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Abstract: The current work investigated the ecotoxicological effects induced by Titanium Dioxide
(TiO2) nanoparticles (NPs), used at three different concentrations (C1 = 10 µg·L−1, C2 = 100 µg·L−1

and C3 = 1000 µg·L−1) in a laboratory experiment, on the freshwater mussel Unio ravoisieri. Biochemical
analyses of gills and digestive glands revealed a stress-related disruption of the antioxidant system.
The catalase activity and the rates of malonedialdehyde and hydrogen peroxide production were
significantly higher in both organs following the exposure to TiO2 NPs and was concentration-
dependent. In addition, based on the observed changes in acetylcholinesterase activity, it can
be concluded that the disturbance threshold for the cholinergic system was less than 1 mg·L−1

of TiO2. Overall, the results suggest that the mussel Unio ravoisieri could be used as a sentinel
species in monitoring surveys assessing the environmental impact of metallic nanoparticles in
freshwater systems.

Keywords: TiO2 nanoparticles; biomonitoring; biomarkers; oxidative stress; bivalve; Unio ravoisieri

1. Introduction

Since the beginning of the industrial revolution, human activities have increased the
negative impact on the environment with every technological advance [1]. In time, the
nature of the contaminants emitted by humans has also changed. In the XXI century,
a flourishing industry is the one of nanotechnology [2–4]. Consequently, it is necessary for
environmental survey programs to follow closely the emergence rate of such contaminants
in order to prevent, where possible, their detrimental impact on ecosystems and human
health [5,6]. Nanoparticles (NPs) are widely incorporated into many products. However,
despite the obvious benefits for human wellbeing, the increasing demand of NPs inevitably
entails their entry into the environment. Previous studies focused on the modelling of their
distribution in various types of ecosystems (e.g., air, soil, and water) and targeted mostly
the methodological practices that measure their concentrations in the environment [4,6,7].
The nanoparticles, whether inadvertently or deliberately released into the environment,
ultimately reach the aquatic habitats, leading to toxic effects on biota [7].

Metallic nanoparticles (MNPs) are widespread because of their ease of synthesis and
high demand. With the increase in their use in various types of industry, the environmen-
tal impacts of metallic nanoparticles became inevitable [3,6,8]. These emergent products
are detected routinely in aquatic habitats, where they accumulate in living organisms,

Diversity 2021, 13, 679. https://doi.org/10.3390/d13120679 https://www.mdpi.com/journal/diversity

https://www.mdpi.com/journal/diversity
https://www.mdpi.com
https://orcid.org/0000-0002-2915-4834
https://orcid.org/0000-0002-3476-4178
https://orcid.org/0000-0002-2592-8281
https://orcid.org/0000-0002-4979-3369
https://doi.org/10.3390/d13120679
https://doi.org/10.3390/d13120679
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/d13120679
https://www.mdpi.com/journal/diversity
https://www.mdpi.com/article/10.3390/d13120679?type=check_update&version=3


Diversity 2021, 13, 679 2 of 17

potentially modifying their physiology and biochemical response and the proper func-
tionality of aquatic ecosystems [9]. In ecotoxicology, one frequently measured endpoint is
the assessment of changes in body markers. A preferred model group in such assays are
the bivalves [10]. These organisms are abundant, of sufficient size to carry biochemical
analyses, easy to sample and valuable from an economic and ecologic perspective. The
fact that most bivalves are sessile or sedentary and are filter feeders make them ideal for
laboratory bioassays [11,12]. The biomarkers cover several molecular, biochemical, and
cellular changes, which reflect the health status of a studied population [7]. They can
provide accurate and appropriate information on the impact of pollutants on the health of
studied organisms [13].

