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Abstract: Root-associated endophytic fungi (RAF) are found asymptomatically in almost all plant
groups. However, little is known about the compositions and potential functions of RAF communities
associated with most Orchidaceae species. In this study, the diversity of RAF was examined in
four wild epiphytic orchids, Acampe rigida, Doritis pulcherrima, Renanthera coccinea, and Robiquetia
succisa, that occur in southern China. A culture-independent method involving Illumina amplicon
sequencing, and an in vitro culture method, were used to identify culturable fungi. The RAF
community diversity differed among the orchid roots, and some fungal taxa were clearly concentrated
in a certain orchid species, with more OTUs being detected. By investigating mycorrhizal associations,
the results showed that 28 (about 0.8%) of the 3527 operational taxonomic units (OTUs) could be
assigned as OMF, while the OTUs of non-mycorrhizal fungal were about 99.2%. Among the OMFs,
Ceratobasidiaceae OTUs were the most abundant with different richness, followed by Thelephoraceae.
In addition, five Ceratobasidium sp. strains were isolated from D. pulcherrima, R. succisa, and R. coccinea
roots with high separation rates. These culturable Ceratobasidium strains will provide materials for
host orchid conservation and for studying the mechanisms underlying mycorrhizal symbiosis.

Keywords: Acampe; amplicon sequencing; Doritis; fungal diversity; OMF; RAF; Renanthera; Robiquetia

1. Introduction

Endophytic fungi in living plants are found at certain stages of the life cycle without
causing obvious disease symptoms [1]. Endophytic fungi are found in almost all plant
groups, and are an important part of plant microecosystems. Orchidaceae is one of the
most diverse families of angiosperms [2]. Endophytic fungi are ubiquitous in the roots
of Orchidaceae plants and are involved in the whole life cycle from seed germination to
plant growth and development [3,4]. Most Orchidaceae mycorrhizal fungi (OMF) colonize
the root cortex cells of orchids in the form of a knot or spiral hyphae. These hyphae offer
nutrition for the orchids and promote plant growth, and thus can form symbioses with the
orchids [5]. The classical OMF mainly belong to Ceratobasidiaceae, Tulasnellaceae, and
Sebacinales (Basidiomycota, Agaricomycetes). In recent years, OMF have gradually become
a popular focal point in the biological research of Orchidaceae species [6]. Researchers
have extended OMF to include other fungal families such as Thelephoraceae, Russulaceae,
Sebacinaceae, Cortinariaceae, and Clavulinaceae [7–9].

In addition to OMF, the roots of orchids harbor fungal endophytes that are referred to
as root-associated endophytic fungi (RAF) [10]. RAF have mainly been found in the vela-
men [5,11,12], and do not form typical anatomical features in orchid roots [13,14]. No close
phylogenetic relationships have been found between RAF and known OMF [10,15–17].
Compared with mycorrhizal fungi, non-mycorrhizal RAF in orchids roots have been found
to be more diverse and abundant [14,17–19]. Most RAF belong to Ascomycota, within the
classes Sordariomycetes, Dothideomycetes, and Leotiomycetes [17,20].
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Endophytic fungi have been reported in some Orchidaceae species. Among them,
Fusarium, Xylaria, Alternaria, Phoma, and Colletotrichum are prevalent and are the dominant
RAF species in many orchid plants, such as those belonging to the genera Anoectochilus,
Bletilla, Cleisostoma, Coelogyne, Eria, Gastrochilus, Gymnadenia, Vanda [21,22], and Dendro-
bium [23]. Some of these reported RAF can promote the absorption of rhizosphere soil
nutrients by orchids [24,25]. Furthermore, some of the reported RAF could affect the yield
or cause changes to secondary metabolites [26] and are considered to be a resource of
bioactive compounds that protect the host from soil pathogens [20]. Some pathogenic
Fusarium species have been shown to behave as OMF; they have been found to stimulate
seed germination in the orchids Bletilla striata [27] and Cypripedium reginae [28], and to
establish colonization and produce pelotons within the cortical cells of Eulophia alta [29],
Cattleya skinneri, Brassavola nodosa [30], B. striata, and Dendrobium candidum [27].

