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Abstract: The Military Macaw (Ara militaris) faces a number of serious conservation threats. The
use of genetic markers and assignment tests may help to identify the geographic origin of captive
individuals and improve conservation and management programs. The purpose of this study was
to identify the possible geographic origin of a captive individual using genetic markers. We used a
reference database of genotypes of 86 individuals previously shown to belong to two different genetic
groups to determine the genetic assignment of the captive individual of unknown origin (captive
specimen) and five individuals of known geographic origin (as positive controls). We evaluated the
accuracy of three assignment/exclusion criteria to determine the success of correct assignment of
the individual of unknown origin and the five positive control individuals. WICHLOCI estimated
that eight loci were required to achieve an assignment success of 83%. The correct geographic origin
of positive controls was identified with 83% confidence. All of the analyses assigned the captive
individual to the genetic group from the Sierra Madre Oriental. Bayesian assignment tests, tests for
genetic distance and allele frequency tests assigned the unknown individual to the locations from
the Sierra Madre Oriental with a probability of 71.2–82.4%. We show that the use of genetic markers
provides a promising tool for determining the origin of pets and individuals seized from the illegal
animal trade to better inform decisions on reintroduction and improve conservation programs.

Keywords: conservation genetics; genetic assignment tests; probable geographic origin; Mili-
tary Macaw

1. Introduction

The order Psittaciformes contains some of the most charismatic and recognizable bird
species in the world [1]. However, of the order’s approximately 352 species, 26% face some
degree of extinction risk [2]. For example, out of the 22 Psittacidae species recorded in
Mexico [1,3], 20 are at risk according to Mexican law [4], and at the international level,
the Red List of the International Union for the Conservation of Nature (IUCN) places
eight of those species in some risk category [5]. The Military Macaw (Ara militaris) is one
of the endangered psittacid species in Mexico, and faces two main threats: (1) habitat
transformation (loss, fragmentation and degradation) [6,7], and (2) illegal collection for the
national and international illegal pet trade [7–15]. Indeed, illegal trafficking has led to the
extirpation of populations from conserved areas [11,12,16].

In Mexico, the illegal wildlife trade has threatened 19 out of the 22 Psittacidae
species [7]. The capture of any wild Psittacidae species was outlawed in Mexico in 2003,
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and the current General Wildlife Law (LGVS) prohibits the extraction of psittacid species,
only granting permits for conservation or scientific research purposes [17]. One of the
objectives of the LGVS was to guide management efforts, including the recovery, reproduc-
tion, research, release, and/or relocation of individuals [18]. One of the problems faced by
reintroduction and recovery efforts is that in most cases, the geographic origin of animals
recovered from the illegal pet trade is unknown. Information on the geographic origin of
rehabilitated individuals is crucial in order to avoid mixing individuals from genetically
distinct populations, which can lead to genetic problems (e.g., local maladaptation and
outbreeding depression) [19–22].

Molecular tools make it possible to answer questions concerning evolutionary history,
define taxonomic uncertainties, and identify release locations using molecular markers
(e.g., microsatellites) and statistical approaches [23–26]. However, these techniques are not
often used for the identification of release locations for rehabilitated birds illegally taken
from the wild [21,27]. The use of molecular tools to establish the origin of individuals
for conservation purposes is increasing in reintroduction plans and for identifying illegal
trade sites, as demonstrated by studies of several species, such as the Hyacinth Macaw
(Anodorhynchus hyacinthinus) [28], the Blue-and-Yellow Macaw (Ara ararauna) [21] and the
European Pond Turtle (Emys orbicularis) [29].

The purpose of this study was to determine the probable geographic origin of a captive
Military Macaw of unknown origin using different molecular statistical analyses and test
the accuracy of these techniques using individuals of known origin, in order to generate a
protocol that can be used for reintroduction programs, for management and conservation.

The Military Macaw is one of the most charismatic species in the New World. Its dis-
tribution is fragmented, ranging from northern Mexico to northwestern Argentina [1,6,30].
In Mexico, the Military Macaw is distributed in apparently isolated colonies in two sep-
arate areas. One includes the Sierra Madre Occidental and the Sierra Madre del Sur
(from southern Sonora to Chiapas); the other is in the Sierra Madre Oriental, where the
macaws are reported in Tamaulipas, San Luis Potosi, Guanajuato, and Querétaro [31,32].
The geographic distribution of the Military Macaw in Mexico declined by 43% over 16
years (2000–2016) [10,13,14]. It is endangered under Mexican law [4,13], vulnerable on the
IUCN Red List [5], and listed in Appendix I of the Convention on International Trade in
Species [33].

