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Abstract: Seahorses (Hippocampus spp.) are threatened as a result of habitat degradation and over-
fishing. They have commercial value as traditional medicine, curio objects, and pets in the aquarium
industry. There are 48 valid species, 27 of which are represented in the international aquarium trade.
Most species in the aquarium industry are relatively large and were described early in the history
of seahorse taxonomy. In 2002, seahorses became the first marine fishes for which the international
trade became regulated by CITES (Convention for the International Trade in Endangered Species of
Wild Fauna and Flora), with implementation in 2004. Since then, aquaculture has been developed
to improve the sustainability of the seahorse trade. This review provides analyses of the roles of
wild-caught and cultured individuals in the international aquarium trade of various Hippocampus
species for the period 1997–2018. For all species, trade numbers declined after 2011. The proportion
of cultured seahorses in the aquarium trade increased rapidly after their listing in CITES, although
the industry is still struggling to produce large numbers of young in a cost-effective way, and its
economic viability is technically challenging in terms of diet and disease. Whether seahorse aqua-
culture can benefit wild populations will largely depend on its capacity to provide an alternative
livelihood for subsistence fishers in the source countries. For most species, CITES trade records
of live animals in the aquarium industry started a few years earlier than those of dead bodies in
the traditional medicine trade, despite the latter being 15 times higher in number. The use of DNA
analysis in the species identification of seahorses has predominantly been applied to animals in the
traditional medicine market, but not to the aquarium trade. Genetic tools have already been used in
the description of new species and will also help to discover new species and in various other kinds
of applications.

Keywords: aquaculture; CITES Trade Database; cryptobenthic fishes; FishBase; identification; pygmy
seahorses; species discovery; World Register of Marine Species (WoRMS)

1. Introduction
1.1. International Trade in Marine Ornamental Fishes

Apart from their role in the global food industry, marine fisheries are also engaged
in the collection and export of tropical ornamental marine fishes for the international
aquarium trade, which is a growing industry involving thousands of species and millions
of individuals per year [1–7]. Most marine aquarium fish are still taken from the wild, in
particular from coral reefs and surrounding environments, providing low-income coastal
communities with a livelihood but also causing the aquarium industry to attract controversy
in terms of sustainability [8–10]. This trade is connected with severe ecological risks,
such as overharvesting of some species and destructive collecting methods [8,11–15] and
the introduction of non-native species in the importing countries [9,16–20]. Collecting
ornamental fish with the help of nets [21–23] can cause a pollution problem when the
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nets are lost and animals are strangled in them [24]. Other concerns are raised around
the high mortality rate due to bad conditions during transport and the lack of proper
husbandry facilities along the supply chain [10,25,26]. Shallow-water marine habitats are
already under pressure due to the results of climate change, unsustainable fishing, land
reclamation, and pollution. It is therefore vital that the collection of marine fish for aquaria
does not cause further damage [27]. One group of marine animals popular in the global
ornamental fish trade and vulnerable to population decline are the seahorses (Hippocampus
spp.). The charisma of seahorses makes them iconic flagship species to address challenges
and solutions in marine conservation [28].

1.2. International Trade in Seahorses (Hippocampus spp.)

Seahorse species (Syngnathidae: Hippocampus) are also among the fishes that are
subject to overfishing and other anthropogenic disturbances, such as habitat loss [29].
Millions of seahorses are collected each year globally to meet the demand of the traditional
Chinese medicine market and the marine ornamental industry [28,30–34], which are mostly
caught by nonselective fishing methods and partly as bycatch [35–40] but also by hand [41].
Hippocampus species range in maximum body length from about 1.5 cm in length to 35 cm
(Table 1) and are characterized by their fused jaws, prehensile tail, bony plated skeleton,
and typical upright posture [42,43]. Owing to their characteristic appearance and suitable
size, seahorses are popular among sea aquarium hobbyists. Seahorses have a unique
reproduction style in which the female deposits eggs in an abdominal chamber of the male,
where the young are incubated [43]. Seahorses are live bearers, which means that after
the eggs are fertilized and brooded, the male gives birth by releasing tens to hundreds of
juveniles into the water [44].

At present, there are 48 accepted Hippocampus species (Table 1). They occur in
tropical and subtemperate shallow waters all over the world but mostly in the Indo-
Pacific [30,45,46]. The combined pressure from habitat degradation as a result of anthro-
pogenic and natural disturbances, and illegal and unregulated fishing of seahorses, has
raised concerns over the overexploitation of some species [28,47]. This led to the inclusion
of all Hippocampus species (as the first marine fishes) into Appendix II of CITES (Conven-
tion for the International Trade in Endangered Species of Wild Fauna and Flora) since
2002 with implementation in 2004 [33,48–50]. This means that all CITES Parties need to
ensure that international trade does not harm wild populations; CITES does not directly
address threats that are not related to international trade [51–53]. A party to CITES is a
state or regional economic integration organization for which the Convention has entered
into force. At present, there are 183 Parties [54]. Four Parties (Guinea, Senegal, Thailand,
and Vietnam) had difficulties following the CITES regulations and became the focus of
a CITES Review of Significant Trade, which eventually resulted in trade suspensions for
these four countries [49]. These regulations and the concern about overexploitation have
stimulated the replacement of the fishing of wild seahorses by commercial aquaculture,
thereby possibly reducing the effects on natural populations as suggested earlier [55,56].

1.3. Captive Breeding

Cultivation of ornamental organisms entails the spawning, hatching, settling, and
growth of juveniles and adults in an enclosed system [57]. Around 90% of freshwater orna-
mental fishes are cultured, whereas only 10% of marine ornamental species are estimated
to come from commercial aquaculture [2,58]. The aquaculture of marine aquarium fish is
significantly less advanced, and this industry has been slow to develop and is not widely
accessible [59–62]. The aquaculture of seahorse species is a relatively new venture, with
rising demand and market prices [43,51,63]. The commercial culture of seahorses could
provide an alternative income for subsistence fishers and accommodate a future rise in
global demand [55,64,65].
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Table 1. Hippocampus species ranked by year of description, with accepted names according to WoRMS [66] and FishBase
[67], threat status [68], first year of recorded live or dead specimens (with purpose T = commercial trade) in CITES Trade
Database (included if >25 individuals) [69], and maximum recorded length (with references). IUCN Red List categories that
apply: NE = Not Evaluated, DD = Data Deficient, LC = Least Concern, VU = Vulnerable, EN = Endangered.