The host plant species and geographical region are two important factors that deter-
mine the population structure of root endophytic fungi. Moreover, it has been reported
that endophytic fungi are especially abundant in the tropics [31]. China’s Hainan Island
is on the northern edge of the tropics (18◦10′–20◦10′ N; 108◦37′–111◦03′ E), and is mainly
affected by the tropical monsoon climate. The natural conditions of Hainan Island in China
are advantageous for the growth of wild Orchidaceae species. Therefore, Hainan Island is
one of the greatest places to study orchid biodiversity in the world [32,33].

The four orchid species, Doritis pulcherrima Lindl., Acampe rigida (Buch.-Ham. ex J.
E. Smith) P. F. Hunt, Renanthera coccinea Lour., and Robiquetia succisa Lindl., are mainly
distributed in tropical and subtropical regions; China’s Hainan Island is one of their impor-
tant habitats. Although these four orchid species have high ornamental and horticultural
value, they are rare and endangered in China. Endophytic fungi play an important role
in orchid health. Therefore, it is vital to identify the endophytic fungal communities and
cultivable growth-promoting fungal strains associated with endangered orchid plants in
order to understand how to maintain orchid biodiversity and promote the stability of
orchid communities.

In this study, Illumina amplicon sequencing and culture methods were used to isolate
and genetically identify the fungal taxa associated with the roots of the selected orchid
species. Moreover, different Ceratobasidium species isolated from terrestrial orchids in
China were assessed according to their ability to promote germination. To the best of our
knowledge, this is the first study on the RAF of A. rigida, R. coccinea, and R. succisa in
South China.

2. Materials and Methods
2.1. The Habitat and Sampling of the Terrestrial Orchids

Jianfengling, which is located in the southwest of Hainan Island in China, is one
of the few remaining large and well-preserved tropical virgin forests. Jianfengling is
characterized by complex vegetation types, and rich and diverse orchids [34]. Healthy
populations of the epiphytic orchids A. rigida, D. pulcherrima, R. coccinea, and R. succisa
that were located in the Jianfengling National Nature Reserve of Hainan in China, were
used in this study. The roots of five individuals of each orchid species were sampled in
July 2019 at the end of the flowering stage. All collected roots were washed under running
water and carefully brushed in order to remove soil debris. The roots were then soaked in
75% ethanol for 40 s to disinfect the surface. The mycorrhizal morphology of the fresh root
samples was observed on thin cross-sections under a light microscope (Leica DFC450 C,
Leica Microsystems Ltd., Wetzlar, Germany) using 200 times magnification. Root fragments
exhibiting high fungal colonization were immediately processed for fungal isolation. Part
of the root material was frozen in liquid nitrogen and stored at −80 ◦C prior to DNA
extraction for high-throughput sequencing.
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2.2. Amplicon Sequencing and Analysis of RAF

DNA extraction and PCR amplification: Microbial DNA was extracted using HiPure
Soil DNA Kits (Magen, Guangzhou, China) according to manufacturer’s protocols. The
DNA concentration and purity were determined using a spectrophotometer (Nanodrop
ND-1000; Thermo Fisher Scientific, Wilmington, DE). DNA samples with an absorbance
ratio between 1.8 and 2.0 at OD 260/280 and of less than 2.0 at OD 260/230 were used for
further analysis. Samples without smears on the 1.5% agarose gel were used for subsequent
experiments. The internal transcribed spacer 2 (ITS2) region of the ribosomal DNA gene
amplicons was amplified by PCR. The PCR protocol was as follows: 94 ◦C for 2 min,
followed by 30 cycles at 98 ◦C for 10 s, 62 ◦C for 30 s, and 68 ◦C for 30 s, and a final
extension at 68 ◦C for 5 min. The primers ITS3_KYO2 (5′-GATGAAGAACGYAGYRAA-3′)
and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′) were used for the PCR [35].

Illumina amplicon sequencing: Amplicons were extracted from 2% agarose gels and
purified using AMPure XP Beads (Axygen Biosciences, Union City, CA, USA) according to
the manufacturer’s instructions. Quantification was performed using an ABI StepOnePlus
Real-Time PCR System (Life Technologies, Foster City, CA, USA). Purified amplicons were
pooled in equimolar ratios and paired-end sequenced (PE250) on an Illumina platform
according to the standard protocols. The raw reads were deposited into the National Center
for Biotechnology Information (NCBI) Sequence Read Archive (SRA) database (Accession
Number: PRJNA688805).

