using an integrative taxonomy approach.

2.1. Taxon Sampling

Currently, Dendropsophus nanus is considered to be widely distributed in South America,
occurring from northeastern Brazil, Surinam and French Guiana to extreme southern Brazil,
Argentina, central Paraguay, extreme northwestern Uruguay and eastern Bolivia, whereas
D. walfordi is considered to occur in the central and northern Amazon basins [18,19]. In our
phylogenetic analysis, we included 56 specimens of the Dendropsophus nanus–D. walfordi
species complex, including type localities of D. nanus and D. walfordi. In addition, we
included a specimen from Taperinha, Santarém, in the Brazilian state of Pará, which is the
type locality of D. minimus (Ahl, 1933) [20]. To compose the outgroup, we included all the
species of the D. microcephalus group for which nucleotide sequences were available and
D. elegans as a representative species of the D. leucophyllatus group (which was inferred as
the sister group of the D. microcephalus group by [21]) (Table S1). In the genetic distance
analyses, we also included 51 DNA sequences assigned to D. nanus or D. walfordi consisting
of only a short fragment of the 16S rRNA gene. These samplings included sequences of
specimens from Bolivia, Argentina and French Guiana and were obtained from GenBank
(for details, see Table S1).

In the acoustic analysis, we compared the advertisement calls of 160 specimens of
the D. nanus–D. walfordi complex from 33 localities. In the morphometric analysis, we
compared 71 specimens of the D. nanus–D. walfordi complex from 12 localities. For the
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analyses concerning body shape and color, a total of 456 specimens were included (for
details, see Table S1).

Fieldwork was carried out between 2011 and 2017, and specimens were collected under
a permit issued by the Chico Mendes Institute for Biodiversity Conservation/Biodiversity
Authorization and Information System (ICMBio/SISBIO, permit number 50672). The
specimens were anesthetized with lidocaine, which was applied to the skin (50 mg of 2%
lidocaine per gram of body mass). Liver, muscle and intestine samples were extracted
and preserved in 95% ethanol. The animals were deposited in the amphibian collection
of the Museum of Zoology “Adão José Cardoso” at the Institute of Biology–University of
Campinas (ZUEC). This protocol was approved by the Committee for Ethics in Animal
Use of the University of Campinas (CEUA/UNICAMP, permit number 3453-1).

2.2. Molecular Data
2.2.1. DNA Extraction, Amplification and Sequencing

We used the same protocol employed by Medeiros et al. [13] to obtain genomic
DNA from fragments of liver or muscle or from intestinal cell suspensions available in
the cytogenetic and tissue collection housed at the Laboratory of Chromosome Studies
(LabEsC) of the University of Campinas. PCR was performed in a 25 µL volume of reaction
buffer containing 10 mM Tris-HCl, pH 9, 50 mM KCl, 1.5 mM MgCl2, 200 µM dNTPs,
each primer at 0.4 mM, 1 unit of Taq DNA polymerase (Invitrogen) and 400 to 1000 ng of
genomic DNA. The mitochondrial 12S and 16S rRNA genes and the intervening tRNA-val
region were amplified by PCR using the primer pairs MVZ59(L) [22]/TitusI(H) [23] and
12L13(L) [24]/16Sbr(H) [25]. For amplification of a fragment of the mitochondrial gene
cytochrome oxidase 1 (COI), we used the primers AnF1 and AnR1 [26].

The amplified products were purified using a DNA purification kit (Promega) or
the enzyme ExoSAP-IT system (Affymetrix). Purified fragments were sequenced in both
directions using the aforementioned primers. To sequence the H1 fragment (which includes
fragments of the 12S, 16S and tRNA-val genes), we also used the primers MVZ 50 [22],
Titus I, 16L2a, 16SH10 and 16Sar [25,27]. The Big Dye Terminator kit (Applied Biosystems)
was used to perform sequencing reactions according to the manufacturer’s protocol. The
nucleotide sequences were generated by the DNA Sequencing Service (SSDNA)-IQUSP
or the Central Laboratory of High-Performance Technologies in Life Sciences (LaCTAD)–
UNICAMP and edited using BioEdit v.7.0.1. [28].

2.2.2. Phylogenetic Inferences

The nucleotide sequences were aligned using Muscle [29]. The H1 fragment and COI
sequences were concatenated in a matrix composed of 123 sequences and 3117 characters
(Matrix 1).

Phylogenetic relationships were inferred according to the maximum-parsimony cri-
terion using the software TNT v.1.1 [30] and through Bayesian analysis in the program
MrBayes v.3.1.2 [31]. In the maximum-parsimony analyses, alignment gaps were treated as
the fifth character state. The most parsimonious trees were obtained using the heuristic
search method with the xmult command, which combines driven searches, ratchet, tree
drifting and tree fusing, and also performs the exchange of branches using tree bisection
and reconnection (TBR). The best length was hit 100 times, and branch supports were eval-
uated by bootstrap resampling test [32] based on 1000 pseudoreplicates using a traditional
search in TNT.

For the Bayesian analysis of the H1 and COI partitions, the GTR + I + G and SYM + G
evolutionary models were used, respectively, as estimated by MrModeltest v.2.3 [33].
Two simultaneous analyses were performed with four chains each (three heated and one
cold). Ten million generations were run in each analysis, with one tree sampled every
100 generations. A consensus topology with the posterior probability for each node was
produced after discarding 25% of the initial trees that were generated. The average standard
deviation of split frequencies (ASDSF) value was lower than 0.01, and the potential scale
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reduction factor (PSRF) value was approximately 1.000. The stabilization of posterior
probabilities was checked using Tracer v.1.6 [34] considering ESS (effective sample size)
values above 200 as acceptable.

A matrix with H1 fragments was used to estimate the time of divergence of the
major lineages in BEAST v.1.8.4 [35]. In this analysis, a mutation rate of 0.0028 muta-
tions/site/million years [36] and four independent runs were used, with parameters and
trees being sampled every 2500 generations. The convergence of the runs was evaluated
in Tracer v.1.6 [34] considering ESS (effective sample size) values above 200 as acceptable.
The results were summarized with TreeAnnotator v.1.8.3.