Name IUCN Status
First CITES Record Maximum Length (cm)

Live Dead

H. hippocampus (Linnaeus, 1758) DD 1997 2003 15.0 [30]
H. erectus Perry, 1810 VU 1997 2011 19.0 [30]

H. trimaculatus Leach, 1814 LC 1997 2004 22.0 [70]
H. abdominalis Lesson, 1827 LC 1999 2007 35.0 [30]
H. guttulatus Cuvier, 1829 DD 1997 21.5 [71]

H. comes Cantor, 1849 VU 2003 2004 18.7 [30]
H. coronatus Temminck & Schlegel, 1850 DD 1997 13.3 [72]

H. kuda Bleeker, 1852 VU 1997 2003 17.0 [30]
H. mohnikei Bleeker, 1853 VU 1997 2003 8.0 [30]

H. camelopardalis Bianconi, 1854 DD 10.0 [30]
H. whitei Bleeker, 1855 EN 2002 13.0 [30]
H. algiricus Kaup, 1856 VU 2004 2004 19.0 [30]
H. histrix Kaup, 1856 VU 1997 2003 17.0 [30]

H. lichtensteinii Kaup, 1856 NE 4.0 [30]
H. ingens Girard, 1858 VU 1998 2004 31.0 [30]

H. breviceps Peters, 1869 LC 2002 10.0 [30]
H. angustus Günther, 1870 LC 1999 16.0 [30]
H. tristis Castelnau, 1872 NE 18.0 [73]

H. subelongatus Castelnau, 1873 DD 2004 20.0 [30]
H. planifrons Peters, 1877 LC 2011 11.6 [74]

H. zosterae Jordan & Gilbert, 1882 LC 1998 2.5 [30]
H. capensis Boulenger, 1900 EN 2000 12.0 [30]
H. jayakari Boulenger, 1900 LC 1998 14.0 [30]

H. kelloggi Jordan & Snyder, 1901 VU 2005 2003 28.0 [30]
H. sindonis Jordan & Snyder, 1901 LC 10.8 [72]

H. fisheri Jordan & Evermann, 1903 LC 8.0 [30]
H. barbouri Jordan & Richardson, 1908 VU 2002 2005 15.0 [30]

H. dahli Ogilby, 1908 LC 14.0 [46]
H. spinosissimus Weber, 1913 VU 1998 2004 17.2 [30]

H. reidi Ginsburg, 1933 NT 1997 2007 17.5 [30]
H. zebra Whitley, 1964 DD 2004 9.4 [30]

H. bargibanti Whitley, 1970 DD 2.4 [30]
H. minotaur Gomon, 1997 DD 2007 5.0 [30]
H. jugumus Kuiter, 2001 DD 4.4 [74]
H. colemani Kuiter, 2003 DD 2.7 [75]

H. denise Lourie & Randall, 2003 DD 2004 2.1 [30]
H. patagonicus Piacentino & Luzzatto, 2004 VU 15.0 [76]

H. pusillus Fricke, 2004 DD 2.8 [77]
H. pontohi Lourie & Kuiter, 2008 LC 1.7 [75]
H. satomiae Lourie & Kuiter, 2008 DD 1.4 [75]
H. debelius Gomon & Kuiter, 2009 DD 2.4 [78]

H. tyro Randall & Lourie, 2009 DD 6.1 [79]
H. waleananus Gomon & Kuiter, 2009 NE 1.8 [80]
H. paradoxus Foster & Gomon, 2010 DD 6.5 [81]

H. casscsio Zhang et al., 2016 DD 13.3 [82]
H. haema Han et al., 2017 NE 11.4 [72]

H. japapigu Short et al., 2018 NE 1.6 [80]
H. nalu Short et al., 2020 NE 2.2 [83]

Although available cultivation techniques already promote acceptable survival rates
for some species, there still is a need to improve culture protocols, especially in terms of
nutrition and microbiological aspects [57,84,85]. Moreover, over the past few decades, there
have been many studies on the harmful effects of aquaculture on the environment [86–90].
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The benefits and risks of aquaculture as well as the potential social and ecological implica-
tions need to be assessed before aquaculture can be considered a solution [91].

1.4. Research Aim

The aim of this study is to provide insights into the status of international trade in
Hippocampus species for the aquarium industry and the extent to which aquaculture can
meet the demands in the international trade of marine ornamental fishes. By analyzing
available trade data from the CITES Trade Database [69], this review gives an overview of
the worldwide seahorse diversity, their use in genetic studies, the current status of seahorse
trade with regards to their extinction status according to the IUCN (International Union
for Conservation of Nature) Red List of Threatened Species [68,92], maximum lengths
of all species, the most traded species (popularity), the difference between numbers of
wild-caught and cultured species, the most important import and export countries, and of
trends in trade over time. This study also aims to give an overview of current methods
of seahorse aquaculture, to highlight potential pitfalls and challenges, and to identify
priorities to facilitate a sustainable seahorse trade for future years.

2. The Natural History of Hippocampus Species
2.1. Species Discovery: Nominal and Valid Species

In order to better understand the presence and absence of Hippocampus species in the
international aquarium trade, an overview of the species discovery is presented. Based on
data from FishBase and the World Register of Marine Species [66,67], a total of 124 nominal
Hippocampus species have been described, 48 (39%) of which are considered valid (Figure 1;
Table 1). Thus, nearly 60% of the nominal species names are unaccepted synonyms. Most
species (both nominal and accepted) were described in the middle of the 19th century
(1841–1860) and in the last two decades (2001–2020).
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are listed in Table 1.
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2.2. Body Size and Habitat Requirements

Several recently described species are relatively small and known as pygmy seahorses
(Table 1). When body size is plotted against the year of description (Table 1), there appears to be
a significant negative relation, indicating that many of the smaller species were discovered later
than the larger ones (Figure 2). It is obvious that small species, also known as cryptobenthic
fishes, are less conspicuous and therefore more difficult to find and also that they are less
well-known than their larger relatives, as also seen in other fish families [93–95]. Some pygmy
seahorses are considered host-specific, such as H. denise (Figure 3a) and H. bargibanti, which
are usually observed when they are attached to gorgonian octocorals of the genus Annella or
other genera [96–107]. Pygmy seahorses use camouflage, mimicking the background of their
host, which in addition to their small body size, makes them difficult to detect (Figure 3a).
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based on data in Table 1, showing a tendency for additional new species to become exponentially smaller in size, approaching
the function y = 60.17 × 106 × e−0.01x (Pearson correlation coefficient, ln-transformed (R = −0.675, p < 0.00001).

Large seahorse species that are commonly fished, such as H. reidi (Figure 3b), are
overall less specific in their habitat requirements but share several traits with small con-
generics, such as the use of camouflage and an immobile body posture while using the tail
as holdfast [29,108] (Figure 3b), but some species are able to change coloration as part of
their courtship behavior [109,110] or need for camouflage [103]. A few species are excep-
tional and show much interspecific variation in coloration, including bright tints [29,111]
and biofluorescence [96,112]. Various large seahorse species are commonly found in sea-
grass beds [113–118], and as they can be monitored easily by recreational divers as citizen
scientists [119], they can also be handpicked by professional fishermen. A broad habitat
spectrum, as seen in H. reidi [120–122], probably enhances a species’ suitability as an aquar-
ium pet. As seahorses are poor swimmers, the availability of a holdfast is an important
habitat factor [123,124], which may explain why some species have no problem in using
artificial substrates to cling on [125–132].
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Figure 3. Two Hippocampus individuals clinging to gorgonian octocorals in their natural environment:
(a) H. denise at Raja Ampat Islands, West Papua, Indonesia (2006); (b) H. reidi at St. Eustatius, Eastern
Caribbean (2015). Photo credit: B.W. Hoeksema.

3. Hippocampus Species in the International Aquarium Trade

Regarding the trade of seahorses in the aquarium industry and those used as tradi-
tional medicine, there are differences in scale, species composition, source countries, and
consumer countries, which can be found in primary sources, such as the CITES Trade
Database [69] and also in published reports [133].