Quality control and read assembly: Raw data containing adapters or low-quality reads
would affect the subsequent assembly and analysis. Thus, to obtain high-quality clean
reads, the raw reads were further filtered. Reads were removed if they exhibited >10%
of unknown nucleotides and if <50% of the bases had a Q-value > 20. The filtering was
performed using FASTP v0.18.0 [36]. Paired-end clean reads were merged as raw tags
using FLASH v1.2.11 [37] with a minimum overlap of 10 bp and mismatch error rates of 2%.
Noisy raw tag sequences were filtered using the QIIME v1.9.1 [38] pipeline under specific
filtering conditions [39] to obtain the high-quality clean tags. The filtering conditions were
as follows: (1) raw tags were broken from the first low-quality base site where the number
of bases in the continuous low-quality value (default quality threshold ≤ 3) reached the set
length (default length = 3) and (2) tags with a continuous high-quality base length of less
than 75% of the tag length were filtered.

Operational taxonomic unit (OTU) and community composition analysis: The effective
tags were clustered into OTUs according to a similarity threshold of 97% using the UPARSE
v9.2.64 pipeline [40]. The tag sequence with the highest abundance was selected as the
representative sequence within each cluster. The higher the Shannon value, the greater
the community diversity. The higher the Chao value, the greater the number of OTUs
contained in the community and the greater the richness of the community. The Shannon
and Chao alpha diversity index values were calculated using QIIME v1.9.1 [38]. UpSet plot
analysis was performed using the R project UpSetR package v1.3.3 [41] to identify unique
and common OTUs between groups.

The representative sequences were assigned to taxa by a naive Bayesian model of
the RDP classifier v2.2 [42] using the Greengenes database vgg_13_5 [43]. A confidence
threshold value of 0.8–1 was used. The abundance statistics of each taxon were visualized
using Krona v2.6 [44]. A heatmap of species abundance was plotted using the Pheatmap
package v1.0.12 [45] in R.

2.3. Isolation and Identification of Culturable Endophytic Fungi

The endophytic fungi were isolated from the normal underground roots of five indi-
vidual plants of each orchid species. The roots were cut into 5 cm segments, and flushed
with running water for 2 h. The segments were then surface sterilized in a Clean Bench
by consecutive immersion for 30 s in 75% ethanol, for 3 min in 2% sodium hypochlorite,
and five times in sterile water. The root samples were cut into 1–2 mm long segments.
In total, 1052 segments were used for endophyte isolation in this study. Sets of eight
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segments were evenly placed in a 90 mm Petri dish containing potato dextrose agar (PDA;
2%). Benzylpenicillin sodium (50 mg/L; North China Pharmaceutical Group Corporation,
Shijiazhuang, China) was added to suppress bacterial growth. The Petri dishes were sealed,
incubated at 25 ◦C, and examined periodically. When fungal colonies developed, they were
transferred to new PDA-containing Petri dishes for purification.

The purified fungal isolates were identified based on their morphological character-
istics and transferred to PDA slants for further study. One representative strain of each
morphotype was selected for further molecular identification. The DNA extraction was
performed as described above. The ITS2 sequences were amplified using the primers
ITS1F and ITS4R, sequenced via the Sanger sequencing method, and identified using NCBI
BLAST according to the methods of Chen et al. [21].

3. Results
3.1. Distribution of Endophytic Fungi in Root Cells

Most OMF colonize the orchid root cortex cells in the form of knot or spiral hyphae.
Light microscopy using thin sections showed that the roots of all four orchid samples were
extensively colonized by fungal hyphae (Figure 1). Characteristic dense intracellular hyphal
coils (pelotons) were observed in most orchid root cortical cells (Figure 1b,e,h,k). Moreover,
intercellular hyphae spanning different cells were observed at 400-fold magnification
(Figure 1c).

3.2. RAF Diversity

After quality filtering and chimera removal, 793,687 high-quality sequences were
obtained and could be assigned to the different samples. The number of sequences per
individual sample varied from 56,112 to 73,556. A total of 3527 OTUs were identified at
97% sequence similarity (Table 1 and Table S1). There were 1060 OTUs in D. pulcherrima
(Dor), 942 OTUs in R. coccinea (Ren), 1256 OTUs in A. rigida (Aca), and 1500 OTUs in R.
succisa (Rob) roots. There were more RAF OTUs in the R. succisa roots than in the roots of
the other orchids.

Table 1. All tags and operational taxonomic units (OTUs) in the roots of four wild orchid species.