A study conducted by Rivera-Ortíz et al. [34] on the genetics of the Military Macaw
used microsatellites from samples collected in seven Mexican locations and found strong
genetic structuring, showing two groups presenting geographic concordance. Group one
corresponded to the locations found in the Sierra Madre Occidental and the Sierra Madre
del Sur (Pacific slope), and Group two corresponded to the locations found in the Sierra
Madre Oriental (Gulf of Mexico slope). Given these results, the authors proposed the pro-
tection of the two genetic groups found in the three physiographic regions as independent
conservation units. In this study, we used both classification (correspondence analysis)
and genetic assignment methods to evaluate whether the Military Macaw individual of
unknown origin belonged to any of those previously identified genetic groups, and if
possible, assign it to a particular location.

2. Materials and Methods
2.1. DNA Extraction and Genotyping

We extracted DNA from five feathers collected from a captive individual housed at
the AFP OCEAN Foundation A.C. The rachises of the collected feathers were cleaned with
75% molecular grade ethyl [34]. This same procedure was performed with positive control
samples from five individuals of known geographic origin.

Total genomic DNA was extracted using the standard digestion protocol with
Proteinase-K/sodium dodecyl sulfate (SDS), followed by chloroform and alcohol pu-
rification as described by Leeton and Christidis [35]. Eight loci were amplified from nuclear
microsatellites using primers designed for other parrot species (five for Ara ararauna and
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three for Amazona guildinguii) [36–38]. These polymorphic microsatellites were those previ-
ously used by Rivera-Ortíz et al. [34] for Military Macaw individuals from seven different
locations.

These eight loci were amplified by polymerase chain reaction (PCR) according to
the parameters used by Rivera-Ortíz et al. [34]. Electrophoresis was carried out using
an ABI PRISM 3100 Avant sequencer (Applied Biosystems) with Gene Scan LIZ 500 to
determine fragment size. Fragments and their final size were analyzed using GENE
MAPPER 4.0 software (Applied Biosystems). Since this program automatically determines
allele size, we visually checked the electropherograms of microsatellites from the eight
loci to corroborate their size and number. PCR sequences were repeated for samples with
unclear electropherograms to resolve uncertainties [39].

2.2. Data Analysis

Genetic assignment analyses were conducted using the genotypes of 86 individu-
als from seven locations grouped into the two genetic groups reported by Rivera-Ortíz
et al., [34]. Those genetic groups considered the candidate places of origin of the captive
specimen of unknown origin and the five specimens of known origin (one individual from
Sinaloa, two from Nayarit, one from Oaxaca and one from Tamaulipas).

Theoretical studies have examined how the number of loci and alleles relate to the
success of assignment [40,41]. WICHLOCI 1.0 software [41] chooses the best combination of
loci to assign a captive individual by analyzing the data extracted from candidate locations.
Combinations of the eight microsatellites were used to test the minimum loci needed for a
successful assignment [41,42].

2.3. Factorial Correspondence Analysis (FCA)

First, we did a factorial correspondence analysis (FCA) using GENETIX 4.05.4 soft-
ware [43]. This analysis is a multivariate interdependence statistical method that is well
adapted to describe associations between variables [44] and provides a graphical display
of the genetic relationships between the individuals of interest and those of the reference
populations in a multidimensional space based on allelic data. FCA was performed using
three data combinations: (i) positive controls + unknown individual + individuals from the
Sierra Madre Occidental/Sierra Madre del Sur populations + individuals from the Sierra
Madre Oriental populations and (ii) positive controls + unknown individual + individuals
from the Sierra Madre Oriental. These combinations were created to determine whether
any differences existed between the unknown individual and the locations or candidate
genetic groups.

2.4. Genetic Assignment Analysis

A Bayesian approach was used to assign the unknown individual and positive controls
to genetic groups or populations, implemented in STRUCTURE 2.3.1 software [45,46].
This approach was designed to infer the number of genetic groups or populations of
individuals (K) according to their genotypes and estimate the proportional membership of
each individual’s genotype to one or more of the inferred genetic clusters.