3.1. Hippocampus and CITES

For the present research, the presence of these species in the international aquarium
industry was determined using the CITES Trade Database [69], as in some previous stud-
ies [33,134,135]. The data were analyzed to provide trade information based on export- and
import-reported quantities of Hippocampus species and most important import and export
countries, differences between countries, and trends over time. The search parameters
in the database consist of year range, exporting and importing countries, source (e.g.,
wild-sourced or cultured specimens), purpose of the transaction (e.g., commercial, scien-
tific, zoo), trade terms (e.g., live specimens, dead bodies), and taxon (species, genus). The
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quantities of the transaction could be either expressed in weight or number of individuals,
but only number of individuals was used in the present analysis concerning live animals.
Data extracted from the database were available for the years 1997–2018, but we need to
keep in mind that not all data represent global trade before CITES, as those of 1997–2004
only denote trade reported by EU member states (seahorses have been listed on EU Annex
D since 1997) and some voluntarily reports from other countries. Only data reported since
2004 are global in scope.

In our analyses, all importing and exporting countries and all trade purposes were
included. Only “live” specimens were considered in the trade terms. Sources only included
codes “W” (taken from the wild), “U” (unknown), “C” (captive-bred), and “F” (born in
captivity as F1 generation from wild-caught parents F0). When a source is “U” or not
mentioned, the trade database assumes that it concerns “W”. This is most evident in pre-
CITES data, when there was no recorded trade in cultured specimens (Table 2). Seahorses
that were reared in captivity are considered cultured (coded as “C” and “F”). Numbers
of seahorses that were ranched were negligible and therefore not taken into account. Re-
exports, although uncommon, were excluded from the analyses to prevent duplicates. For
example, 200 specimens of H. zosterae (W) were exported from the United States to the
Netherlands in 2017 and re-exported to Mexico in 2018 [69]. Individuals of the same species
were exported to Canada in 2010, Germany in 2012, South Africa in 2015, and returned to
the United States in the same years [69]. The CITES trade database does not include data
on domestic trade, mortality of seahorses in captivity, or cultivation in import countries.

Table 2. Import numbers (individuals) of live-traded Hippocampus species in the EU over 1997–2003 [69] (ranking 1 to
12). Hippocampus spp. = other species and unidentified. Source: C = captive-bred, F = born in captivity, W = wild-caught,
U = unknown and unmentioned. Re-exports are excluded.

Species C F W U Total

H. abdominalis (6) 0 0 769 0 769
H. barbouri (11) 40 0 0 0 0

H. comes (10) 0 0 35 6 41
H. erectus (2) 0 0 21,107 6632 27,739

H. hippocampus (3) 0 0 1727 3838 5565
H. histrix (9) 0 0 104 0 104
H. ingens (5) 0 0 1 1000 1001

H. kelloggi (12) 0 0 0 0 0
H. kuda (1) 0 0 29,285 22,156 51,441
H. reidi (4) 0 0 3557 1070 4627

H. spinosissimus (8) 40 0 70 58 168
H. zosterae (7) 0 0 233 0 233

Hippocampus spp. 40 0 40,409 10,254 50,703

Total 120 0 97,297 45,014 142,431

Of the 48 recognized Hippocampus species, 27 are represented in the international
aquarium trade (Table 1). According to EU import data, in 1997–2003 more than 142,000 live
Hippocampus individuals were exported to the EU alone (Table 2). In 2004–2018, after CITES
became effective, a total of almost 680,000 live Hippocampus individuals were recorded as
import (Table 3) and more than 1,090,000 as export (Table 4). Export data are generally
higher because countries are not obliged to report imports, although some source countries
also do not report exports. In some cases, annual species numbers reported by an import
country appear to be higher than those of the export country [69].

Before 2004, there was almost no trade in cultured specimens (Table 2), but this
changed when CITES became effective (Tables 3 and 4). Among the cultured animals, sev-
eral species were predominantly reported as C (e.g., H. reidi, H. abdominalis, and H. ingens)
and others mostly as F (e.g., H. kuda, H. comes, and H. histrix), which may depend on the bi-
ology of the species or perhaps on the preferred cultivation method in the source countries.
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There were also shifts in species composition. In 2005–2013, H. kuda was by far the
most important traded Hippocampus species, followed by H. reidi and H. comes (Figure 4).
For some species, such as H. barbouri, H. histrix, H. kelloggi, and H. spinossimus, reported
quantities were relatively large around 2004–2005. For a few species, it appears that the
number of traded individuals was highest before 2004 (e.g., H. erectus and H. abdominalis)
and gradually decreased after CITES became implemented (Figure 4).
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The most important difference in species composition between the aquarium trade
and the traditional medicine market is that the first is richer in species [133]. Rare species
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are absent in both markets, but some additional species have a low market value as dried
specimens because they are generally too small, such as H. mohnikei, which is widespread
in Asia [136–138]. Some species are rarely traded alive but commonly traded as dried
specimens, such as H. trimaculatus, which occurs in the central Indo-Pacific [139] and is
fished in several Asian countries [38,139–143]. A number of species are much marketed both
as live specimens (Tables 2–4) and dried material, such as H. comes, H. erectus, H. kelloggi,
and H. kuda [133,134,144].

Table 3. Import numbers (individuals) of the most live-traded Hippocampus species worldwide over 2004–2018 [69] (ranking
1 to 12). Hippocampus spp. = other species and unidentified. Source: C = captive-bred, F = born in captivity, W = wild-caught,
U = unknown and unmentioned. Re-exports are excluded.

Species C F W U Total

H. abdominalis (8) 6748 0 243 156 7147
H. barbouri (5) 5167 906 8235 0 14,308

H. comes (3) 6972 61,867 9480 5 78,324
H. erectus (7) 179 1060 7684 160 9083

H. hippocampus (12) 200 20 86 82 388
H. histrix (6) 1037 100 8578 20 9735
H. ingens (9) 3968 0 3146 8 7122
H. kelloggi (4) 0 300 14,037 0 14,337

H. kuda (1) 54,951 231,079 103,337 1065 390,432
H. reidi (2) 105,357 1038 18,723 116 125,234

H. spinosissimus (11) 627 80 3424 0 4131
H. zosterae (10) 4 1448 2805 190 4447

Hippocampus spp. 5919 1607 6997 123 14,646

Total 191,129 299,505 186,775 1925 679,334

Table 4. Export numbers (individuals) of the most live-traded Hippocampus species worldwide over 2004–2018 [69] (ranking
1 to 12). Hippocampus spp. = other species and unidentified. Source: C = captive-bred, F = born in captivity, W = wild-caught,
U = unknown and unmentioned. Re-exports are excluded.

Species C F W U Total

H. abdominalis (4) 26,732 60 165 828 27,785
H. barbouri (5) 6170 2354 14,630 0 23,154

H. comes (3) 30,690 110,986 13,185 0 154,861
H. erectus (9) 1509 505 9786 0 11,800

H. hippocampus (12) 24 0 20 0 44
H. histrix (6) 0 5650 14,637 0 20,287
H. ingens (8) 11,532 0 3216 0 14,748
H. kelloggi (7) 0 0 15,024 0 15,024

H. kuda (1) 71,009 367,645 60,372 0 499,026
H. reidi (2) 291,464 0 12,340 0 303,804

H. spinosissimus (10) 431 0 7029 0 7460
H. zosterae (11) 1644 194 1880 0 3718

Hippocampus spp. 3114 81 6547 324 10,066

Total 444,319 487,475 158,831 1152 1,091,777

3.2. Threat Status and Body Size of Hippocampus Species in the Aquarium Trade

Various Hippocampus species (33%) present in the trade are classified as “Data Defi-
cient” (DD), which are mostly species that have been discovered in the last two decades
(Table 1). This may indicate that abundances of these species are very low, sightings are
rare, and that they may actually be endangered [145]. Most of the recently discovered
species have an IUCN Red List status of Data Deficient (DD) or have not yet been eval-
uated (NE) (Table 1). The 12 most traded Hippocampus species in the aquarium industry
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(Table 2, Figure 4) are among the species that were discovered early, in the period 1758–1933
(Table 1). Eight of these species have the conservation status “Vulnerable” (VU).