The current work focused on the response of the freshwater mussel Unio ravoisieri
to TiO2 NPs exposure. We are aware of a single study, which used a hybrid (Au/TiO2)
nanocomposite that has partially covered this topic (Dellali et al. [11]). In this study, the
Au/TiO2 NPs comprised many-faceted quasi-spherical gold cores (10 nm) surrounded by
closely packed titanium dioxide nanoparticles (25 nm) forming a pattern that facilitated
good dispersion. The hybrid Au/TiO2 NPs had a different chemical composition and
properties and was larger (Ø = 35 nm) compared to the TiO2 synthetized and used in the
current experiment (Ø = 10 nm). Such differences are suspected to affect the effectiveness
and spread of NPs entrance into bivalve tissues and consequently the response rates of
biomarker activities. The current experiment aimed for a better understanding of the TiO2
NPs toxicity by employing a wide range of concentrations (i.e., 10, 100, and 1000 µg·L−1)
and to choose relevant concentrations of the metallic alloy MNPs of Au/TiO2 (100 and
200 µg·L−1). The increasing contamination rate with nanoparticles (NPs) at concentrations
ranging in concentration several orders of magnitude in surface and sewage treatment
effluent waters [14,15] raises nowadays serious concerns on their potential toxic effects for
aquatic ecosystems [11]. Moreover, the results could provide a useful tool for improving the
current knowledge gap on the toxic effects of TiO2 NPs on aquatic life. The novelty of the
current work is the fact that most previous experiments have focused on marine taxa [11],
despite the fact that lotic ecosystems are the primary receptacles of these xenobiotics.
Therefore, we tried in the current study to fill this knowledge gap by answering to the
following questions:

(i) Are TiO2 NPs harmful for the freshwater mussel Unio ravoisieri?
(ii) If positive, how do the biomarkers in Unio ravoisieri tissues respond?
(iii) What are the organs targeted by TiO2 NPs, and what are the thresholds of their toxicity?

2. Materials and Methods
2.1. Sampling Area and Collection Site

The unionid mussels are of special interest, mainly the species Unio ravoisieri that is
likely to be one the most threatened species of the Unio pictorum group [16,17].

The individuals of Unio ravoisieri used in the current experiment were sampled from
‘Wadi Sejnene’, a permanent and endorheic river, which flows into Lake Ichkeul (Bizerte,
Northern Tunisia) (Figure 1). It covers an area of 372 km2 between ‘Cap Serrat’ and Ichkeul
lake, with a length of 68.4 km [18]. The substrate from where the bivalves were collected
(37◦11.603′ N, 9◦34.764′ E) was comprised mostly silt/clay, coarse sand, gravel, and rock
blocks and the aquatic vegetation is dominated by reeds and Potamogeton spp. [18]. The
number of individuals collected for the current experiment was within the safe range that
does not jeopardize the viability of the local population [19].
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were placed in aquaria (30 × 20 × 20 cm3) filled with filtered river water (0.7 μm pore-size 
Glas Microfibre GF/F, Whatman) [12]. Individuals of Unio ravoisieri were placed in glass 
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left for an acclimatization period of 7 days. The experiment design comprised the follow-
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experiment, 48 h and 7 days, the water being renewed every 48 h [12]. The experimental 
aquariums were constantly aerated through a continuous bubbling with an air-diffuser, 
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washed several times with ethanol/acetone (2:1), and dried afterwards in vacuum, at 50 
°C for 12 h. The TiO2 NP was calcined at 400 °C. In a next step, hybrid Au/TiO2 NPs were 
synthetized using the same protocol as above, by adding hydrogen tetrachloroaurate (III) 
trihydrate (HAuCl4:3H2O) (from Sigma-Aldrich) as source of gold precursor. During the 
annealing process of TiO2 NPs the solvothermal treatment induces crystallinity, and thus 
the solvent molecules entrapped inside particles are removed [20]. 
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Figure 1. Collection site (S) of the freshwater bivalve Unio ravoisieri. Oued (O).

2.2. Sampling and Laboratory Conditions

The collected individuals were partially buried in sediment at a depth of 0.5 m.
On the sampling day (4 April 2017), three parameters were measured at the sediment–
water interface: temperature (= 18 ◦C) and salinity (= 1.5 PSU) using a Microprocessor
Conductivity meter (LF.196) and pH (= 8) using a pH-meter (WTW pH 196). The collected
individuals were transferred to the laboratory in a cooler box. In the laboratory the animals
were placed in aquaria (30 × 20 × 20 cm3) filled with filtered river water (0.7 µm pore-
size Glas Microfibre GF/F, Whatman) [12]. Individuals of Unio ravoisieri were placed in
glass aquaria, each filled with 1 L of water and containing five individuals. The animals
were left for an acclimatization period of 7 days. The experiment design comprised the
following: a control and three treatments with TiO2 (C1 = 10 µg·L−1, C2 = 100 µg·L−1, and
C3 = 1000 µg·L−1), each set up in triplicates. Two time periods were selected before starting
the experiment, 48 h and 7 days, the water being renewed every 48 h [12]. The experimental
aquariums were constantly aerated through a continuous bubbling with an air-diffuser,
and the photoperiod was set at 16h/8h of light/darkness cycle. The mussels were fed every
two days (Algamac 82 protein plus, approximately 150,000 cells per individual) during the
whole experiment, and no mortality was registered.