2.2.3. Analyses of Genetic Divergence

We compared the short fragments of the 16S rRNA gene (segment delimited by the above-
mentioned primers 16Sar and 16Sbr) previously obtained by other authors [4,11,12,37,38] for
specimens of Dendropsophus nanus (Table S1) with the mitochondrial DNA sequences from
our sampling. For this, we constructed a second matrix (Matrix 2) with 107 sequences
(outgroup excluded) and 457 characters. In this matrix, we also added ten 16Sar-16Sbr
fragments we obtained in this work, which were not included in Matrix 1 because they were
shorter than the H1 fragments obtained for the other samples. We used Matrix 2 in Mega
v.6 [39] to generate a neighbor-joining tree and to estimate genetic distances (p-distances)
between the five major genetic lineages inferred in the phylogenetic analyses. Alignment
gaps were not considered in the pairwise comparisons. The genetic distances between
the D. nanus–D. walfordi lineages were also calculated from the H1 fragments of Matrix 1
(used in the phylogenetic analysis) after excluding the outgroup, the COI partition and the
sites that corresponded to gaps in all the remaining sequences. This procedure resulted in
Matrix 3, with 56 sequences and 2472 characters.

The genetic structure of the Dendropsophus nanus–D. walfordi complex was evaluated
via hierarchical analysis of molecular variance (AMOVA) [40] with Arlequin v.3.5.1.2. We
used the Kimura 2p distance to estimate genetic distances [41] based on the concatenated
matrix with all mitochondrial genes (Matrix 1) without the outgroup. Haplotype net-
works were constructed with the same matrix using the median joining method (MJN,
median joining) [42] implemented in the program Network v.4.6.1.2 (http://www.fluxus-
engineering.com, accessed on 22 July 2021).

2.2.4. Delimitation of Independently Evolving Lineages Based on DNA Sequences

We used the DNA sequences from Matrix 1 (H1 and COI concatenated) to run one
tree-based test (using the Poisson tree processes, PTP method) [43] and one distance-based
test (automatic barcode gap discovery, ABGD) [44] of lineage delimitation. A Bayesian
PTP analysis (bPTP) was conducted on the bPTP webserver (http://species.h-its.org/ptp
accessed on 10 March 2018) with the tree inferred in the Bayesian analysis. For this analysis,
we excluded D. werneri (which is the most distant outgroup in our taxon sampling),
used 500,000 Markov chain Monte Carlo generations and set the burn-in to 0.25 and
the thinning to 100. The ABGD analysis was conducted at the ABGD webserver (http:
//wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html, accessed on 10 March 2018) using
p-distances, initial partitions with a range of prior intraspecific divergence (P) varying from
0.001 to 0.01, steps = 10, Nb bins = 6 and setting the minimum gap width to 1.0.

2.3. Acoustic Analyses

Advertisement calls were recorded using either an M-Audio Microtrack II, a Marantz
PMD 671 or an Ediroll R-09HR recorder set at a sampling rate of 48 kHz and an ampli-
tude resolution of 16 bits. The recorders were coupled to either a Sennheiser ME66/K6, a
K6/ME67 or a ME66/K3U directional microphone. The recordings were deposited in the
sound collection Fonoteca Neotropical Jacques Vielliard (FNJV) of the Museum of Zoology
“Adão José Cardoso” (at the University of Campinas, Brazil) or in the herpetological collec-

http://www.fluxus-engineering.com
http://www.fluxus-engineering.com
http://species.h-its.org/ptp
http://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html
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tion of the Museu de Biodiversidade do Cerrado (at the Federal University of Uberlândia,
Brazil) (Table S2).

We selected five acoustic traits from the advertisement calls to be analyzed: note
duration, number of pulses per note, pulse duration, pulse rate and dominant frequency.
These traits were selected because of their importance to reproduction (mate choice) and
competition (territoriality) (see [45–48]). We analyzed a variety of notes from each adver-
tisement call to obtain the values of each acoustic variable. To represent each male, we
used the mean values of each measured variable.

We analyzed the acoustic traits using Raven Pro v.1.5 for Windows from the Cornell
Lab of Ornithology (Bioacoustic Research Program 2012). Raven settings were as follows:
window type = Hann, window size = 1024 samples, 3 dB filter bandwidth = 270 Hz,
overlap = 85%, hop size = 0.792, DFT size = 1024 samples and grid spacing = 46.9 Hz. All
other settings followed the ‘defaults’ of Raven software. We obtained sound figures with
the Seewave package v.2.0.2 [49] on the R platform (v.3.2.2) [50] with the following settings:
Hanning window, 256 samples (FFT) and 85% overlap. The terminology used to describe
the calls followed Köhler et al. [51]. Voucher specimens and their respective localities are
presented in Table S1.

We implemented Breiman’s random forest algorithm (RF, package v.4.6-12 [51] in R) to
discriminate partitions considering call features. The RF algorithm constructs classification
trees using bootstrap samples of the data (each node is split using the best among a subset
of predictors randomly chosen at that node) and then generates classifiers and aggregates
results by voting to classes [52]. The RF results included an estimate of the distances
between the objects, which were subjected to multidimensional scaling analysis (MDS) and
displayed graphically with the rfPermute package on the R platform.

Because RF analysis discriminated two different advertisement calls among the an-
alyzed specimens, we analyzed both calls (named call I and call II) using two additional
approaches. We first tested, for each call, whether the introductory notes differed from
the secondary notes using Welch’s t-tests. We used each acoustic parameter as a response
variable and the note type (introductory or secondary) as a factor. We log transformed the
dominant frequency and pulse rate data of call II to meet the assumptions of homogeneity
and heteroscedasticity of the test. We used the nonparametric Mann–Whitney–Wilcoxon
test when transformation of data still violated the assumptions of the analysis. These data
included note duration and pulse rate for call I and pulse duration for both calls. We met
the assumptions of the test with all the other acoustic variables.

We also tested whether each note (introductory or secondary) differed between both
calls using multivariate analysis of variance (MANOVA). As such, we performed four
MANOVAs to compare: (1) introductory notes of both calls, (2) introductory notes of call I
and secondary notes of call II, (3) secondary notes of call I and introductory notes of call II,
and (4) secondary notes of both calls. For each MANOVA, we included all the acoustic
variables of each note type as response variables and the calls (I or II) as factors.

2.4. Morphological Analyses

Adult males were measured using an ocular micrometer coupled to a stereomicroscope.
Measurements larger than 10 mm were taken with calipers accurate to 0.1 mm. We
measured snout–vent length (SVL), head length (HL), head width (HW), tympanum
diameter (TD), eye diameter (ED), shank length (SL) (= tibia length) and foot length (FL)
following Duellman [53]. Thigh length (TL) and hand length (HAL) were measured as
proposed by Heyer et al. [54], and the eye–nostril distance (END) was measured following
Napoli and Caramaschi [55].