Most species of no commercial value are relatively small and have been discovered
recently, two factors that appear to be related (Figure 2). This is also reflected in a minimum
size limit of 10 cm height proposed in fisheries [146–148], which is not relevant for most
species that are not of commercial importance. It is plausible that species that have been
discovered recently (Table 1) are not yet known in the international trade of ornamental
fishes and have not been listed in the CITES Trade Database. Among the small species, the
dwarf seahorse, H. zosterae, described in 1882 (Table 1), is an exception because it is among
the 12 internationally most traded Hippocampus species (Tables 2–4; Figure 4). There is no
export to the United States as this species is native to that country [40,149,150].

3.3. Life History Traits and Habitats of Hippocampus Species

Whether Hippocampus species are suitable as aquarium pets depends on their life
histories and whether they can survive outside their natural habitats. There are various
special handbooks that give advice to hobby aquarists regarding the husbandry of sea-
horses [151–156], and some deal exclusively with the dwarf seahorse, H. zosterae [157–159].
Specific information on seahorse husbandry in public aquariums is also available [103,160].
Because the life span of seahorses is very short, varying from 1 to 5 years [29], aquarium
owners have to replace individuals very quickly, either by new purchases or by breeding.
The number of newborn young released from the male’s brooding pouch varies between 5
and 2000, mostly depending on the body size of the species [29].

The absence of some Hippocampus species in the trade is related to their late discovery
and their cryptic lifestyle (Section 2.2), but it is also possible that they are just too rare
for wild capture [102] or that their habitat requirements are very specific and cannot be
copied in an aquarium environment [103]. Because host occupancy rates were observed
to be low in some symbiotic pygmy seahorses [97] and underwater photographers tend
to disturb their natural environment [161,162], it is fortunate that these species appear to
be uncommon in the aquarium industry. In 2004–2006, 1800 individuals of H. denise were
recorded as exported from Indonesia, whereas only 504 specimens were listed as imported
in Europe and the United States [69]. In contrast, the dwarf seahorse, H. zosterae, can be
found abundantly in shallow seagrass beds in the Gulf of Mexico and the east coast of
Florida [30,163], where they can be collected with the help of nets [40,149,150,164], which
explains why they are available in the aquarium industry [157–159]. This species produces
much offspring [149,164], whereas H. denise in association with gorgonians shows low
population densities [97,102] and a low reproduction rate [107].

Some larger species (at least 8 cm long) cannot be found in the international aquarium
trade because they may be rare or occur in a relatively small distribution range. An
example is H. camelopardalis, which has a restricted range in the southwestern part of
the Indian Ocean [30,165], although there is also an incidental record from northwestern
India [166]. Another example is H. tristis, a relatively large and very rare species, which
is endemic to southern Australia and only known from a few museum specimens and a
recent photograph [73]. Other species with restricted ranges are H. sindonis, which is only
known from Japan and Korea [167], and H. fisheri from the Hawaiian Islands [168] with
some doubtful records from eastern Australia and New Caledonia [30]. The absence of
these rare species in CITES trade records does not imply that they are never caught for
the aquarium trade, although this is unlikely for the extremely rare H. tristis. Another
explanation for the absence of trade records is that some species cannot be kept alive in
aquariums, such as H. fisheri [169]. Some trade records are based on misidentifications,
such as those of H. capensis, an endemic to South Africa [111,115,129] (Section 4.5). Sixty
live specimens of this species were reported as export from South Africa: 30 captive-bred
(C) to China in 2010 for education and 30 that were born in captivity to a zoo in Hong Kong
in 2014. These records do not count as commercial trade [69].
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3.4. Sources of Live Hippocampus Spp.

As trade numbers of seahorses at the species level for 1997–2018 are only available as
import records, trends in source data (wild-caught vs. cultured) can only be analyzed for
that period, but with a distinction between pre-CITES EU-only records and CITES global
records (Figure 4). Importing countries appeared to be most consistent in reporting over
that period. Before 2004, trade records of H. barbouri, H. histrix, H. ingens, H. kelloggi, H.
kuda, H. spinosissimus were close to zero. Later import records of these species increased
and reached a peak. Hippocampus histrix, H. kelloggi and H. spinossimus reached this trade
peak around 2005. Overall, trade in most species decreased over the years. Exceptions
are H. abdominalis, H. ingens, and H. zostera. Hippocampus erectus and H. hippocampus show
relatively high trade numbers before 2004 (before CITES), with a strong decline in trade after
that year. Before CITES became implemented (before 2004), all live-traded Hippocampus
individuals were sourced from the wild (Figure 5). A shift from wild-caught to captive-bred
export became evident after 2004, when the regulation became implemented [50], although
the quantity of wild-caught seahorses still dominated trade numbers. The turning point
came around 2007, when the number of traded wild-caught seahorses started to decline
and the quantity of traded cultured seahorses began to increase (Figure 5).
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Figure 5. International trade in cultured (C + F) and wild-caught (W + U) Hippocampus specimens based on CITES import
data for the period 1997–2018 [69]. Data from before 2004 concern the EU only.

For the whole period 1997–2018, most internationally traded live seahorses came from
a cultured source (Tables 2–4). The majority of the specimens of H. kuda, H. reidi, H. comes,
H. abdominalis, and H. ingens came from cultivation (Figure 6a–c,i,j), whereas the majority of
individuals of H. barbouri, H. erectus, H. hippocampus, H. histrix, H. kelloggi, H. spinosissimus,
and H. zosterae came from the wild (Figure 6d–h,k,l).

In 2004–2018, Vietnam was the main exporting country of live Hippocampus, covering
almost 50% of the traded individuals (Figure 7a). Since 2004, there was a substantial
increase in cultured seahorses reported from this country, which could have been facilitated
by advances in seahorse husbandry and captive breeding [170]. Foster et al. [33] suggest
that this could partly be due to misreporting of wild-caught animals as captive-bred,
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intentionally or as a mistake. The possibility of continued illegal and unregulated trade
resulting in poor-quality trade data makes it difficult to assess the results of seahorse
culture on the exploitation of wild populations [51]. The majority of traded seahorses from
Indonesia and Brazil were wild-caught. For most source countries, it is unclear how many
seahorse individuals are caught for the domestic market or for private use, depending on
whether it is allowed to take live animals (with or without permits).
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concern the EU only. Cultured = C + F; wild-caught = W + U.

The United States was by far the largest importer of live Hippocampus (Figure 7b),
while it also has domestic trade of the native H. zosterae [171,172]. Almost a third of the
imported seahorses came from a cultured source. Apart from the US, Canada, Japan,
and Singapore, other important importing countries are located in Europe. For the EU
single-market, trade among member states is not recorded in the CITES trade database.