Sample ID Total Tags Unique Tags Taxon Tags OTUs Total OTUs

Dor-1 69,454 18,165 62,629 642
1060Dor-2 72,288 17,112 58,326 580

Dor-3 71,562 17,193 59,545 561
Ren-1 59,213 14,312 48,183 401

942Ren-2 56,112 14,048 26,360 486
Ren-3 61,040 17,035 47,652 444
Aca-1 66,909 16,981 57,335 544

1256Aca-2 70,557 21,830 57,532 858
Aca-3 58,702 17,499 31,089 538
Rob-1 73,556 22,602 64,663 1014

1500Rob-2 63,368 20,344 59,798 1011
Rob-3 70,926 22,675 49,842 902

The endophytic fungal community diversity (Shannon; Figure 2a) and richness (Chao;
Figure 2b) index values of all samples were calculated to illustrate the complexity of
each sample’s fungal community. In this study, the Shannon index values of the RAF
communities differed among the sampled orchids roots (Figure 2a), but these differences
were not significant. The Chao index values significantly differed between the Rob and
Aca root samples. The Chao index values of the RAF communities were also extremely
significantly different (p < 0.01) between Rob and Dor and between Rob and Ren roots
(Figure 2b).
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Figure 1. The wild plants and intracellular fungal pelotons in the roots of four orchid species. Photographs of the plants
and fungal pelotons are shown for Doritis pulcherrima (a–c), Acampe rigida (d–f), Renanthera coccinea (g–i), and Robiquetia
succisa (j–l) plants from Jianfengling National Nature Reserve of Hainan in China. The blue dotted boxes indicate the areas
containing the intracellular fungal pelotons. The blue arrows indicate the cell walls of the orchid roots. The red arrows
indicate the intracellular fungal pelotons of the orchid roots.

An UpSet diagram was constructed to highlight the similarities and differences in
communities among the different orchid roots. In the wild R. succisa root, the number of
species-specific fungal OTUs was the highest (1209 OTUs). This was followed by the A.
rigida roots with 735 specific OTUs and the D. pulcherrima roots with 558 specific OTUs.
The wild R. coccinea roots had the fewest specific fungal OTUs at 486 (Figure 3). Of all
the detected RAF OTUs, 43 were common to the roots of all four orchids. There were
significant differences in the numbers of OTUs that were common between two species;
Ren and Dor shared 111 OTUs while Ren and Rob shared only 12, with most belonging
to the Trichocomaceae family. The large number of common OTUs among samples from
different orchid roots indicates that some colonization patterns may be conserved during
long-term evolution.
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Nature Reserve of Hainan in China. The dots indicated the outliers.
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The diversity and community composition of colonizing endophytic fungi is affected
by the host species. The heatmap revealed that the occurrence of some relatively abundant
RAF OTUs was biased among plant roots (Figure 4). The relative abundance of different
taxa significantly differed between root samples. Chytridiomycota was the dominant phy-
lum in the D. pulcherrima root, followed by Mucoromycota and Ascomycota. Ascomycota
was the dominant phylum in the roots of the other three sampled orchids.
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The diversity of the RAF at the family level clearly differed between samples. There
were seven dominant families in A. rigida roots, including Stictidaceae, Vibrisseaceae, and
Capnodiaceae. In the D. pulcherrima roots, the dominant families were Teratosphaeriaceae,
Umbelopsidaceae, and Cordycipitaceae. There were seven dominant families in the R.
coccinea roots, including Schizoparmaceae, Cladosporiaceae, and Helotiaceae. In the R.
succisa roots, there were eight dominant families, including Bionectriaceae, Xylariaceae,
and Lophiostomataceae.

The diversity of the RAF at the genus level also clearly differed between samples.
Among the endophytic fungi, Cylindrocarpon, Paraconiothyrium, Alloconiothyrium, and
10 other genera mainly occurred in the A. rigida roots. Papiliotrema, Fusarium, Trichomerium,
and three other genera mainly occurred in the D. pulcherrima roots. Rhizoctonia, Denique-
lata, Parapharosphaeria, and seven other genera mainly occurred in the R. coccinea roots.
Neopestalotiopsis, Pestalotiopsis, Devriesia, and 11 other genera mainly occurred in the R.
succisa roots.