2.3. Synthesis, Structural, and Optical Characterizations and Assessing Concentrations of
TiO2 Nanoparticles

Titanium (IV) butoxide (Ti (OCH2CH2CH2CH3)4), Aldrich, AR grade) (5 mL) was
dissolved in 50 mL of Dimethyl Sulfoxide (DMSO) ((CH3)2SO, Sigma) to prepare the
NPs solutions. Then, the solution was heated to 190 ◦C and kept at this temperature for
2 h under mechanical agitation. Once the reaction was concluded, centrifugation was
employed to separate the precipitate. In order to collect the TiO2 powder, the remnants
were washed several times with ethanol/acetone (2:1), and dried afterwards in vacuum,
at 50 ◦C for 12 h. The TiO2 NP was calcined at 400 ◦C. In a next step, hybrid Au/TiO2 NPs
were synthetized using the same protocol as above, by adding hydrogen tetrachloroaurate
(III) trihydrate (HAuCl4:3H2O) (from Sigma-Aldrich) as source of gold precursor. During
the annealing process of TiO2 NPs the solvothermal treatment induces crystallinity, and
thus the solvent molecules entrapped inside particles are removed [20].

The morphology of the TiO2 NPs was observed using transmission electron mi-
croscopy (TEM) JEOL 2011 (JEOL Ltd, Tokyo Japan) microscope operating at 100 kV.
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The average size of the TiO2 nanoparticles was approximately 10 nm [20]. To confirm the
formation of titanium dioxide (TiO2) nanomaterial, XRD measurement was performed. The
shape of the obtained nanomaterial was also observed by transmission electron microscopy
(TEM) and SEM microscopy using JEOL 2011 instrument working at 100 kV. To study the
stability and the character of the particle surface of TiO2 NPs, zeta potential technique was
performed at room temperature and the pH value was adjusted to 7.4.

The process of sedimentation was followed during 7 days from dispersion, with a
PerkinElmer Lambda 650 UV–Vis spectrophotometer [21,22]. By measuring the absorbance
at 269 nm of a range of TiO2 dispersions of known concentration the calibration curve was
obtained. The concentration of suspended TiO2 was estimated after dispersion through
absorbance at 0, 1, 2, 4, 6, and 24 h and 2, 3, 4, 5, 6, and 7 days. Each absorbance was
measured three times, from the uppermost layers of dispersions (<1 cm from the surface).
The volumes were left unmoved in 50 mL Falcon tubes at room temperature during
the experiment to avoid perturbation and resuspension. The sedimentation profile was
obtained by plotting normalized concentration values (i.e., C/C0, where C0 is the initial
concentration at 0 h and C refers to specific time points) in time, expressed as means ± SD.

2.4. Biochemical Analyses

At the end of the experiment, the changes in four biomarkers response were mea-
sured to assess the toxic effects of TiO2 nanoparticles: (1) acetylcholinesterase (Ache),
a neurotoxicity biomarker; (2) catalase (CAT), a defense biomarker against oxidative stress;
(3) hydrogen peroxide (H2O2), an important Reactive Oxygen Species ‘ROS’ generated un-
der oxidative stress conditions; and (4) malonedialdehyde (MDA), a frequently measured
cellular damage biomarker resulting from the lipid peroxidation.

The mussels were frozen in liquid nitrogen, dissected by removing first the valves,
following the incision of the adductive muscles with a scalpel. After dissection, the gills
and digestive glands were extracted with a clamp and placed in pills for grinding. The
grinding was performed using an Ultra Turrax (IKA) in 3 TBS buffer volumes (Tris 50 mM,
NaCl 150 mM, pH 7.4). The homogenate obtained was then centrifuged at 9000 g for 30 min
at 4 ◦C. The protein dosage was obtained based on Bradford’s method [23].