3.5. International Trade in Live Animals vs. Dead Bodies

Trade in live seahorses is as young as the international aquarium industry, catering
to hobbyists all over the world, whereas the use of seahorses as traditional medicine has
its roots in China [173,174]. With growing imports from other countries and Chinese
consumers migrating to other countries, this market became larger and more international.
Although most seahorses in the international trade are dried, in some source countries
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the trade in live specimens for the international aquarium industry has been a threat for
natural populations before CITES became effective [30], and many specimens are still
wild-caught (Tables 3 and 4). CITES trade records for live Hippocampus individuals and
(dried) dead bodies show striking differences in composition and timing (Table 1). While
27 traded species have been recorded as live animals, only 18 have also been listed as
dried bodies [33]. With the exception of H. kelloggi, the first trade record of each species
concerned living animals, whereas dead bodies were recorded one to several years later,
suggesting that trade in live animals is more transparent than that of dried specimens.
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The international trade of Hippocampus is divided into two separate markets. For
instance, H. algiricus from West Africa is rare in the aquarium trade and commonly sold
as medicine [33,175]. Most early import data (1997–2003) are pre-CITES records from the
EU, which are mostly unrelated to the medicine market (Section 3.1). However, it is likely
that since 2004, large proportions of dead seahorses in the international trade have also
not been reported [176,177]. Because of their dry conservation, they are of low weight and
they can be densely packed (in concealing packaging), which makes them easy to store and
inexpensive to ship. Nevertheless, in the Philippines, dried seahorses appear to provide
2–4 times better prices to fishermen than live individuals [41]. An increase in the market
price of dried seahorses was noticed after the CITES listing in 2002 [178].

Trade in live specimens is more difficult because the animals need to be packed in wa-
ter and shipped as quickly as possible (as air freight) in order to prevent mortality [179,180].
The overall trade in Hippocampus spp. showed a decrease in the issue of export permits after
CITES became effective in 2004, but this did not concern live individuals (Figure 5) as much
as dried specimens [50]. Possible explanations are (1) some countries were unable to shift
towards sustainable trade, (2) there was a lack of support because not enough people were
involved in the fisheries, or (3) the export volume might have been too low [50]. This trend
is particularly shown by H. histrix, H. kelloggi, and H. spinosissimus, almost all of which
were wild-caught. The declining trend in trade volume may also have been the result of
declining seahorse populations instead of trade regulations [50]. Therefore, depending
on the species, (illegal) trade of dried specimens may also affect seahorse populations
exploited for the international aquarium trade.

4. Aquaculture of Hippocampus

Less than 5% of the ca. 1500 marine ornamental fish species in the international aquar-
ium trade are kept in aquaculture [181,182], and various Hippocampus species (Figure 6)
are part of this minority. The cultivation of Hippocampus spp. is currently only serving the
trade in ornamental fishes, as attempts of large-scale farming for the traditional medicine
markets have not been successful [44]. As mentioned in Section 3.1, the trade data indicate
large differences among species in source preference for either breeding in captivity (C) or
born in captivity (F), which may depend on whether species can be cultivated easily or not
(Tables 3 and 4).

4.1. Methods of Seahorse Aquaculture

Aquaculture of seahorses can be divided into three parts: production of live prey (usually
Artemia sp. and copepods), keeping of breeders, and maintenance of a nursery facility for
juveniles as they grow into an appropriate size [43,44,51,181,183]. There is no larval breeding
stage because fertilized eggs are incubated inside the male’s pouch [43,184–187]. Seahorse
species in captivity usually become sexually active at ages of around 3 to 6 months. During
the breeding season, they maintain a long-pair bond and are generally monogamous in a
single breeding cycle; therefore, selection of the male is important for the fitness and survival
of the young [109,114,183]. Hatching periods usually vary between 14 and 40 days but can
be shorter at high temperatures [188]. The pygmy seahorse H. denise has shown a gestation
period of only 11 days in captivity [107]. Many seahorse species have multiple batches of eggs
during a breeding season, when temperatures and photoperiods are kept constant in culture
operations [189].

In terms of husbandry, seahorses are sensitive to changes in water chemistry. It is
therefore important that the aquarium habitat mimics their natural habitat [43]. More-
over, the keeping of good broodstock and the selection of healthy mating pairs are very
important. Seahorses that are kept in optimal conditions will spawn naturally [43]. The
diet of seahorses in the wild predominantly consists of small pelagic crustaceans, such
as amphipods, copepods, and mysids [190–196], but nematodes are also important prey,
depending on the habitat [197,198]. Prey shape and size are very much determined by the
form of the seahorse head, in particular the long and tubular snout, and by their special
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feeding behavior, including suction and pivot feeding [199–205]. Most seahorse culture
operations rely on cultured live food such as Artemia (brine shrimp), copepods, mysid
shrimps, rotifers, and amphipods, but some also rely on wild-collected food [206–208].
Studies have demonstrated a variety of diets for different species, but enriched food seems
to benefit both juvenile and adult seahorses and their reproduction success [51,209,210].
Skin color in seahorses, which can be variable in some species [109,110,211], is an important
attribute in the aquarium industry and can depend on diet [2,212]. Individuals with the
brightest color are sold for prices up to USD 500, or even higher in exceptional cases [43].

4.2. Challenges in Seahorse Aquaculture

Although aquaculture of seahorses is often thought of as a commercial venture and
as a means to reduce pressure on wild populations, it could also result in negative effects
on the marine environment and its populations. Firstly, the economic viability of seahorse
aquaculture poses a concern. As rearing brood to market size can take months, it is still
unclear whether the aquaculture industry can provide sufficient volumes of Hippocampus
specimens in a cost-effective way to supply the demand [213]. Low survivorship of
juveniles is a major problem in seahorse aquaculture [63,189,214,215]. Moreover, the
acceptability and price of cultured seahorses are matters that need to be determined
beforehand [216]. Economic constraints include costs of local electricity and water and
heating unit efficiency [63]. Until production costs can be optimized or market prices rise,
expansion of seahorse cultivation can be limited in developed countries. In developing
countries, on the other hand, the main challenge of seahorse aquaculture is related to
technical problems, such as rearing and diseases [51]. Under farmed conditions, seahorses
experience stress, which increases their susceptibility to infection and diseases [217].

A variety of seahorse diseases have been reported to cause mass mortalities and
damage to aquaculture operations, including bacterial, fungal, viral, parasitic, and nonin-
fectious diseases [182,218]. For example, vibriosis is a bacterial infection found in aquarium
and aquaculture operations worldwide, causing severe ulcers in the skin of species such as
H. kuda [218–220], while other microbes can cause enteritis, which is also found in other
cultured fish species [221–225]. Thus, apart from the problems these pathogens create
for current aquaculture operations and the extra control and prevention measures that
are required, the pathogens pose a danger to other fish species [218]. This highlights
the requirement of further research into potential drugs and the development of disease
resistance in seahorses.

The need for proper maintenance and water changes, water quality, cleaning, and
feeding regimes are extremely important in aquaculture [182,226]. Most aquaculture
operations rely on the use of intensive monoculture systems, which means that the animals
are kept in aquaria under controlled water parameters and depend on exogenous feeding
to survive. Feeding can create various challenges regarding the type of diet for different
species at different life stages [227]. Moreover, cultivation of high volumes of live food
can be inefficient, expensive, and difficult, while it also can facilitate the introduction
of diseases [63,66,67,228–230]. Furthermore, as most culture operations have open or
semiclosed systems, problems related to effluent, water use, and escapes are very common
in seahorse cultivation [51]. Aquaculture can therefore also result in potential damage to
the marine environment. Lastly, the success of aquaculture practices also partly depends
on how well it can accommodate alternative livelihoods for subsistence fishers in source
countries [51,55,231]. Aquaculture is likely to be most effective in reducing pressure on
wild populations if seahorse fishers in source countries are facilitated to shift towards a
more sustainable seahorse trade.