We used the results of the population structure analysis of Military Macaws from
Rivera-Ortíz et al. [34], which identified two genetic groups: (1) Sierra Madre Occiden-
tal/Sierra Madre del Sur populations and (2) Sierra Madre Oriental populations. Within
these groups, we explored the possibility of hierarchical structuring as recommended by
Jombart [47]. We repeated these analyses until no additional structure was found within
clusters, i.e., until the optimal K value was 1. The burn-in length for each repetition con-
sisted of 500,000 steps, followed by 10,000,000 iterations, under the admixture assumption.
No clear substructure was detected in the two genetic groups reported by Rivera-Ortíz
et al. [34] (Supplementary Materials, Figure S1). A similar analysis, the discriminant analy-
sis of principal components (DAPC) also showed that the studied seven candidate locations
grouped into two inferred clusters (K = 2), according to Bayesian information criterion
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(BIC) [47] (Supplementary Materials, Figure S2). Therefore, we assumed that there was
no hierarchical structure and we continued the genetic assignment analysis under these
conditions.

To assign the unknown individual and positive controls of known origin back to their
genetic groups, we used the USEPOPINFO function within an admixture framework. We
performed this analysis with all of the controls and the two genetic groups.

We used 10 repetitions in a range of K = 1 to K = 10. The burn-in length for each
repetition consisted of 500,000 steps, followed by 10,000,000 iterations, under the admixture
assumption in order to determine the maximum value of the posteriori probability (lnP
(D)), to detect the true K [45]. CLUMPP 1.1.2 software [48] was used to eliminate label
switching, using the greedy algorithm with 1,000 random input orders. These values were
visualized using bar plots prepared with DISTRUCT software [49], which showed how the
test individuals were assigned relative to the grouping of the reference set of individuals,
and to determine the probability of their assignment to one of the two genetic groups
identified by Rivera-Ortíz et al. [34].

Genetic relationships between the unknown individual and positive controls and
the genetic groups/locations were also examined by applying discriminant analysis of
principal components (DAPC) [47] using the “adegenet 2.1.3” package [26] in R 4.0.5
software [50], with the number of principle components set to 35 following alpha-score
indication. DAPC is a multivariate, model-free approach designed to generate clusters
based on prior population information [26]. DAPC allowed us to analyze the population
structure by assigning the unknown individual and positive controls to the genetic groups
or locations.

We used three genetic assignment/exclusion approaches implemented in GENECLASS
2.0 software [51]. The analyses were carried out for the two genetic groups and for each
of the locations that contain them. The first approach used allele frequencies [52]; the un-
known individual and positive controls were assigned to the genetic groups and candidate
locations where each of their genotypic frequencies was expected to be the highest. We
calculated the probability of the genotype of the controls and then applied the simulation
algorithm proposed by Paetkau et al. [53] with a Monte Carlo (MC) resampling of 10,000
steps and an exclusion threshold of p < 0.05. In the second approach, we used a partially
Bayesian test based on Rannala and Mountain [54], which estimates the population’s allele
frequencies and individual assignment’s statistical significance (unknown individual and
positive controls). We used the simulation algorithm proposed by Paetkau et al. [53] with
an MC resampling of 10,000 steps and an exclusion threshold of p < 0.05. In the third ap-
proach, we calculated the genetic distance between the unknown individual and candidate
groups and locations. The same was done for the positive controls [55].

We used three measurements of genetic distance: (1) Nei’s minimum genetic dis-
tance [56], (2) Nei’s DA genetic distance [57], and (3) the simulation algorithm proposed by
Paetkau et al. [53] with an MC resampling of 10,000 steps and an exclusion threshold of
p < 0.05. A self-assignment of all of the individuals from the reference populations was also
performed, with an exclusion threshold of p < 0.05, with an MC resampling of 10,000 steps.

3. Results

The summary statistics per locus and per-locations locus, positive controls and un-
known captive individual are given in the Supplementary Materials (Tables S1 and S2).