The quantification of H2O2 was carried out using a Biomagreb kit (Tunisia). The
concentrations were deduced from pre-known hydrogen peroxide concentrations, ranging
from 0 to 1000 mM. After 15 min incubation at 37 ◦C, the optical density was read at
505 nm. Moreover, the catalase’ activity was measured according to the Aebi method [24]
and Beutler [25], respectively. The amount of peroxidized lipids was estimated from the
amount of MDA formed. The activity was measured according to the colorimetric method
of Ellman et al. [26]. Finally, the AChE activity was evaluated according to Ellman et al. [26]
by determining the thiocholine produced after acetylthiocholine hydrolysis by AChE using
Ellmann reagent or 5.5′-dithio-bis(2-nitrobenzoic (DTNB).

2.5. Statistical Processing

The statistical analysis of data was performed with the software SPSS v.10. The
distribution of biological measures (i.e., the enzymatic activity) is known to be normally
distributed. Data were first checked for the homogeneity of variances and Gaussian
distribution with Bartlett and Kolmogorov–Smirnov tests, respectively. One-way ANOVA
was used to check for general significant difference among treatments and control, followed
by multiple comparisons with Tukey’s HSD ((honestly significant difference) test. The
threshold of significance was set at p-value < 0.05.

3. Results
3.1. TiO2 nanoparticles Morphology

As shown in Figure 2, the diffractogram of the prepared sample revealed the formation
of TiO2 (Figure 2); all diffractions peaks can be the anatase structure (JCPDS 01-084-1286).
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The powder appeared with high crystallinity and the broadening of peaks revealed the
formation of TiO2 in the nanostructure form.
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Figure 2. XRD pattern of TiO2 nanoparticles.

Figure 3a displayed the TEM image of the sample. As shown, the majority of particles
exhibited the spherical shape with the presence of some irregular particles with an average
size of 10 nm (Figure 3b). Based on EDX spectrum (Figure 3c), the sample presented high
purity; only Ti and O chemical elements were detected with no other addition impurity.
The SEM image shown in Figure 4 confirms the morphology of the sample; most of particles
revealed the spherical shape as shown previously by TEM images.

As shown in Figure 5, the zeta potential value reached −60 mV. This value implied
that in solution, the TiO2 surface was saturated by negative oxygen molecules as shown
in the inset of Figure 5. Thus, this comportment can enhance the potential stability of the
suspension and consequently improve the stability of TiO2 NPs even in hard saline solution.

The data presented in Table 1 show that the TiO2 concentrations did not change
significantly between the targeted concentrations by the end of the experiment, for both
time slots considered (i.e., 48 h and 7 days).

Table 1. TiO2 concentrations (µg·L−1) measured in untreated control (Ut) and treated (C1-3) waters
at the start of the experiment (T0) and after 48 h and 7 days. Undetected (UD). Different letters next
to values indicate significant differences (log-transformed data, Tukey’s HSD test, p < 0.05).

Time Slots T0 48 h 7 Days

Ut 0 UD UD
C1 10 (a) 9.023 ± 0.011 (a) 8.112 ± 0.048 (a)
C2 100 (b) 92.571 ± 4.239 (b) 90.280 ± 2.608 (b)
C3 1000 (c) 876.706 ± 10.210 (c) 843.249 ± 8.335 (c)
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3.2. Hydrogen Peroxide (H2O2) Content

The H2O2 content in gills were similar in C1 and controls, but significantly higher in
C2 and C3 after 48 h and 7 days exposure of Unio ravoisieri to TiO2 NPs (Figure 6). In the
digestive glands the mean rate of H2O2 production increased from about 5 times in C1 up
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to 20 times for C3 compared to control, a pattern similar after 48 h and 7 days exposure
time, respectively (Figure 6).
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are significantly different using Tukey’s HSD test (p < 0.05).