4.3. Aquaculture in Different Source Countries

CITES Parties strive to record all transactions, but some countries (e.g., Sri Lanka)
recorded large volumes of seahorses for some years while having no records for other
years [33]. According to the CITES trade data [69], the number of captive-bred seahorses
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increased after the listing of Hippocampus species in CITES, especially for Vietnam and
Sri Lanka. Even though the export of live Hippocampus individuals in Vietnam is well
documented in the CITES database, it appears that there are some doubts concerning the
renaming of cultured species [232]. After the ban on the export of H. kuda in 2013, reported
exports of H. kuda born in captivity (source code F) decreased by 99%, whereas exports
of H. comes (with F) increased 5 times. However, Vietnamese companies reported to have
only produced low numbers of H. comes in the past. Moreover, just one aquaculture farm
remained in operation and reported that they only cultured H. kuda. It seems that Vietnam
clearly has been dependent on wild-caught seahorses for its export, whereas its import of
live seahorses from other countries, such as Cambodia and Indonesia [133,232], has only
rarely taken place [69]. Aquaculture facilities struggle to close the life cycle. They primarily
produce F1 generation—the offspring is born in captivity, but pregnant males are caught in
the wild. Therefore, it appears that the commercial culture of seahorses is still reliant on
wild broodstock [232].

In Sri Lanka, researchers were able to establish a successful culturing protocol to breed
H. reidi artificially. Hettiarachchi and Edirisinghe [233] describe broodstock management
and rearing of Hippocampus juveniles and how to develop various color varieties. The
broodstock feeding consisted of a mixed diet of enriched Artemia, mysid shrimps, and estu-
arine copepods. After 5–6 months, H. reidi individuals reached marketable size with mean
survival rates at 65 ± 5%. By culturing non-native Hippocampus reidi, culture operations
in Sri Lanka were able to prove that their export was captive-bred and thus allowed to
continue export under CITES regulations [28].

Indonesia is the main exporter of H. barbouri (W), and exporters have indicated a
willingness to shift towards seahorse culture [231]. A study on the success of implementing
a culture project for H. barbouri in Indonesia found that aquaculture could not fully replace
fishing in livelihoods but instead could partly supplement and diversify fishing and
collecting from the wild [231]. Exporters had great interest in cultivated seahorses, as
they also experienced the results of depleted marine environments, but the economic
feasibility and aquaculture technology need to be improved. Moreover, aquaculture needs
to be part of a larger and multifaceted approach that also targets and improves habitat
protection and restoration, makes livelihoods and stakeholders more diverse, and improves
the enforcement of fishing regulations [234].

For some countries, such as the Philippines, the live trade of seahorses ceased after the
listing of Hippocampus species under CITES. No records are known of illegal or unreported
trade. However, according to Foster et al. [22], the Philippines used to run some seahorse
aquaculture companies in the past and continues to show interest in this industry, leaving
room for potential aquaculture operations in the future.

4.4. Opportunities for Hippocampus Aquaculture

When aquaculture operations struggle with diet and disease, systems provisioning
natural food might be more efficient and could enhance results [181]. One example is an
integrated multitrophic aquaculture system (IMTA) that uses the cage-culture approach.
Fonseca et al. [213] developed a system in which H. reidi individuals were cultured in
free-moving cages inside a shrimp and oyster farm, proving to be technically feasible,
profitable, and resilient.

Another example concerns a cage culture of H. reidi that was set in mangrove estuaries
in Brazil [235]. When cages with seahorses are installed in mangrove ecosystems, the
fish have direct access to their natural prey [29,236,237]. In the Philippines, artificial light
was used in an experiment to lure copepods into cages containing H. barbouri in order to
provide the seahorses with prey [238]. Another study demonstrated a successful integrated
eco-aquaculture system in which H. kuda individuals were cultured in artificial ponds
with fertilized water to nourish natural seahorse food and co-cultured seaweed in order
to regulate water quality and light and to provide holdfasts and prey for seahorses [239].
Another study showed that integrating macroalgae in the production system was beneficial
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for the survival and growth rate of juvenile H. erectus [240]. These low-cost culturing
methods offer numerous opportunities for subsistence fishers and could potentially increase
environmental and social sustainability in low-income communities. Commitment of local
stakeholders can contribute to reduced reduction of the illegal, unregulated, and undeclared
collection of wild seahorses [181]. However, there are also some constraints related to these
production systems, such as creating an ecological imbalance in estuaries, net blockage,
predators, and escapees [235].

Over the years, seahorse aquaculture methods and techniques have improved, but
this sector is still facing many challenges, such as cost-effective production, diet, and
diseases. Seahorse aquaculture still mainly relies on wild broodstock to continue its culture
operations [51,57]. This will become effective if subsistence fishers are encouraged to shift
towards a more sustainable way of seahorse trade. The marine ornamental fish indus-
try is a great opportunity for source countries to become involved in community-based
conservation-focused aquaculture initiatives [231,241]. Therefore, seahorse aquaculture
should be encouraged to focus on the cultivation of local species and operate in the
source countries.

Unless seahorse fishers can derive enough income from aquaculture to sustain their
livelihood, there will be no incentive to protect their biological resources and shift towards
more sustainable measures [51,216]. By involving local communities in aquaculture prac-
tices, it will be easier to reduce the illegal trade of wild seahorses and increase ecological
and social sustainability [181]. In recent years, more research has been done on developing
low-cost aquaculture techniques such as IMTA aquaculture systems that use the cage-
culture approach. These newer aquaculture methods are promising as they are low-cost,
feasible, profitable, resilient, and most of all can be more easily implemented in important
export countries.

Even if there is a shift towards aquaculture operations, this will not motivate fishers
to prevent the capture of seahorses as bycatch because they still use nonselective fishing
methods such as trawling [140,242]. Therefore, increased efforts are needed to improve
seahorse-fishing methods [23]. Since CITES records cannot keep track of domestic trade;
illegal, unregulated, or unreported exports; or misidentifications [144,243,244], it is im-
portant that representative trade field surveys are maintained in areas that are known to
export wild seahorses [245].

To better understand why some seahorses are more popular in the aquarium trade, it
is also important that more research be done on the relationship between, for example, the
length of seahorse species and their presence in trade. Moreover, to improve differentiating
between cultured and wild-caught seahorses, tagging methods should be developed for
captive-bred seahorses along with a certification and registration system for aquaculture
facilities in which they are bred [51]. Furthermore, efforts should be made to motivate
aquarium hobbyists to choose cultured seahorses instead of wild-caught ones, as long
as these come from original source countries [51]. Lastly, there are still some constraints
with IMTA systems that should be dealt with in order to develop a trustworthy cultivation
protocol. Economic, environmental, and social sustainability should be assessed to ensure
that cage culture is realistic and sustainable [235].