3.3. OMF Identities

In total, 297 OTUs were obtained that corresponded to sequences of Basidiomycota. Of
these, 28 (about 0.8% of the 3527) OTUs could be assigned as OMF according to Dearnaley
et al. [7]. The majority of the detected OMF (16 OTUs) belonged to the Ceratobasidiaceae
family. In addition, a number of other ectomycorrhizal taxa that have previously been
shown to be associated with these orchid species were detected. These ectomycorrhizal
taxa included Thelephoraceae (10 OTUs), Russulaceae (two OTUs), and Sebacinaceae (two
OTUs). The relative abundances of the 28 OMF OTUs are listed in Table 2. However, the
abundances of these fungal families differed between root samples. Ceratobasidiaceae were
dominant community members in the wild R. succisa and R. coccinea roots. For example,
29,765 sequences were detected for Otu000006, which was annotated as belonging to
Ceratobasidiaceae, in the R. succisa root samples. This was followed by the 221 Otu000006
sequences detected in the R. coccinea roots. Otu000263 and Otu000506 also belonged to
the Ceratobasidiaceae family, and 528 and 224 sequences, respectively, were detected for
these OTUs in the R. coccinea root samples. Meanwhile, members of Thelephoraceae and
Sebacinaceae dominated the mycorrhizal community associated with the A. rigida root.
Russulaceae OTUs were detected only in A. rigida (one OTU) and D. pulcherrima (two
OTUs) roots (Table 2).

Table 2. Tag numbers of the operational taxonomic units (OTUs) corresponding to the orchid-
associated mycorrhizal families identified.

OTU Aca Dor Ren Rob Family

Otu000006 221 50 14 29,765 Ceratobasidiaceae
Otu000034 4 8 0 0 Russulaceae
Otu000036 0 9 0 0 Ceratobasidiaceae
Otu000263 0 61 528 5 Ceratobasidiaceae
Otu000347 11 0 0 382 Ceratobasidiaceae
Otu000506 0 0 224 0 Ceratobasidiaceae
Otu000586 2 0 0 174 Ceratobasidiaceae
Otu000700 0 0 0 2 Thelephoraceae
Otu000812 0 7 91 0 Ceratobasidiaceae
Otu001522 0 0 0 1 Thelephoraceae
Otu001615 0 0 28 0 Ceratobasidiaceae
Otu003239 0 0 8 0 Ceratobasidiaceae
Otu003259 0 0 7 0 Thelephoraceae
Otu003568 6 0 0 0 Thelephoraceae
Otu003935 1 2 2 0 Ceratobasidiaceae
Otu004007 5 0 0 0 Thelephoraceae
Otu004486 0 0 0 4 Ceratobasidiaceae
Otu004340 0 0 2 0 Ceratobasidiaceae
Otu004661 0 4 0 0 Ceratobasidiaceae
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Table 2. Cont.

OTU Aca Dor Ren Rob Family

Otu004729 0 0 0 3 Thelephoraceae
Otu004970 3 0 0 0 Sebacinaceae
Otu005044 3 0 0 0 Sebacinaceae
Otu005345 3 0 0 0 Thelephoraceae
Otu005532 2 0 0 0 Thelephoraceae
Otu005951 0 0 0 2 Thelephoraceae
Otu006537 0 2 0 0 Russulaceae
Otu006568 2 0 0 0 Thelephoraceae
Otu006636 0 0 2 0 Ceratobasidiaceae

3.4. Culturable Endophytic Fungi from the Orchid Roots

Using separation and cultivation methods, five Ceratobasidium strains were isolated
from D. pulcherrima (Cer1 and Cer4), R. succisa (Cer2 and Cer3), and R. coccinea (Cer5) roots
(Table 3 and Figure 5a–e) with separation rates of more than 70%. However, in the A. rigida
roots, Ceratobasidium species have not yet been separated.

Table 3. Operational taxonomic units (OTUs) of fungi isolated from the four orchids and their possible identities. Internal
transcribed spacer (ITS) sequencing was performed, and sequences were annotated to assess the fungi present in the root
samples of four orchid species.