To investigate whether the five genetic lineages recognized in the D. nanus–D. walfordi
species complex could be differentiated by morphological traits, we compared 71 males (65
of them collected from sites also sampled for phylogenetic/genetic analyses; see Table S1).
We analyzed whether they differed in body size (SVL) using permutation ANOVA. For
this, we used the lmp function from the lmPerm package in R software v.2.1.0 [56]. As we
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performed multiple comparisons, we adjusted the p-value with the Holm method using
the p.adjust function in R software.

We performed a principal component analysis (PCA) [57] to detect patterns of mor-
phological variation among the five major clades inferred in the phylogenetic analyses. To
reduce the effect of body size on the morphological measures, we conducted PCA with
morphometric ratios (HW/HL, TD/ED, FL/TL, TD/HL, TL/SVL, HW/SVL, FL/SVL,
HAL/SVL and SL/FL). We used a correlation matrix and performed PCA using the
dudi.pca function of the package ade4 [58] in R software. We then used analyses of vari-
ance (ANOVA) to verify the significance of the morphological patterns. We used the first
two principal components (PCs) of the PCA as response variables for each ANOVA, as
these axes explained the greatest proportion of the morphological variation among the
analyzed specimens. We also used the five lineages as the independent variable and set
α = 0.05. All assumptions of ANOVA were met. The ANOVAs were also performed using
R software or SYSTAT software v.8 [59].

3. Results
3.1. Phylogenetic Inferences

In the Bayesian, maximum-parsimony and BEAST analyses, the specimens of the Den-
dropsophus nanus–D. walfordi species complex were grouped into five major clades, named
Lineages A–E, distributed over distinct geographic areas (Figure 1 and Figures S1–S3). Lin-
eage A was composed of specimens from central Brazil, whereas Lineage B was distributed
from southeastern to northeastern Brazil. Lineage C included specimens from eastern
Bolivia and midwestern Brazil. Lineage D exhibited specimens distributed throughout the
Amazonian Forest from French Guiana to Bolivia. Lineage E was composed of specimens
from Argentina, the Brazilian state of Paraná and the southern portion of the Brazilian state
of Mato Grosso do Sul (Figure 1). It is worth noting that the two specimens of D. walfordi
from the type locality (Forte Príncipe da Beira, Costa Marques, state of Rondônia, Brazil)
were recovered in Lineage D, and the specimen of D. nanus from the type locality (Colonia
Resistencia, Chaco, Argentina) was nested in Lineage E. The specimen from Taperinha,
Santarém, state of Pará, Brazil, which is the type locality of D. minimus, was nested within
Lineage D (Figure 1 and Figures S1–S3).

The relationships between Lineages A–E were congruent among all the phylogenetic
analyses (Figure 1 and Figures S1–S3), with the clade (Lineage C, Lineage D) being supported
by high value of posterior probability (Figure S2) or bootstrap (Figure 1 and Figure S1).
The clade (Lineage A, Lineage B) was also strongly supported in the Bayesian analysis
(Figure S2).

In the BEAST analysis, the divergence between Lineages A and B and the split between
Lineages C and D were estimated to be the early Pliocene (approximately 3 mya). The
divergence of Lineage E from the clade composed of Lineages C and D was estimated to
have occurred at approximately 4 mya, and the most common ancestor of the Dendropsophus
nanus–D. walfordi complex was dated to 5 mya (Figure 1 and Figure S3).

3.2. Genetic Diversity and Sequence-Based Species Delineation

The neighbor-joining analysis of Matrix 2, which also included DNA sequences of
Bolivian specimens, clustered the sequences assigned by Jansen et al., 2011 [12] and Schulze
et al., 2015 [12] as “D. nanus A” and “Dendropsophus cf. nanus” together with those included
in Lineages C and D, respectively (Figure S4).

The genetic distances between Lineages A–E estimated from Matrix 3 (with 2472 char-
acters of the H1 fragment) were all approximately 3%, except for the distance between
Lineages A and B, which was 1.7%. The genetic diversity within each of these lineages was
lower than 0.7% (Table 1). We found significant variation between Lineages A–E (AMOVA,
Fst = 0.950), with 79.31% of the genetic variation found in the D. nanus–D. walfordi species
complex being due to the difference between the lineages. The variation between popula-
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tions within the lineages was estimated to account for 15.62% of the total variation, and
5.08% of the variation was due to differences within the populations.
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(C). Divergence time estimates for the Dendropsophus nanus–Dendropsophus walfordi species complex. The bars on the nodes
indicate 95% highest posterior density (95% HPD) intervals. The corresponding timescale is shown below the cladogram.
Mya: million years ago.

Table 1. Uncorrected p-distances (%) between Lineages A–E of the D. nanus–D. walfordi species
complex. In the lower triangle, values estimated from H1 fragments (2472 bp) (left) and from the
16Sar-16Sbr fragment of the 16S rRNA gene (right); in the upper triangle, values inferred from the
COI fragment (645 bp). The diagonal line (in bold) presents uncorrected p-distances identified within
each species or lineage based on the H1 (left) and COI (right) fragments. The hash mark denotes that
only one sequence is available.

1 2 3 4 5

1. Lineage A 0.5/0.6 4.0 9.3 8.0 7.4
2. Lineage B 1.7/1.0 0.6/1.4 7.0 6.7 7.0
3. Lineage C 3.0/1.3 3.0/1.8 0.7/# 3.9 8.0
4. Lineage D 2.8/1.9 2.6/1.9 2.6/1.7 0.5/1.1 7.2
5. Lineage E 2.7/1.4 2.4/1.4 3.1/1.3 2.5/1.1 0.4/1.0
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The H1 sequence of the topotype of Dendropsophus minimus was very similar to the
sequences from the topotypes of Dendropsophus walfordi, with a distance of only 0.04%
between them.

The calculated genetic distances based on Matrix 2 (composed of the 16Sar-16Sbr
fragment of the 16S gene, 457 characters) were lower than those observed in the analysis of
Matrix 3 (composed of 2472 characters of the H1 fragment) (Table 1). The distance inferred
between Lineages D and E, for example, was 1.1% based on the 16Sar-16Sbr fragment and
2.5% based on the H1 fragment matrix (Table 1). An even greater difference was observed
in the distance values between Lineages C and E (1.3% and 3.1% using the 16Sar-16Sbr and
H1 fragments, respectively; Table 1).