Public awareness of the diversity of seahorses and their reproductive biology, ecology,
and iconic shape may also play a role in their conservation. The number of scientific publi-
cations on seahorses published each year is growing steadily (around 40 yr−1 in 2011–2016),
most of them dealing with Hippocampus kuda, H. guttulatus, H. reidi, H. abdominalis, H. erectus,
H. hippocampus, and H. trimaculatus [181]. Interestingly, among these most-studied species,
H. guttulatus and H. trimaculatus are not among the 12 species that are most common in the
aquarium trade (Tables 2–4). Among these 12, seven are not well investigated: H. comes, H.
barbouri, H. kelloggi, H. histrix. H. ingens, H. zosterae, and H. spinosissimus. In other words,
there is a discrepancy between seahorse species popular in trade and science, with some
traded species appearing to be understudied.
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Fishers can be a valuable source of useful information regarding the trade and aqua-
culture of seahorses, not only for scientists but also for tourists [143,246–250]. Public
aquariums can help in the development of seahorse breeding, which is particularly impor-
tant for endangered species [57,231,251–255]. Thanks to aquarium experiments, we know
more about the reproduction of pygmy seahorses [103,107], but little is known about the
lifespan of these rare species because they are hard to keep [104]. Public aquariums can
also be used to study stress displayed by seahorses in captivity [251]. Although it may
seem controversial, hobby aquarists and the aquarium industry can assist in the research
on seahorse husbandry and conservation [255–257].

4.5. Use of Molecular Tools in Hippocampus Diversity Research

Animals and plants in the international trade, their organs or body parts, and par-
ticular products derived from them may be difficult to identify based on morphological
characteristics alone. This problem is also recognized in the international trade of sea-
horses, with less than 10% of the specimens consisting of live animals and the rest of dried
carcasses that are traded in large quantities, possibly composed of mixed species [258]. One
of the latest developments in scientific research on the diversity of seahorses concerns the
identification of specimens with the help of modern molecular techniques.

DNA analyses of various CITES-listed species groups have been performed on speci-
mens found in markets or in international shipments, which helped to identify them at the
species level. Since 2003, this technique became known as barcoding and started by using
the universal mitochondrial gene cytochrome c oxidase I (COI) as a marker [259]. Recently,
new technologies have allowed the development of more specific markers and studies of
entire genomes [260]. It is a prerequisite that material used as original reference should be
identified by taxonomic experts before they become deposited in barcoding libraries (such
as GenBank) and that these libraries are as complete as possible [256,261].

There are many examples of barcoding applied to CITES-listed taxa, most of which
concern terrestrial plants [262–267] and vertebrates [268–272]. Barcoding of marine animals
in the international trade has been widely applied to sharks [273–279], for which advanced
genetic technologies are available [280]. Regarding the international marine aquarium
trade, identification with the help of barcoding has been applied only to an illegally traded
scleractinian coral, which was published in 2020 [281], whereas the need for the barcoding
of marine ornamental fish species was already promoted in 2009 [282].

Molecular studies on Hippocampus species are not scarce, involving 35 of 48 species
(Table 5). The first paper in which genetics was applied to distinguish seahorse species
was a study by Lourie et al. in 1999 [32], which was based on specimens sampled from
Vietnamese markets.
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Table 5. Hippocampus species (Table 1), with geographical range, and numbers of molecular studies for five categories of application (with references; e.g., [283–382]). $ = in international
aquarium trade, ¥ = in traditional medicine [69,133].

Species Name Geographical Range Application of Molecular Analyses

Barcoding/
Genomics

Forensics/
Conservation

Phylogeny
Reconstructions Phylogeography Functional Genetics

H. abdominalis $¥ SW Australia, New Zealand 1 [283] 1 [32] 13 [186,287,305,308, 2 [347,348] 3 [128,361,
[165,347,348] 309,323,331–337] 362]

H. algiricus $¥ West Africa [39,165] 1 [283] 1 [320] 11 [288,289,295,299,302, 1 [339] —
323,333,335,338–340]

H. angustus $¥ N Australia, South P.N.G. [165] — — 3 [322,335,341] — 1 [363]
H. barbouri $¥ Central Indonesia, 3 [284,285,344] 4 [321–324] 24 [186,284,287,288,299, 2 [341,342] —

Philippines 302,305,308,309,314,
[165,341,342] 315,317,322,323,333–

338,341,343,344,380]
H. bargibanti Central Indo–West Pacific [165] 1 [83] — 4 [42,331,334,335] — —

H. breviceps $ Southern Australia [165] 1 [286] — 5 [42,76,323,335,338] — —
H. camelopardalis SW Africa [165] 1 [287] 1 [325] 7 [287,295,305,323, — —

$¥ 325,335,338]
H. capensis Southern tip of Africa 4 [283,288, 3 [320,324, 11 [288,289,295,305, 3 [339,349, —

[165,339,349,350] 289,350] 325] 309,323,325,335, 350]
338,339,345]

H. casscsio South China Sea (SE China) [82] 3 [82,289,344] — 3 [82,289,344] — —
H. colemani Lord Howe Is., E Australia [165] — — — — —
H. comes $¥ Central Indo–West Pacific 5 [284,290–292, [32,321, 26 [76,186,284,287,288, — —

[165] 344] 322,324] 299,302,305,308,309,
314,315,317,322,323,
333–338,341,343,344,

380,381]
H. coronatus $ Japan, South Korea [72,165] — — 6 [72,76,323,333,335,338] — 1 [364]

H. dahlia N, E Australia [165] — — — — —
H. debelius N Red Sea (Gulf of Suez) [78,165] — — — — —
H. denise $ Central Indo–West Pacific [165] 2 [83,283] 2 [331,334] — —

H. erectus $¥ W Atlantic, Caribbean Sea 6 [284,293–297] 1 [324] 23 [76,186,284,287,288, 4 [339,340, 6 [365–
[165,339,340,351,352] 295,299,302,305,311, 351,352] 369,382]

314,315,317,322,323,
332,333,335,337–

339,343,380]
H. fisheri Hawaii [165,168,339] 1 [168] — 6 [308,309,335,336, 1 [339] —

339,340]
H. guttulatus $¥ W Europe, Mediterranean, 1 [298] 4 [326–329] 8 [295,323,333–335, 2 [339,353] 4 [370–373]

Black Sea [165,339,353] 338–340]
H. haema Japan, South Korea [72] — 2 [72,333] — —
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Table 5. Cont.