The assignment scores estimated by WICHLOCI 1.0 software indicated that the con-
tribution to the genetic assignment of each of the eight loci varied between 9.0% (locus
UnaCT21) and 15.55% (locus UnaCT21). Using eight loci produced the highest score,
assigning the captive specimen to the candidate populations with an accuracy of 83%
(Table 1). The eight loci were used in all subsequent assignment/exclusion tests to improve
the assignment success for the unknown captive individual and positive controls.
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Table 1. Ranking carried out in WICHLOCI 1.0 for the eight loci. The loci are in order of highest to
the lowest score obtained.

Locus Score Score (%) A (%)

UnaCT21 139.474 15.556

83%

UnaCT32 118.573 13.225
UnaCT74 116.432 12.986
UnaCT43 114.071 12.723
UnaGT55 110.096 12.279
AgGT17 109.722 12.237
AgGT19 98.694 11.007
AgGT32 89.51 9.983

A = Correct assignment with the eight loci combined.

3.1. FCA

Using the combination of the positive controls + unknown individual + individuals
from the Sierra Madre Occidental/Sierra Madre del Sur locations + individuals from the
Sierra Madre Oriental locations, the FCA produced a data cloud showing the position of
each of the 86 individuals from the candidate genetic groups in a two-dimensional space
(taken from the study by Rivera-Ortíz et al. [34]) including the unknown individual and
the positive controls. Two distinct genetic groups were differentiated in the data cloud: (1)
individuals from the candidate locations from the Sierra Madre Occidental/Sierra Madre
del Sur and (2) individuals from the candidate locations from the Sierra Madre Oriental
(Figure 1). We observed that the positive controls of the individuals of Sinaloa, Nayarit, and
Oaxaca were located in the point cloud of the candidate locations from the Sierra Madre
Occidental/Sierra Madre del Sur. In contrast, the unknown individual and the positive
control from Tamaulipas were located in the point cloud of the candidate locations from
the Sierra Madre Oriental (Figure 1).
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The combination of the positive controls + unknown individual + individuals from
the Sierra Madre Oriental showed that the unknown individual was placed within the
data cloud corresponding to the Sierra Madre Oriental candidate locations and was closest
to the individuals from the Querétaro location. The positive control of the individual
from Tamaulipas was also placed in this cloud but was closer to the individuals from the
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location from Tamaulipas. In contrast, positive control individuals from Sinaloa, Nayarit,
and Oaxaca formed a cloud of points that was quite distant from the individuals from the
reference locations in the Sierra Madre Oriental (Figure 2).
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3.2. Genetic Assignment

STRUCTURE showed the two genetic groups (K = 2) reported previously by Rivera-
Ortíz et al. [34]. The results of this analysis (Figure 3) indicates that the positive control
individuals were correctly assigned to the locations corresponding to their known geo-
graphic origins. The unknown individual was assigned to the genetic group of the Sierra
Madre Oriental with a genetic allocation ratio of 97.1% to 99.6% (Table 2).

Table 2. Variation in the genetic allocation percentages of the unknown individual of Military Macaw,
with the USEPOPINFO function of STRUCTURE for 10 runs with K = 2.

Run
Genetic Group 1 Genetic Group 2

Assignment Percentages

1 2.9 97.1
2 0.4 99.6
3 97.2 92.8
4 97.2 92.8
5 2.7 98.3
6 1.6 98.4
7 0.8 99.2
8 97.3 90.7
9 0.5 99.5
10 1.8 98.2

Genetic group 1 = Sierra Madre Occidental/Sierra Madre del Sur. Genetic group 2 = Sierra Madre
Oriental.

DAPC supported STRUCTURE, identifying two genetic groups (K = 2) (Figure 4),
according to Bayesian information criterion (BIC). The DAPC plot also reflects the assign-
ment probabilities of the positive control individuals as well as the individual of unknown
origin to the Sierra Madre Oriental (Figure 4).
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discriminants (LD). Each dot represents an individual. Eigenvalues of the analysis are displayed in
the inset.

In the four approaches implemented by GENECLASS, positive controls from Sinaloa,
Nayarit and Oaxaca were assigned to the Sierra Madre Occidental/Sierra Madre del
Sur genetic group, with values ranging from 70% to 82.4%. The positive control from
Tamaulipas and the unknown individual were assigned to the genetic group from the
Sierra Madre Oriental with values of 71.2% to 82.4% (Table 3).