3.3. Catalase (CAT) Activity

The catalase activity in gills and digestive glands was significantly higher in contami-
nated microcosms (Tukey’s HSD test, Figure 7; p < 0.05) compared to control. The exposure
of Unio ravoisieri for 7 days to TiO2 nanoparticles showed a similar response of the CAT
activity to that recorded after 48 h (Figure 7). Overall, the catalase activity was the highest
in both glands in C2 treatment.

3.4. Malonedialdehyde (MDA) Content

After 48 h exposure to TiO2 nanoparticles, the MDA content in gills was significantly
higher in C2 and C3 compared to C1 and control treatments, whereas in the digestive
glands significant changes were detected only in C3 (Figure 8). A significant increase in
MDA content in the digestive gland was recorded in C2, five times higher compared to
control after 7 days (p < 0.001). However, following 7 days exposure, no significant changes
were observed in MDA content in gills among treatments (Figure 8).

The AChE activity reached the highest values in the control mussels after 7 days. The
exposure to TiO2 nanoparticles was followed by a significant decrease in AChE activity
in both organs compared to control (Figure 9, p < 0.001) such as in C2 for gills and C1 for
the digestive gland (Figure 9). The results obtained after 7 days of contamination by TiO2
nanoparticles were overall similar to those found after 48 h.
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are significantly different using Tukey’s HSD test (p < 0.05).
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4. Discussion

During last decades the nanotechnology industry flourished, including the TiO2
nanoparticles [27–29]. The latter products are mainly used in cosmetic, food, and pharma-
ceutical industries, catalysis, water purification and in several construction materials [30].
The nanoparticles are tiny but a high surface/volume ratio, which makes them very re-
sponsive and with unique physicochemical properties compared to conventional forms,
mainly related to their mobility and contamination potential of soils and drinking water
sources [30]. Thus, the TiO2 NPs have the potential to become an important pollutant in
wastewaters and effluents [31–33]. The continuous input of pollutants into fresh waters
and their permanence in the sediments can produce important acute and chronic effects
to freshwater mussels, which have sedentary habits and long-lived life histories [34–38].
Several properties make bivalves ideal for ecotoxicological risk assessment research [39–44]:
they are sessile, easy to collected, filter feeders, and accumulate suspended particles from
water, including pollutants, and are usually resilient to a wide array of environmental
stressors, both in situ and in laboratory conditions.

The toxicity of nanoparticles was studied in molluscs, with advanced processes of
internalization of nanoparticles through endocytosis [45]. In addition, the ability of bi-
valves to bioaccumulate toxic compounds makes this group a key component in the trophic
transfer of environmental pollutants through food webs [45–47]. Thus, bivalves could be
considered vulnerable to the toxicity induced by nanoparticles [48–51] and are representa-
tive models for the monitoring of aquatic pollution. The literature on TiO2 NPs supports
the hypothesis that they have negative effects on aquatic biota, but very little attention was
given to freshwater compared to marine organisms.

For the current research, the concentrations of dissolved TiO2 NPs appeared to be
constant throughout the experiment and comparable to those employed at the beginning
of the assay (10, 100, and 1000 µg·L−1). This could be explained through the well-known
catalytic properties of TiO2 NPs. The results showed that the TiO2 NPs induced an increase
in the rate of H2O2 synthesis in gills and digestive glands of the freshwater mussel Unio
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ravoisieri. This result is in accordance with previous studies that used hybrid Au/TiO2 NPs
(average size of 35 nm) during 48 h and 7 days [11] or used other aquatic organisms [52,53].
The oxidative stress is one of the major effects induced by NPs on aquatic organisms [54].
Previous studies reported that TiO2 NPs induce oxidative stress by generating ROS in
zebrafish [55,56], phytoplankton [57], bacteria [58], abalone [59], and bivalves [49]. The
ROS response induced by exposure to TiO2 NPs could induce oxidative damage, such as
lipid peroxidation with the depletion of antioxidant enzymes like the superoxide dismutase
and catalase.

According to Valko et al. [60], the H2O2 acts in various biological processes at cellular
level and their synthesis rate is controlled by catalase, an essential enzyme in detoxification
processes and plays a crucial role in antioxidant mechanisms. This enzyme is located in
peroxisomes, facilitating the conversion of hydrogen peroxide (H2O2) to molecular oxygen
(O2) and water [61]. The increase in CAT activity observed in this experiment can therefore
be linked to the increase in H2O2 production rate in gills and digestive glands.