The haplotype network constructed from the H1 fragments allowed the recognition of
five groups that coincided with Lineages A–E inferred in the phylogenetic analyses, and
none of the haplotypes was shared between these groups (Figure S5). The delimitation of
independently evolving lineages also supported the recognition of five putative species
among our sample of the Dendropsophus nanus–D. walfordi species complex. The bPTP
analysis using the maximum likelihood solution recognized five entities (Figure S6), and
the ABGD test showed the same number of candidate species in the recursive partition.

3.3. Advertisement Calls

The advertisement call of Dendropsophus nanus specimens (Figure 2) from the type
locality (Colonia Resistencia, Chaco, Argentina) (N = 10 recorded males) was composed
of two types of pulsed notes, referred to herein as notes A (long note) and B (short note)
(following [60]), both with similar dominant frequencies. Calls were often emitted in a
series of 2 to 6 notes (mean 2.4; SD = 0.4; N series of notes = 236, N males = 10) consisting of
1 note A followed by 1 to 5 B notes (e.g., AB, ABB or ABBB). A note was emitted alone or in
series, whereas note B was only emitted in series. When in a series (e.g., ABB), the notes
were emitted at a rate of 2.63 to 4.73 per second (mean 3.8; SD = 0.3; N series of notes = 86).
The interval between the notes within the series ranged from 165 to 320 ms (mean 221.8;
SD = 18.6; N note interval = 117). The amplitude modulation in notes A and B was incomplete,
and the pulse envelope varied; in note B, the last pulse was longer than the other pulses.

The note A duration ranged from 29 to 56 ms (mean = 41.2 ms; SD = 4.4; N notes = 145).
These notes were formed by 7 to 15 pulses (mean = 10.9; SD = 1.3; N notes = 124). The pulse
duration ranged from 2 to 11 ms (mean = 3.7 ms; SD = 0.2; N pulses = 163), and the pulse
rate ranged from 194 to 351 pulses per second (mean = 265.8; SD = 20.9; N notes = 124).
The dominant frequency ranged from 3703 to 4546 Hz (mean = 4246 Hz; SD = 165.2;
N notes = 145). The note B duration ranged from 13 to 31 ms (mean = 21.1 ms; SD = 2.7;
N notes = 134). These notes were formed by 3 to 9 pulses (mean = 4.9; SD = 1.0; N notes = 111).
The pulse duration ranged from 2 to 14 ms (mean = 4.2 ms; SD = 0.7; N pulses = 113), and the
pulse rate ranged from 143 to 360 pulses per second (mean = 244.5; SD = 34.9; N notes = 113).
The dominant frequency ranged from 3937 to 4593 Hz (mean = 4259 Hz; SD = 135.4;
N notes = 134).

The advertisement calls of 133 other specimens from 27 Brazilian localities were similar
to the call described for the topotypes of D. nanus (for details on the specimen localities
and calls, see Tables S1 and S2, respectively). Most of the analyzed calls had a conserved
structural difference in amplitude modulation between notes A and B. However, it is
worth noting that, in some cases, this difference was not completely clear due to the great
variation in the amplitude modulation of notes emitted by the specimens. Five out of the
ten specimens from the 27 analyzed localities were included in the genetic diversity or
phylogenetic analysis and were nested within clades A, B, C and E. All analyzed calls were
very similar in their temporal and spectral value traits.
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Figure 2. Advertisement calls of topotypical individuals of Dendropsophus nanus (A–C) and Dendropsophus walfordi (D–F).
(A,D): Spectrogram (top) and oscillogram (bottom) of two notes in the advertisement call of D. nanus (A) and D. walfordi
(D). (A) shows two different notes for D. nanus, the introductory (type A) and the secondary (type B) notes. (D) shows an
introductory and a secondary note in the advertisement call of D. walfordi, which we considered a single type of note, as
they do not differ in acoustic parameters or amplitude modulation (see Results). (B,C): Power spectrum of notes A (B)
and B (C) of D. nanus. (E,F): Power spectrum of the introductory (E) and secondary (F) notes of D. walfordi. Sound files:
Dendrop_nanus_Resistencia_AR_1a_BFVT_Mtc; Dendrop_walfordiCostaMarquesRO12aAAGm671.

The advertisement call of topotypes of Dendropsophus walfordi (Forte Príncipe da Beira,
state of Rondônia, Brazil) (N = 9 recorded males) was composed of one type of pulsed
note, emitted as isolated notes or in a series (Figure 3). The calls were often emitted in
a series of 2 to 26 notes (mean = 6.3; SD = 3.8; N notes = 65). The note duration ranged
from 8 to 30 ms (mean = 15.5 ms; SD = 2.7; N notes = 140). Notes were formed by 1 to
9 pulses (mean = 4.6; SD = 1.6; N notes = 140). The pulse duration ranged from 1 to 20 ms
(mean = 4.2 ms; SD = 1.8; N pulses = 253), and the pulse rate ranged from 50 to 462 pulses
per second (mean = 293.4; SD = 88.1; N notes = 140). The dominant frequency ranged from
4078 to 4734 Hz (mean = 4425 Hz; SD = 212; N notes = 140). The amplitude modulation of
the notes was incomplete, and the pulse envelope was extremely variable.

For 18 specimens from five other localities in the Brazilian Amazon, the advertisement
call was composed of one type of note and was similar in its temporal and spectral
features to the call of the topotypes of Dendropsophus walfordi (for details on the specimen
localities and calls, see Table 1 and Table S2, respectively). However, the first note of each
series differed significantly from the following notes of the same series in terms of both
note duration (p = 0.001; t = 3.38; df = 52; SD = 0.001) and number of pulses (p = 0.001;
t = 3.35; df = 52; SD = 0.35). Specimens from two of these localities were also included in
the phylogenetic analysis and nested within the clade corresponding to Lineage D (see
Table S1).
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3.4. Comparative Acoustic Analyses

The random forest analysis showed a great distinction between the two types of
advertisement calls, call I and call II, of the analyzed specimens (Figure 3), mainly in terms
of note duration and number of pulses. Call I was observed in specimens assigned to
Lineages A, B, C and E, including topotypes of D. nanus. Call II was observed in topotypes
of D. walfordi and in other specimens also assigned to Lineage D.