The unknown captive individual was assigned to the candidate locations from Tamauli-
pas and Querétaro (Table 4). The analysis of Nei’s genetic distances and the minimum Nei
distance proposed by Cournuet et al. [55–57] showed the probabilities of assignment of
the unknown individual to the locations from Querétaro and Tamaulipas (Table 4). The
partially Bayesian approach taken by Rannala and Mountain [54] and the allele frequency
approach described by Paetkau et al. [53] both assigned the unknown individual to the
location from Querétaro, with probabilities of 32.7% and 30.3%, respectively (Table 4). All
positive control individuals were assigned correctly to each of their locations of origin; the
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four approaches showed assignment probabilities between 29.8% and 55.0% for individuals
from Sinaloa, Nayarit, Oaxaca, and Tamaulipas (Table 5).

Table 3. Assignment probabilities of the positive control samples and the captive individual of unknown origin, according
to four types of analysis.

Analysis Type

Genetic Groups Controls Frequencies Bayesian Nei’s Genetic
Distance (1983)

Minimal Nei
Distance (1973)

Sierra Madre
Occidental/Sierra

Madre del Sur

Sinaloa 0.756 * 0.705 * 0.771 * 0.816 *
Nayarit (Ind. 1) 0.745 * 0.723 * 0.700 * 0.801 *
Nayarit (Ind. 2) 0.742 * 0.737 * 0.715 * 0.810 *

Oaxaca 0.778 * 0.756 * 0.789 * 0.836 *

Sierra Madre
Oriental

Tamaulipas 0.764 * 0.758 * 0.764 * 0.799 *
Unknown individual 0.712 * 0.748 * 0.79 * 0.824 *

* The probability of exclusion calculated with the Monte Carlo method of Paetkau et al. (2004) is p < 0.05.

Table 4. Assignment probabilities for the captive individual of unknown origin to each candidate
location, according to four types of analysis.

Analysis Type

Candidate
Populations Frequencies Bayesian

Genetic
Distance of Nei

(1983)

Minimal
Distance of Nei

(1973)

Sonora 0.00 0.00 0.00 0.00
Sinaloa 0.00 0.00 0.00 0.00

Nayarit (Ind. 1) 0.00 0.00 0.00 0.00
Nayarit (Ind. 2) 0.00 0.00 0.00 0.00

Jalisco 0.00 0.00 0.00 0.00
Oaxaca 0.00 0.00 0.00 0.00

Querétaro 0.303 * 0.327 * 0.373 * 0.461 *
Tamaulipas 0.00 0.00 0.224 * 0.418 *

* The probability of exclusion calculated with the Monte Carlo method of Paetkau et al. (2004) is
p < 0.05.

Table 5. Assignment probabilities for the positive control samples to each candidate location, accord-
ing to four types of analysis.

Analysis Type

Candidate
Populations

Positive Controls (• = TAM, + = SIN, ♦ = NAY and � = Oax)

Frequencies Bayesian
Genetic

Distance of Nei
(1983)

Minimal
Distance of Nei

(1973)

Sonora 0.00 0.00 0.00 0.00
Sinaloa 0.306 +* 0.298 +* 0.471 +* 0.501 +*

Nayarit (Ind. 1) 0.349 ♦* 0.376 ♦* 0.401 ♦* 0.550 ♦*
Nayarit (Ind. 2) 0.449 ♦* 0.376 ♦* 0.401 ♦* 0.505 ♦*

Jalisco 0.00 0.00 0.00 0.00
Oaxaca 0.408 �* 0.378 �* 0.439 �* 0.451 �*

Querétaro 0.00 0.00 0.00 0.00
Tamaulipas 0.35.7 •* 0.310 •* 0.309 •* 0.457 •*

* The probability of exclusion calculated with the Monte Carlo method of Paetkau et al. (2004) is
p < 0.05.

Self-assignment tests of the candidate locations panel correctly assigned between
65.1% and 90.6% of the individuals to their population of origin (Table 6).
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Table 6. Allocation criteria implemented in GENECLASS, self-assignment test of the 86 wild individ-
uals of the seven candidate locations.