The produced H2O2 is further catalyzed by the Fenton reaction [62] in hydroxyl
radicals that attacks lipids, proteins, and nucleic acids [63,64]. One of the first defense
mechanisms for Unio ravoisieri to counteract the exposure to TiO2 NPs is the induction of
the antioxidant defense system in the two targeted organs (i.e., gills and digestive gland).

Similar results were previously recorded for Unio ravoisieri following exposure to
hybrid Au/TiO2 NPs (35 nm) [11] and in the bivalve Scrobicularia plana following 3 mg·kg−1

of NPs of ZnO contamination [65], as well as for the freshwater mussel Elliptio complanata
exposedto 2 mg·L−1 of ZnO [66]. For the freshwater clam, Corbicula fluminea, Renault
et al. [67] and Cid et al. (2015) noticed also that the CAT activity increased directly with
the concentration of the NPs of gold and diamond, respectively. Finally, Pan et al. [68]
showed that the CAT activity increased in the clam S. plana exposed to a concentration of
100 mg·L−1 of Au NPs. Our results are in accordance with the findings of Ali et al. [69]
who observed that the CAT activity in the digestive gland of the snail Lymnaea luteola
exposed to the NPs of ZnO increased directly with employed concentrations and to those
of Basha and Rani [70] who reported similar responses for the freshwater fish Oreochromis
mossambicus. The catalase activation seems to be a classic response following exposure to
metallic nanoparticles [68,71–73].

Several authors have explained the variability of H2O2 and catalase activities found
between gills and digestive glands, respectively, by the higher numbers of peroxisomes
in the latter organ. This membrane-bound organelle holds the main source of hydrogen
peroxide [61,74,75]. In contrast, the inhibition of the catalase activity in the freshwater
mussel Unio ravoisieri treated with 1000 µg·L−1 of TiO2 could be related to the flow rate of
hydrogen peroxide, which was reported to act as an inhibitor of catalase [65]. Comparable
results were reported by Zhu et al. [59] who showed that 1 mg·L−1 of TiO2 NPs caused
a significant increase in CAT activities in the marine abalone. However, the exposure
to 5 mg·L−1 significantly inhibited the SOD and CAT activities of zebrafish [55]. Thus,
it seems that beyond a certain threshold of NPs, the purifying capacity of gills against
the entry of TiO2 NPs reaches a plateau, followed by the inactivation of the catalase
activity [76]. Inevitably, such decline causes a general collapse of the physiological status
in bodies of stressed bivalves [62,76]. A study on zebra fish [61] showed also a similar
inhibition rate of the catalase activity at high concentrations of NPs of ZnO, CuO, and
TiO2. Finally, [77] also showed that such inhibition of the catalase activity in the mussel
Mytilus galloprovincialis is due to the interaction between silver NPs and the thiol group of
the antioxidants (CAT, SOD).

The antioxidant enzymes play an active role in ROS catalysis. However, any remaining
parts of ROS could result in lipid peroxidation. The MDA content was widely used
as an indicator of oxidative damages [78]. Many studies reported that TiO2 can cause
membrane damage after lipid peroxidation [22]. During this work, after 7 days of exposure,
the MDA rate increased significantly with TiO2 concentrations in both organs of Unio
ravoisieri. This emphasizes the sensitivity of these organs that represent the first barriers
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for xenobiotics [79]. In the case of contamination with hybrid Au/TiO2 (35 nm) [11],
Unio ravoisieri showed a similar response in digestive gland after 7 days of exposure. An
in vitro study using the bivalve Aulacomya atra atra showed a great increase in the MDA
rate in gills [80], and the effects were most visible when the mussels were exposed to a
concentration of TiO2 NPs of 100 µg·L−1. The results from this experiment are also in line
with those of Cid et al. [81] who reported that the MDA rate showed a significant increase
for the Asian clam Corbicula fluminea after 14 days of exposure to different concentrations
of nanodiamond (0.01-10 mg·L−1). In the case of the carp Cyprinus carpio juveniles, Hao
and Chen [82] observed that the MDA rate increased significantly in gills, liver, brain, and
intestines after two weeks exposure to 50 mg·L−1 of ZnO NPs. Recently, Xia et al. [83]
showed that the contamination with TiO2 (1 mg·L−1 for 14 days) induced in the marine
scallop Chlamys farreri significant increase in the MDA rates.