In call I, the introductory notes differed from the secondary notes in amplitude modu-
lation and all acoustic variables, except dominant frequency (Table 2). Additionally, the
last pulse of type B notes was longer than the other pulses (Figure 2). Because these notes
were so different, we describe this advertisement call as composed of an introductory
note (type A notes) followed by secondary notes (type B notes) repeated in series. In call
II, the introductory notes differed from the secondary notes only in note duration and
pulse number (Table 2) but not in any other acoustic parameters or amplitude modulation
(Figure 2). As such, we considered that call II is composed of a single type of note emitted
in series.

Table 2. Mean and standard deviation (SD) of each note’s acoustic variables and results from Welch’s t-tests comparing
the introductory and secondary notes of the advertisement calls of each species. Bolded p-values correspond to significant
results with α = 0.05.

Mean ± SD Welch’s t-Test

Species Acoustic Parameter Introductory Notes Secondary Notes t p

D. nanus

Note duration (ms) 39.1 ± 7.4 19.6 ± 3.8 5928 * <0.001
Pulse duration (ms) 3.4 ± 0.5 3.9 ± 1.1 1952.5 * <0.001

Pulse number 11.6 ± 1.6 5.1 ± 1.0 28.6 <0.001
Dominant frequency (Hz) 4350.8 ± 272.4 4338.7 ± 268.2 0.3 0.8

Pulse rate 293.3 ± 39.9 268.6 ± 57.4 3851.5 * 0.001

D. walfordi

Note duration (ms) 15.4 ± 2.7 13.0 ± 2.5 3.2 0.003
Pulse duration (ms) 3.8 ± 1.3 4.6 ± 2.1 241 * 0.3

Pulse number 4.4 ± 1.3 3.3 ± 1.0 3.3 0.002
Dominant frequency (Hz) 4492.4 ± 253.8 4483.9 ± 246.6 0.1 0.9

Pulse rate 295.3 ± 108.7 262.4 ± 92.1 1.2 0.2

* Mann-Whitney-Wilcoxon test.
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In a comparison between calls I and II, we noticed that both the introductory and the
secondary notes of call I differed statistically from the notes of call II (Table 3).

Table 3. Results of MANOVA tests comparing each note (introductory and/or secondary) of the two types of advertisement
calls (calls I and II) distinguished by random forest analysis. Bolded p-values correspond to significant results with α = 0.05.

Notes in Comparison Source Df Pillai’s Trace F p

Type A notes Calls (I and II) 1 0.8 80.7 <0.001
Residuals 99

Type B notes Calls (I and II) 1 0.5 20.1 <0.001
Residuals 99

Type A notes of call I and type B notes of call II Calls (I and II) 1 0.8 99.7 <0.001
Residuals 99

Type B notes of call I and type A notes of call II Calls (I and II) 1 0.2 6.4 <0.001
Residuals 99

3.5. Morphology

We did not identify any remarkable morphological characteristics that could differ-
entiate the five major lineages recognized in the DNA-based analyses. Even topotypes of
D. nanus and topotypes of D. walfordi were very similar in external morphology (Figure 4).
Body color and distribution of dorsal spots varied among the analyzed specimens, even
among those collected from the type locality of D. nanus (Figure 5 A(A–E)) and among the
topotypes of D. walfordi (Figure 5 B(C–I)). In general, the analyzed specimens had a brown
to yellow dorsal coloration with multiple spots, which were distributed from the posterior
part of the head toward the sacral region (Figure 5). However, these spots were absent or
barely visible in some individuals. As such, the qualitative analysis of morphology did not
allow us to differentiate the individuals of the five genetic lineages.
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Figure 5. Preserved specimens assigned to Lineages B and E. Note the variation in color pattern and distribution of spots on
the dorsum. (A) (A–E): Specimens UNEC 12433–37 collected from the type locality of D. nanus (Colonia Resistencia, Chaco,
Argentina). (F–I): Specimens AAG-UFU 921–24 collected from Brejinho de Nazaré, Brazil. (B) (A,B): Specimens AAG-UFU
3252 and AAG-UFU 3254 from Belém, Pará, Brazil. (C–I): Specimens AAG-UFU 5306, AAG-UFU 5307, AAG-UFU 5309–11
and AAG-UFU 5342 from the type locality of D. walfordi (Forte Príncipe da Beira, Costa Marques, Rondônia, Brazil).

On the other hand, morphometric data allowed us to detect morphological variation
among lineages, especially between Lineages D and E, and between them and Lineages
A, B, and C. Male SVL varied significantly among lineages (F4.73 = 6.17; p < 0.001), as
Lineage A differed from Lineages B (p = 0.002) and C (p = 0.004), and Lineage C differed
from Lineage E (p = 0.027) (Figure S7). Based on morphometric ratios (Table S3), PCA
explained 58% of the data variation (Figure 6), with the first axis explaining 35% and the
second axis explaining 23% of the data variation. PC1 showed a partial differentiation
between individuals of Lineages D and E. The more important morphometric ratios that
explained the variation captured by PC1 were, in descending order of importance, the
relative foot length (FL/SVL), hand length (HAL/SVL), thigh length (TL/SVL) and head
width (HW/SVL). PC2 evidenced two groups, one constituted by individuals of Lineages A,
B and C in the upper quadrants, and another constituted by Lineages D and E in the lower
quadrants. The variation captured by PC2 was explained by the ratios foot length/thigh
length (FL/TL) and shank length/foot length (SL/FL) (Table 4).

Individuals of Lineages A, B and C presented greater relative foot length, smaller rela-
tive shank length and smaller head width than individuals of Lineages D (which included
topotypes of D. walfordi) and E (which included topotypes of D. nanus). Individuals of
Lineages D and E presented a morphological overlap, but the centroids of each lineage
differed in position in the biplot: the centroid of Lineage E was in the lower right quadrant,
and the centroid of Lineage D was in the lower left quadrant (Figure 6). These different
positions of the centroids indicate some morphological differentiation between these lin-
eages, as individuals of Lineage D presented smaller relative foot, hand and tight lengths
and smaller head widths than those of Lineage E (Figure 6; Table 4). The distribution of
PC1 scores for individuals of each genetic lineage (Figure 7A) evidenced the same results:
a great overlap among Lineages A, B, C and E and a differentiation between individuals
of Lineage D (which includes topotypes of D. walfordi) and Lineage E (which includes
topotypes of D. nanus). In fact, individuals of Lineage D tended to differ morphometrically
from those of all the remaining lineages. The results from ANOVAs confirmed the morpho-
logical pattern that we observed in PCA. In both analyses, with PC1 and PC2, we found
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no morphological difference among individuals of lineages A, B and C, but those from
lineages D and E differed from each other and from the other lineages (Figure 7B,C).
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the 5 lineages recognized in the DNA-based analyses. Each color represents a lineage: red = Lineage A, blue = Lineage B,
brown = Lineage C, green = Lineage D and pink = Lineage E.