OTU OTU in This Study Source Species Closest Matches in GenBank Identity
(%)

Cer1 Otu004661 D. pulcherrima MG654436.1 Ceratobasidium sp. isolate 85, Triticum aestivum
root associated fungus, Azerbaijan 99.66

Cer2 Otu004340 R. coccinea DQ102402.1 Ceratobasidium sp. AG-G isolate Str14, Fragaria x
ananassa associated fungus, Israel 98.21

Cer3 Otu000036 R. coccinea
EF536969.1 Ceratobasidium sp. FPUB 168,

Dactylorhiza hatagirea (Orchidaceae) root associated
fungus, India

100

Cer4 Otu004661 D. pulcherrima MG654436.1 Ceratobasidium sp. isolate 85,
Triticum aestivum root associated fungus, Azerbaijan 100

Cer5 Otu000006 R. succisa
JQ713569.1 Ceratobasidium sp. isolate M13,

Rhynchostylis retusa (Orchidaceae) root associated
fungus, China

99.83

The ITS2 sequences of the Cer1 and Cer4 isolates (Otu004661) matched that of Cerato-
basidium sp. isolate 85 with different identity index values. Ceratobasidium sp. isolate 85
was originally found as a Triticum aestivum RAF in Azerbaijan. The ITS2 sequence of the
Cer2 isolate (Otu004340) matched that of Ceratobasidium sp. AG-G isolate Str14, which was
originally found to be associated with Fragaria x ananassa in Israel. The ITS2 sequence of
the Cer3 isolate completely matched to that of Ceratobasidium sp. FPUB 168, which was
isolated from the endangered orchid, Dactylorhiza hatagirea, from India. The NCBI ITS
BLAST identity index value showed that there was up to 99.83% similarity between the
Cer5 isolate and Ceratobasidium sp. M-13 from the roots of Rhynchostylis retusa (Orchidaceae)
of China.
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Figure 5. Colony morphology of some of the fungi isolated from the wild orchids. The fungi, which
had been recovered from the roots of the four sampled epiphytic orchids, were cultivated on potato
dextrose agar (PDA). (a) Ceratobasidium sp. Cer1 from Doritis pulcherrima, (b) Ceratobasidium sp. Cer2
from Renanthera coccinea, (c) Ceratobasidium sp. Cer3 from R. coccinea, (d) Ceratobasidium sp. Cer4 from
D. pulcherrima, and (e) Ceratobasidium sp. Cer5 from Robiquetia succisa.

4. Discussion

RAF are important functional fungi within ecosystems [46,47], have a high level of
taxonomic diversity [48], and are especially abundant in the tropics [31]. RAF are known
to affect plant community diversity and structure [49]. Studying the RAF diversity and
specific RAF in tropical orchids is helpful for revealing the mechanism underlying the
maintenance of tropical orchid population diversity.

In this study, Illumina amplicon sequencing was used to identify orchid RAF. Numer-
ous common RAF were found among the sampled orchid species. The results presented
here are similar to those of Yang et al. [50], who found comparable numbers of RAF OTUs
in plants roots growing in similar tropical forest habitats on Hainan Island, China. How-
ever, the taxonomic compositions found were somewhat different. Moreover, many of the
identified RAF have been separated from the medicinal plant D. sinense, which is endemic
to Hainan [51], and from the epiphytic orchid Oxystophyllum changjiangense [52]. The RAF,
which were highly abundant in most of the four epiphytic orchids in this study, were also
found in Bletilla striata in Yunnan [53], in Gymnadenia conopsea in Beijing [36], and in three
medicinal Orchidaceae species, D. nobile, D. chrysanthum, and Anoectochilus roxburghii, from
different areas of southwest China [21]. The results of this study were also in agreement
with those of previous studies in that wild D. pulcherrima has frequently been found to
associate with common RAF such as Fusarium and Alternaria [54]. This is in line with the
results for the epiphytic orchids of the genera Gastrochilus, Cleisostoma, Eria, Coelogyne,
and Vanda [22]. These results indicate that some RAF might be widely distributed across
different host orchid species and geographically.

Although many orchid species share common RAF partners, the RAF community
composition and richness varied among the tropical epiphytic plants, and significant
host specificity was confirmed. The species richness of various endophytic fungi was
significant different in orchid species. Some fungal taxa were clearly concentrated in
certain orchid species, with more OTUs being detected. For example, at the family level,
Agaricaceae and Helotiaceae fungi were concentrated in R. coccinea, Teratosphaeriaceae
and Umbelopsidaceae were concentrated in D. pulcherrima, Bionectriaceae, and Xylariaceae
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were concentrated in R. succisa, and Nectriaceae in A. rigida roots. These fungi are common
plant endophytes. The results demonstrated that there were distinct endophyte community
compositions and richness in host plants, suggesting that host preferences become more
specific during long-term evolution [48,55,56].