Species Name Geographical Range Application of Molecular Analyses

Barcoding/
Genomics

Forensics/
Conservation

Phylogeny
Reconstructions Phylogeography Functional Genetics

H. hippocampus E Atlantic, Mediterranean 1 [299] 2 [326,329] 12 [76,295,299,305,311, 1 [339] 2 [373,374]
$¥s [165,339] 323,333–335,338–340]

H. histrix $¥ Indo–West Pacific [165] 5 [168,284,300, 4 [32,320, 20 [284,287,288,299,302, — —
344,378] 323,324] 305,309,314,315,317,

323,332–335,338,343,
344,380,381]

H. ingens $¥ East Pacific 4 [284,301, 5 [321–325] 27 [42,284,287–289, 2 [339,354] —
[165] 325,344] 299,305,308,309,314,315,

317,322,323,325,331–335,
337–339,343–345,380]

H. japapigu Japan [80] 2 [80,83] — — — —
H. jayakari $ Red Sea, NW Indian Ocean [165] 1 [302] 1 [324] 4 [287,302,305,333] — —
H. jugumus Lord Howe Is., Eastern — — — — —

Australia [165]
H. kelloggi $¥ Indian Ocean, 3 [284,303, 6 [32,34,320– 21 [284,287,288,299, 1 [339] —

West Pacific 344] 322,324] 302,303,305,308,316,
[165,339] 317,322,323,332–335,

338,339,343,344,381]
H. kuda $¥ Indo–West Pacific 9 [168,283, 7 [32,320– 35 [76,82,186,284,287– 8 [300,339, 1 [375]

[165] 284,291,304– 322,324, 289,299,302,307–309, 342,345,
307,344] 325,330] 314–317,322,323,325, 355–358]

331–339,343–346,
379–381]

H. lichtensteinii Red Sea [30] — — — — —
H. minotaur $ SE Australia [165] — — — — —
H. mohnikei $¥ East, South, SE Asia 7 [284,293,303, 4 [32,321, 20 [81,284,287,288,299, 4 [136,138, —

[136,138,165,359,360] 308,309, 322,324] 302,303,305,308,309, 359,360]
344,380] 322,323,325,333–

335,338,344,380,381]
H. nalu E South Africa [83] 1 [83] — — — —

H. paradoxus SW Australia [81,165] — — — — —
H. patagonicus SW Atlantic [165] 5 [76,295,310–312] — 4 [76,295,311,334] — —
H. planifrons $ Western tip of Australia [165] — — — — —
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Table 5. Cont.

Species Name Geographical Range Application of Molecular Analyses

Barcoding/
Genomics

Forensics/
Conservation

Phylogeny
Reconstructions Phylogeography Functional Genetics

H. pontohi Central Indo–West Pacific [165] 2 [80,83] — 1 [331] — —
H. pusillus New Caledonia [165] — — — — —
H. reidi $¥ W Atlantic, Caribbean Sea 4 [283,295,313, 2 [324,377] 25 [42,76,287– 1 [339] 2 [365,375]

[165,339] 314] 289,295,299,302,305,308,
309,314,317,323,325,331,

333–335,337–339,
343,345,380]

H. satomiae Eastern Indonesia [165] — — — — —
H. sindonis Japan, South Korea [72,163] — — 5 [72,287,305,333,335] — —

H. spinosissimus Central Indo–West Pacific 4 [284,315–317, 6 [32,34,320– 17 [284,287,288,299,302, 3 [339,342, —
$¥ [165] 344] 322,324] 305,315–317,323,333– 358]

335,338,339,344,381]
H. subelongatus $ SW Australia [165] 1 [286] — 6 [308,314,323,335,338,341] — 1 [361]
H. trimaculatus Central Indo–West Pacific 4 [284,307,318] 6 [32,34,320,321] 24 [284,287,288,299,302, 6 [139,300,342, —

$¥ [139,165,300,342,356,358,360] [344] [322,324] 305,307–309,314,315, 356,358,360]
317,322,323,325,331,

333–335,338,343,
344,380,381]

H. tristis Southern Australia [73] — — — — —
H. tyro Seychelles [165] — — — — —

H. waleananus Eastern Indonesia [78] — — — — —
H. whitei $¥ S, E Australia, P.N.G., 2 [283,319] — 6 [323,331,334,335, — —

Solomon Is. [165] 338,341]
H. zebra $¥ Northern Australia [165] — — — — —

H. zosterae $ Gulf of Mexico, E Florida, 1 [283] — 10 [42,76,186,311, 2 [172,339] 1 [376]
Bahamas, Bermuda 323,331,335–339]

[164,165,172,339]
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The use of dry seahorses from markets was continued in later genetic studies [34,282,
286,287,320,323–325], one of which was based on a single specimen originally identified
as H. capensis [287]. Because this rare species is a South African endemic protected under
CITES, its record from a foreign market triggered suspicions, and a subsequent molecular
study has led to the conclusion that the specimen was misidentified [288]. This could
not prevent a notice in a recent publication stating that this species is exported from
Africa [178].

Molecular techniques may help to detect which species are represented in large
shipments of dried seahorse, which are expected to be composed of multiple species
mixes [258]. Another future application for molecular analyses could be the examination
of gut contents of possible predators for the presence of seahorse DNA (as “environmental
DNA” or eDNA). There appear to be very few reports on seahorse predators, such as
crabs, cephalopods, fish, and sea turtles [248,383–385], while for the keeping of seahorses
in mariculture and aquariums it may be useful to know more about their natural enemies.

Since 2003, various studies were aimed at the conservation genetics of rare species,
starting with H. capensis [282,284]. Since 2013 [318], an increasing number of publications
have presented the entire mitochondrial genome of Hippocampus species for identification
purposes (Table 5), and many of these results were used in phylogeny reconstructions. So
far, no studies were found in which barcoding was applied to the identification of seahorses
in the aquarium trade. Thirteen apparently rare species with restricted distribution ranges
in the Indo-Pacific have not been studied from a phylogenetic perspective: H. debelius and H.
lichtensteinii in the Red Sea, H. tyro in the Seychelles, H. satomiae and H. waleananus in eastern
Indonesia, H. planifroms in western Australia, H. paradoxus in southwestern Australia, H.
tristis in southern Australia, H. zebra in northern Australia, H. dahlia in northern and eastern
Australia, H. colemani and H. minotaur at Lord Howe Island (off southeastern Australia),
and H. pusillus in New Caledonia (Table 5).

Most molecular seahorse studies involved phylogeny reconstructions, particularly
those on species in the traditional medicine trade (Table 5). Molecular studies were also
used to determine the taxonomic status of some Hippocampus species [32,168,316,319],
including new ones [72,81–83]. They also found species that had been misidentified in local
faunas [32]. For the conservation of seahorses, it is important to know which taxonomic
names are valid and where species occur.

Phylogeographic studies tell us about how lineages within species populations are
distributed (Table 5). In future studies, genetics can be applied to find out which seahorses
and related species form unique phylogenetic lineages within the family Syngnathidae.
This information, in combination with IUCN red list data, can be used to select evolutionary
distinct taxa that need priority regarding research effort to support their conservation man-
agement, as previously done for corals and various other groups of organisms [386–388].
Meanwhile, it is very likely that new, cryptic species are going to be discovered in the
coming years.

5. Conclusions

Most recent reports on the international trade in seahorses concern dead specimens,
whereas live seahorses have received relatively little attention. This makes sense as live
animals form a clear minority in the seahorse trade [389], but this does not mean that the
market in live animals does not form a threat to the natural populations [30].

Nevertheless, in the international trade of marine ornamental fishes, seahorses form
an important example by being the first species group for which trade is regulated under
CITES. Because the popularity of these ornamental fishes is much related to their iconic
appearance and reproduction mode [28,390], lessons learned from the seahorse trade may
be useful for the protection of aquarium fishes that will enter future CITES listings. This
will likely stimulate the cultivation of these other ornamental fish species and reduce the
risk of overfishing, but it should not distract us from the need for the protection of their
natural habitats.
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The diversity of seahorse species present and absent in the aquarium industry is the
central theme of this study, and therefore, much emphasis is placed on the history of species
discovery, ecology, and body size. Specimen identification remains a common and recurrent
problem in this industry. An overview of genetic studies shows that many seahorse species
have been subjected to molecular analyses and that rare species in particular are not well
represented. Hopefully, in the future, similar studies will be applied to other species in the
international aquarium trade.
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