Table 4. Loadings of nine morphometric ratios on the first two principal components (PC1 and PC2)
generated by a principal component analysis based on 71 individuals assigned to Lineages A–E. SVL:
snout–vent length. HL: head length. HW: head width. TD: tympanum diameter. ED: eye diameter.
SL: shank length (= tibia length). FL: foot length. TL: thigh length. HAL: hand length.

Morphometric Ratios PC1 PC2

HW/HL −0.497 −0.251
TD/ED −0.412 −0.440
FL/TL −0.067 0.791

TL/SVL 0.717 −0.616
HW/SVL 0.690 −0.363
FL/SVL 0.857 0.031

HAL/SVL 0.793 −0.192
SL/FL −0.300 −0.675

TD/HL −0.523 −0.491
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Figure 7. (A). Box plot of the scores of PC1 of the nine morphometric ratios obtained from 71 indi-
viduals of each genetic lineage recognized in the DNA-based analyses. X represents the mean, the
bottom and top lines represent the 25th and 75th percentiles, respectively, and the bottom and top
dashes represent the minimum and maximum values, respectively. (B). PC1 and (C). PC2 represent
the first two axes obtained in the PCA (see Materials and Methods for details). Points represent mean
values, and the bars represent standard errors.

4. Discussion

In all our phylogenetic inferences, the specimens assigned to the D. nanus–D. walfordi
species complex were grouped into five major clades (Lineages A–E), which exhibited
nonoverlapping geographic distributions. Both the ABGD and bPTP analyses supported
the existence of five independently evolving lineages in this complex, which coincided
with the aforementioned Lineages A–E.

When analyzing the 16S gene fragment proposed by Vences et al. [61,62] and Fouquet
et al. [4] as a good marker for amphibian barcoding, we found low genetic distances
(1.0–1.9%) between the five lineages of the D. nanus–D. walfordi complex. In contrast,
when we analyzed the COI fragment, most of the lineages were differentiated from each
other by genetic distances higher than 6%, which is the threshold suggested by Lyra
et al. [26] to distinguish valid species. Lower distances in COI were found only between
Lineages A and B (4%) and between Lineages C and D (3.9). According to Lyra et al. [26],
3% divergence in the 16Sar-16Sbr fragment (which was proposed as the threshold for
flagging candidate species [4]) corresponds to approximately 6% in the COI fragment. In
our group of interest, the divergence values of approximately 6% observed for the COI
fragment (6.7%) corresponded to 1.9% in the 16S fragment, which is much below the
3% threshold value.
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We also noticed that in the D. nanus–D. walfordi complex, the rate of change in the
16Sar-16Sbr fragment was lower than that observed for an extended fragment that included
almost the entire 16S rRNA gene, the tRNA-val gene and part of the 12S rRNA gene.
Based on this partial H1 fragment, the distances estimated between the five lineages varied
from 1.7 to 3.1%, with only the distance between Lineages A and B being under 2.4% (see
Table 1). These values were similar to those found by Guarnizo et al. [6] between species
of the Dendropsophus labialis group (D. luddeckei, D. labialis and D. meridensis) using the
H1 fragment, which varied from 2.2 to 2.8%. The genetic divergence inferred from DNA
sequences helped Guarnizo and colleagues describe D. luddeckei, which is morphologically
cryptic in relation to D. labialis, although differs from it in acoustic traits. It is worth
mentioning that if only the end of the 16S gene is analyzed, the estimated genetic distance
between the three valid species analyzed by Guarnizo et al. [6] varies from 1.3% to 2.5%
(Table S4). Therefore, at least for the analysis of Dendropsophus species, it is not only the
16Sar-16Sbr fragment but also the H1 fragment that seems to be informative. Additionally,
the analysis of this larger fragment showed high variability between Lineages A to E of the
D. nanus–D. walfordi complex. The topotypes of D. walfordi and D. nanus were recovered
within Lineage D and Lineage E, respectively, between which the average genetic distance
for COI was high (7.2%) and that of the H1 fragment was 2.5%, which was very similar to
that used by Guarnizo et al. [6] to distinguish D. luddeckei from D. labialis.

A further point to note is that the specimen from Taperinha, which is the type locality
of Dendropsophus minimus (Ahl, 1933) [20], was recovered in Lineage D, together with
topotypes of D. walfordi. The analyzed specimen from Taperinha may be assigned to
D. minimus according to the original description of this species, but we have to take into
account that D. minimus was briefly described based solely on the holotype [20] and,
moreover, that the species in the D. microcephalus group are morphologically very similar
to each other. Therefore, although we suspect that D. walfordi is in fact a junior synonym of
D. minimus, further analyses of additional individuals from Taperinha are still necessary to
properly assess this question.

In an attempt to better evaluate the taxonomic status of Lineages A–E, we compared
all these lineages with respect to acoustic and morphological features. Such an integrative
approach is particularly relevant in this case because the genetic distinctiveness among
the five lineages is not high (see discussion about genetic distances above), although they
support the recognition of five species (as inferred from the bPTP and ABGD tests).

The analysis of the advertisement call revealed important differences between Lin-
eages D and E. The advertisement call of D. walfordi topotypes and other specimens
recovered in Lineage D had notes with similar acoustic features (except for note duration
and number of pulses) and similar amplitude modulation. On the other hand, the call of
the remaining specimens (Lineages A, B, C and E), including the D. nanus topotypes, had
two types of notes (notes A and B), which differed from each other in terms of amplitude
modulation and other acoustic traits (e.g., note duration). The analyses of morphometric ra-
tios showed great similarity among Lineages A, B and C and the differentiation of Lineages
D and E. Interestingly, most of the variation among these groups was due to individuals of
Lineage D. This is because males of Lineage D tend to have shorter thighs, foot and hand
lengths than those of Lineage E and smaller relative foot lengths and greater relative shank
lengths than those of Lineages A, B and C.