OMF are mainly distinguished as being non-mycorrhizal RAF, and they are repre-
sented in much smaller numbers than RAF in orchid roots [14,17,18], similar to those
of this study. Otero et al. found that 80% of fungal isolates from roots of epiphytic or-
chids from Puerto Rico were non-mycorrhizal endophytes [19]. In addition, Novotna et al.
found about 92% OTUs of non-mycorrhizal RAF from three epiphytic orchids in southern
Ecuador [17]. Some low abundance OMF might be not detected by using the culture-
independent method involving Illumina sequencing and bioinformatic analysis, which
might be one of the reasons for the lower number of OMF relative to non-mycorrhizal fungi
in this study.

Mycorrhizal fungi tend to form mutualistic symbiotic relationships with the host plant.
Not only can OMF form symbioses with typical structural characteristics (circular hyphal
structures) within host orchid plants, but they also perform nutrient exchange with the
host plants. Thus, the relationship between OMF and the host plant is closely linked to
plant growth and development. The most common OMF belong to Ceratobasidiaceae,
Tulasnellaceae, and Sebacinales, and to a lesser extent to Thelephoraceae. These OMF are
the prime associates in a wide number of related orchid species. For example, Anacamptis
laxiflora, Ophrys fuciflora, and species of the genus Orchis have been shown to be associated
predominantly with Ceratobasidiaceae and Tulasnellaceae [57,58].

In the present study, the investigation of mycorrhizal associations using ITS amplicon
sequencing showed that numerous Ceratobasidiaceae OTUs were associated with all four of
the studied orchids. Thelephoraceae OTUs were also highly abundant (Table 3). However,
OTUs of the other most-reported OMF members of Tulasnellaceae and Sebacinales were
not observed. This could be attributed to the primer bias against this fungal group [59].
The ITS3/ITS4 primer pair may exclude Tulasnellaceae at PCR amplification, which might
be another reason for the lower ratio of OMF in this study. Multigene primer pairs should
be considered to reduce the data error caused by primer bias in future studies. Similarly,
using separation and cultivation methods, it was found in the present study that members
of Ceratobasidiaceae were the dominant fungi associated with D. pulcherrima, R. coccinea,
and R. succisa. No Ceratobasidiaceae members were isolated from the A. rigida roots in the
present study. Similarly, Ke et al. [54] were not successful in obtaining the most common
culturable OMF strains.

Ceratobasidioid fungi have been previously found to associate with several other
orchid species [19,58,60], such as the epiphytic orchids Oncidium [61], Ionopsis [19,62,63],
Dendrophylax [64,65], and the leafless orchid genus Campylocentrum [19,66]. Ceratobasidioid
fungi have also been found in terrestrial orchids of both forest and meadow habitats,
including Goodyera [67–69], Neuwiedia [70], Cephalanthera, and Orchis [60,71,72]. In previous
studies, extensive symbioses have been found between orchids and Ceratobasidium fungi.
A Ceratobasidium sp. strain isolated from the Trichoceros antennifer orchid was found to
promote the seed germination of E. secundum [73]. Ceratobasidium species isolated from
wild Cymbidium ensifolium could colonize within the roots and significantly increase the
fresh weight of C. ensifolium, C. mannii, and D. officinale (Orchidaceae) seedlings on OMA
medium [74]. In view of these, in the future, the culturable Ceratobasidium sp. strains in
this study will be worth paying close attention to, with respect to their potential symbiotic
mechanisms with their host orchids.

5. Conclusions

In the present study, the diversity of RAF in four wild tropical epiphytic orchid
species located in southern China were examined by Illumina amplicon sequencing and
culturing methods. The results showed that the colonization diversity, species richness,
and community composition of the RAF varied among the four orchid species. The
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results of investigating OMF associations showed that Ceratobasidiaceae OTUs were the
most abundant, followed by Thelephoraceae OTUs, and the culturable Ceratobasidium
sp. isolates also had the higher separation rates. There were many more RAF than
OMF species detected in the four orchids—about 99.2% OTUs of non-mycorrhizal fungal
contrasting with 0.8% OTUs of potential OMF. Unfortunately, OTUs were not observed for
Tulasnellaceae species, which are other commonly reported OMF. This study might provide
potential clues and culturable strain resources for endangered host orchid conservation in
the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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