The results suggest that TiO2 NPs are able of inducing cell damage, and this is probably
corroborated with excessive production of free-radicals. It is known that immediately after
exposure to TiO2 NPs the antioxidant system (i.e., CAT activity and other antioxidants)
is effective in preventing deleterious effects on lipids. However, the increased content of
MDA in time seems to indicate that the antioxidant capacity was exceeded by the increasing
production rate of TiO2-induced ROSs.

The regulation of acetylcholine is ensured by the acetylcholinesterase [84]. The hy-
drolysis reaction causes the formation of choline and acetate from acetylcholine. The
367 changes in enzymatic activity can reveal alterations of the behavior and muscular
activity of exposed organisms to organic or metallic contaminants [85]. In this context, the
acetyl-cholinesterase (AChE) is commonly defined as a neurotoxic biomarker in aquatic
organisms [86,87].

The results obtained in the current study showed that the high employed concentra-
tions of TiO2 NPs strongly inhibited the AChE activity in Unio ravoisieri without reaching
the level of muscle tetanization, given that no mortality was recorded during the ex-
periment. This is in accordance with Dellali et al. [11] for the same species, following
its exposure to hybrid Au/TiO2 MNPs (35 nm) and with those of Buffet et al. [65] and
Minetto et al. [88], supporting the idea that the inhibition of AChE activity in the poly-
chaeta Hediste diversicolor and Nereis diversicolor was related to the toxic effects induced
by increasing concentrations of ZnO NPs. Similarly, it showed that the nanoparticles of
CuO (75 µg·L−1) contributed to a significant inhibition of the AChE activity in the clam
Ruditapes decussatus [89]. Katuli et al. [90] and Gomes et al. [74] observed a decrease in
AChE activity in the zebrafish Danio rerio after exposure to Ag NPs and in the mussel Mytilus
galloprovincialis following exposure to CuO NPs.

The inhibition of the AChE activity could be linked to the indirect effect of H2O2
generated under stress [91]. Indeed, hydrogen peroxide is responsible for the alteration of
active site of the AChE [92,93].

The results obtained in the current study are comparable to those of Dellali et al. [11]
who used the same species exposed to 100 and 200 µg·L−1 of hybrid Au/TiO2 MNPs
(35 nm). Our findings showed that significant effects were noticed in the gills of Unio
ravoisieri following exposure to 100 µg TiO2 L−1 for the biomarkers H2O2, MDA, and
AChE. The results seem to indicate that TiO2 (100 µg·L−1) was more toxic for Unio ravoisieri
compared to the hybrid Au/TiO2 (100 µg·L−1), probably because of their lower size and
consequently higher entrance rate during water filtration.

5. Conclusions

The aim of this study was to assess the toxicity of TiO2 NPs on the freshwater mussel
Unio ravoisieri. Three concentrations of NPs (10, 100, and 1000 µg·L−1 of TiO2) were tested
and their response on three biochemical biomarkers were measured after 48 h and 7 days,
respectively. Our findings revealed an increase in the oxidative stress triggered by higher
activities recorded for H2O and CAT concentrations in gills and digestive glands. The latter
enzyme is also involved in the catabolism of H2O2. The simultaneous increase in the MDA
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rate in a concentration depended manner in both organs provided support for claiming
that TiO2 NPs exceeded the defense capacity of the antioxidant enzymes for these mussels,
leading to lipid peroxidation in cell membranes. The findings of the current experiment
showed also that the AChE activity gradually decreased following exposure to TiO2 NPs.
It can be concluded that these nanomaterials behave like a producer of free oxygen radicals
and neurotoxic products.

The current study also emphasized the importance of biomarker use in detecting the
toxic effects induced by emerging materials such as TiO2 NPs for freshwater organisms.
The vulnerability of Unio ravoisieri allowed us to classify it as a useful sentinel species in
predicting the detrimental effects of nanomaterials in freshwater systems.
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