The advertisement call is subjected to different neutral and selective pressures that
drive speciation in anurans, such as random drift and sexual selection [63,64], and has
even supported the description of cryptic species (e.g., [65,66]). As such, the acoustic
differences that discriminate Lineage D from the other genetic lineages were of fundamental
importance to help us recognize Dendropsophus walfordi (Lineage D) as a valid species
distinct from D. nanus.

Once Lineage D corresponds to D. walfordi, we proceeded to analyze the remaining lin-
eages, as the simple assignment of specimens from Lineages A–C and E to D. nanus would
render D. nanus paraphyletic with respect to D. walfordi (see Figure 1). The advertisement
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call of specimens included in Lineage C, which is the sister group to Lineage D (assigned
to Dendropsophus walfordi), was similar to that presented by the topotypes of D. nanus
(included in Lineage E). However, the morphometric analyses distinguished Lineages D
and E, and the ABGD and bPTP analyses suggested that they represent distinct species,
with a high genetic distance being observed between them (2.5% for the H1 fragment and
7.2% for COI). The neighbor-joining analysis of the 16Sar-16Sbr fragment showed high
similarity between Lineage C and specimens from Bolivia referred to as Dendropsophus
nanus A by Jansen et al. [11] and Schulze et al. [12]. The Bolivian specimens referred to as
Dendropsophus cf. nanus by those authors were clustered within our Lineage D (D. walfordi).
Jansen et al. [11] and Schulze et al. [12] recognized differences between D. nanus A and
D. cf. nanus, especially in their tadpoles and advertisement calls, which reinforced the
divergence between these groups. Taking these data together, to avoid paraphyly between
D. nanus and D. walfordi, we propose that Lineage C identified herein is considered an
unconfirmed candidate species until further studies are performed. Our morphometric
analysis agrees with this proposal, as specimens of Lineage C differ from individuals of
Lineage D by presenting a narrower head and, consequently, a smaller tympanum distance,
characteristics that make them more similar to individuals of Lineages A and B.

In accordance with morphometric analysis, the advertisement calls of the specimens
included in Lineages A and B were also similar to those presented by the topotypes of
D. nanus (included in Lineage E), but the taxonomic assignment of the specimens included
in Lineages A and B should be considered with caution.

A remarkable finding that must be noted when considering Lineages B and E is the
discontinuous genetic variation observed between specimens from Telêmaco Borba in the
Brazilian state of Paraná (clustered within Lineage E) and Lençóis Paulista in the Brazilian
state of São Paulo (clustered within Lineage B). Geographically, these two sites are very
close, being only 266 km apart from each other. However, the genetic distance inferred
from the COI fragment between specimens collected from these localities was 7% (which is
above the threshold for flagging candidate species [26]). Additionally, the genetic variation
within each of these lineages was very low (up to 0.7% for the H1 fragment and 1.4% for
COI), although some specimens included in the same lineage came from very distant sites,
with distances of up to 2090 km for Lineage B and 902 km for Lineage E.

The area that separates Lineages B and E coincides with an ancient fault zone known
as the Guapiara lineament (see Figure 1). Genetic breaks coincident with the Guapiara
lineament have been reported for many groups, such as the toad Rhinella crucifer [67], the
bee Melipona quadrifasciata [68] and the wasps Synoeca cyanea and Synoeca aff. septentrion-
alis [69]. In our analyses, the split between the most recent common ancestral (MRCA) of
Lineages B and A and the MRCA of Lineages C–E was estimated to have occurred ~5 mya.
The Guapiara lineament may have played a role in such divergence, as this fault, despite
being active mainly during the Mesozoic, had its most recent movement dated to the
Quaternary (<1.6 mya) [70]. In this context, it is also noteworthy that in our phylogenetic
analyses, Lineage E, which is distributed south of the Guapiara lineament, is more closely
related to the clade (Lineage C, Lineage D), which is widespread in the Amazon basin,
than to Lineage B, which occurs north of the Guapiara lineament. This result is consistent
with previous studies that show close phylogenetic relationships between species from
the Amazonian and southern Atlantic Forests and support past contact between these
areas [71–73].

Another event that may have influenced the early divergence between the MRCA of
Lineages B and A and the MRCA of Lineages C–E is the uplift of the central Brazil Plateau,
as the last stage of this geological event was estimated to have occurred ~5 mya [74].
At last, the marine regression in South America dated to late Miocene–early Pliocene,
which deeply changed the exposed continental area [75], may also have played a role in
the evolution of this group. Both the uplift of the central Brazil Plateau and the marine
regression of the Paranaense sea were previously invoked to explain the origin of two
clades of snakes of the Bothropsneuwiedi group: the East–West clade, which occurs from
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midwestern to northeastern Brazil, and the West–South clade, distributed from midwestern
to southeastern Brazil [76]. It is worth noting that the geographical distributions of these
clades resemble, respectively, the distribution areas of Lineages A and B and Lineages C–E
of the D. nanus–D. walfordi complex.

Further analyses, which should include nuclear markers, are still needed to assess the
phylogeographic issues regarding the lineages in the study, but until they are available and
based on the discussion above, we advocate that specimens of Lineage B should not be
assigned to D. nanus.

4.1. Comments on Advertisement Call

Here, we have described the call of Dendropsophus walfordi for the first time, based
on the analysis of specimens from six localities, including the type locality. Although
morphological differences are subtle between these species, the advertisement call of
D. walfordi can be clearly distinguished from that of D. nanus, which is composed of two
distinct note types. This finding is especially important because call differentiation can
cause and maintain reproductive isolation between species [63,64,77]. The pronounced
differences in the advertisement calls that we found between D. nanus and D. walfordi may
play a crucial role in the differentiation of these closely related species.

In the D. microcephalus group, monophasic calls with differences in note duration
between the first and the following notes of the series, as described here for D. walfordi,
were previously reported for D. joannae [78] and D. juliani [79]. Even though these notes
are relatively similar, slight differences in temporal and spectral features of call notes are
known to produce neurological responses in conspecific females [80]. Therefore, these
subtle differences between notes should be investigated in further studies to help us better
understand the intraspecific communication among anurans and the evolution of variation
between notes in the advertisement call.

In addition to D. nanus, seven other species of the D. microcephalus group (D. ana-
taliasiasi [81], D. gryllatus [82], D. microcephalus [53], D. rhodopeplus [83], D. phlebodes,
D. robertmertensi and D. sartori [84]) exhibit advertisement calls composed of two note
types. However, none of these seven species had differences in the modulation of the
amplitude between the two types of notes, as observed in D. nanus.

The measurements presented here for the advertisement call of D. nanus are in accor-
dance with those described by Martins and Jim [60] for a population from the Municipality
of Botucatu, state of São Paulo, Brazil, and by Teixeira et al. [16] for topotypical specimens.
Basso et al. [85] examined calls from Argentinian specimens, and Márquez et al. [86] per-
formed an analysis of specimens from Bolivia and did not recognize the two different types
of notes in the call of D. nanus. However, our measurements of the spectral and temporal
traits of the D. nanus call encompass those presented by these authors.

For some species of the D. microcephalus group, both notes of the advertisement call
seem to be important for conspecific interactions. It was previously reported that males of
D. nanus, D. ebraccatus, D. microcephalus and D. phlebodes emit introductory notes in response
to interactions between males [87–89]. In the case of D. nanus, for example, the introductory
notes are related to the spacing between males when in aggregations [48]. Introductory
notes may also be important for attracting females. Males of D. ebraccatus emit these notes
in response to the approach of non-calling specimens [90] and males of D. nanus emit notes
similar to the A notes of the advertisement call in the courtship call [16]. Secondary notes
can also influence interactions between males [87–89] and may be important for attracting
females. For instance, females of D. ebraccatus, D. microcephalus, and D. phlebodes prefer
complex calls composed of either introductory or aggressive notes followed by secondary
notes [87–89]. However, although all these intraspecific interactions have been studied
for D. ebraccatus, D. microcephalus and D. phlebodes, the particular function of each note of
the advertisement call of D. nanus and other species of the D. microcephalus group remains
unclear and should therefore be tested. Such studies are necessary because they can help us
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better understand the selective forces that result in differentiation between call notes as well
as the role of call divergence in the evolution of the D. nanus–D. walfordi species complex.

4.2. Comments on Cytogenetic Data

Cytogenetic data have been very useful in studies about Dendropsophus since this
genus was resurrected to accommodate the Neotropical hylid species known or suspected
to have a diploid chromosome number 2n = 30 [38]. This diploid chromosome number
was confirmed as a synapomorphy for Dendropsophus [91] and the number of telocentric
chromosomes has been useful for interspecific comparisons [13,92]. In some cases, classical
cytogenetic techniques have revealed interesting interspecific differences (such as in the case
of D. nanus and D. sanborni, which differ in the number of telocentric chromosomes [13]),
although in others, the cytogenetic data do not help to distinguish between valid species
(such as in the case of D. jimi and D. sanborni). Moreover, in some cases, cytogenetic
differences were revealed only after the employment of molecular cytogenetic techniques,
as observed for D. seniculus and D. soaresi, whose karyotypes could be differentiated by
the presence of het-ITSs (heterochromatic internal telomeric sequences) exclusively in the
D. soaresi karyotype [92].

Cytogenetic information based on classical cytogenetic techniques is available in the
literature for several specimens assigned to D. nanus or D. walfordi ([13] and references
therein). Some of the sampled sites and even some of the specimens cytogenetically
analyzed by Medeiros et al. [13] were included in our present work, which allowed us
to note that cytogenetic data are available in the literature for Lineages B, D and E of the
D. nanus–D. walfordi species complex. No cytogenetic differences were noted among these
lineages, as all the described karyotypes had 30 chromosomes, heterochromatic bands
restricted to centromeric regions and NOR located in the long arm of chromosome 13 [13].
The same karyotype was found in specimens from Lineage A (data not shown). This
similarity, however, does not contradict our taxonomic decisions since distinct species do
not necessarily have distinct karyotypes, as already pointed out above. For the D. nanus–
D. walfordi species complex, only a few cytogenetic markers are available, and further
molecular cytogenetic studies are still needed.

5. Conclusions

Five independent genetic lineages in the D. nanus–D. walfordi species complex (or
D. nanus–D. minimus, if our hypothesis in the first part of the Discussion is correct) with
nonoverlapping geographical distributions were recovered in our study. The advertisement
call of the specimens included in Lineage E was distinguished from that of the specimens
allocated to Lineage D, leading to the recognition of D. nanus and D. walfordi. In addition
to these two species, up to three unnamed cryptic species are suspected to exist in the
studied group.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/d13110522/s1. Figure S1: Maximum parsimony tree inferred from the H1 and COI fragments.
Figure S2: Bayesian topology inferred from the H1 and COI fragments. Figure S3: Divergence time
estimates for the Dendropsophus microcephalus group. The numbers on the nodes are the average
divergence with the 95% highest posterior density (95% HPD). The corresponding timescale is shown
below the cladogram. Figure S4: Neighbor-joining topology based on the matrix constructed with
the 16Sar-16Sbr fragment (Matrix 2; 457 bp). We did not include the GenBank sequence JF790086
because it apparently contains sequencing errors. Figure S5: Haplotype network inferred by median
joining based on H1 and COI sequences. Figure S6: Delimitation of independently evolving lineages
estimated in the maximum likelihood solution of bPTP analysis. Numbers on the branches indicate
posterior delimitation probabilities. Figure S7: Variation in size among males of Lineages A–E
of Dendropsophus. Box plot of SVL of adult males assigned to the five Dendropsophus lineages
recognized in our study. Table S1: Specimens used in each analysis of this study, their locality and
voucher number and the identification of the tissue samples used to obtain nucleotide sequences
(in bold) or accession number of nucleotide sequences previously available in GenBank. Table S2:
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Advertisement call values (mean ± standard deviation) obtained from 160 specimens of Lineages
A–C,E, including the topotype of D. nanus (*), and six specimens of Lineage D, including the
topotype of D. walfordi (**). Table S3: Morphometric values (mean ± standard deviation) obtained
from 37 specimens of Lineages A–C,E, including the topotype of D. nanus (*), and 34 specimens
of Lineage D, including the topotype of D. walfordi (**). Table S4: Uncorrected p-distances (%)
estimated from the 16Sar-16Sbr fragment between the lineages of the D. nanus–D. walfordi species
complex recognized in this work (Lineages A–E) and the Dendropsophus species analyzed by Guarnizo
et al. (2012).
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