The Criterion of the
Algorithm Number of Individuals Percentage (%)

Frequencies 67 77.9
Bayesian 74 86.0

Nei’s Genetic distance (1983) 78 90.6
Minimal Nei distance (1973) 56 65.1

4. Discussion

Identification of an individual’s geographic origin by means of genetic analysis de-
pends on the ability to assign it to a particular location, which in turn depends on the
level of genetic structuring among reference locations [58]. Here, we tested the ability of
molecular genetic assignment to identify the likely location of origin of one individual of
the Military Macaw of unknown origin and five individuals of known origin, in order to
evaluate the method’s utility in future conservation efforts for the species. In this study,
the results showed that the methods tested were useful in identifying the geographic areas
from which individuals likely originated, for both the unknown individual and the five
positive controls.

The results of the FCA, STRUCTURE and DAPC tests grouped the unknown individ-
ual with the Sierra Madre Oriental genetic group with high confidence. However, it was
impossible to assign it to a specific geographic location because there is no differentiation
between individuals from different reference locations in this genetic group, indicating
gene flow. These FCA, STRUCTURE and DAPC results are reliable because the reference
sample of individuals used in the study and provided by Rivera-Ortíz et al. [34] presents a
marked genetic structure and differentiation across the distribution range of the Military
Macaw in Mexico, showing a pattern that was also found by Eberhard et al. [59] with
mitochondrial markers. These previously documented patterns of genetic structure are
important in the context of the present study because structure and differentiation among
the reference locations must be high if there is to be reasonable success in geographic
allocation using grouping methods (with 80–100% correct allocation) [26,60,61].

The allocation/exclusion analyses carried out using GENCLASS suggest that the likely
origin of the unknown individual is the Sierra Madre Oriental metapopulation, as deter-
mined by the grouping analyses. Three of the four criteria used for the allocation/exclusion
analyses show some probability that the unknown individual belongs to the Querétaro
location, although with relatively low certainty (30–46% probability). These low probability
values should be interpreted with caution, since they may be affected by small sample sizes
in some of the reference locations. Some authors suggest that a sample of 30–50 individuals
per reference location is necessary to allow accurate estimates [26,55,58]. Unfortunately,
obtaining large sample sizes in studies of endangered species is extremely difficult due
to small population sizes, restricted areas, and difficulty accessing their distributional
areas [13,62,63], as in the case of the Military Macaw.

The different methods used to identify the probable location of origin of the individual
Military Macaw of unknown origin proved to be effective and complementary, as demon-
strated in this study. When carrying out this type of analysis, we recommend graphically
showing the genetic similarity of the individuals as a first step that reveals if the samples
of unknown origin are grouped in the reference localities [64]. Then, consider a Bayesian
approach to determine the probability that the individuals of unknown origin originate
from a population, considering all reference localities together [26]. Finally, use the tests to
exclude or identify individuals of unknown origin in the reference localities, to determine
the probability that individuals of unknown origin are rejected or belong to the reference
localities [65].

Our study shows that given the degree of population genetic structure in Military
Macaw locations in Mexico, it is possible to use microsatellite data to identify the probable



Diversity 2021, 13, 245 10 of 13

location of origin of an individual of unknown provenance. This, in turn, makes it possible
to make a more informed selection of locations at which the individual could be released.
The captive specimen was geographically assigned to the Sierra Madre Oriental, and
according to our results, is a candidate for release in that zone. It is essential that the
programs for reintroducing and releasing Military Macaw individuals into the wild make
proper use of this kind of molecular tools [42,66,67], given that for an endangered species,
such as the Military Macaw, the strong genetic structuring of wild locations may reflect
local adaptations that would be lost if they were to be managed as a single group [34].

To improve the accuracy of assigning individuals of unknown origin to their correct
populations, it is crucial to continue genetic studies of wild locations and increase the
number of molecular markers used in genetic analyses. Relatively low numbers of mi-
crosatellites were used in this study, but microsatellites have provided sufficient power for
geographic assignment of a variety of wild species due to their high level of polymorphism
and genetic structure of the populations [68–70]. The use of other markers such as mito-
chondrial DNA would be very informative and complementary since it might allow us
to distinguish lineages that correspond to particular geographic areas [21]. Identification
of single nucleotide polymorphisms (SNPs) from genomic data also have a significant
advantage for geographic assignment, since information from hundreds or thousands of
SNPs could potentially provide improved resolution of patterns of genetic structure, and
thus, the more precise assignment of an individual’s geographic origin [61].

Our study demonstrates that in combination with the reference samples analyzed by
Rivera-Ortiz et al. [34], currently available molecular markers and statistical assignment
and exclusion software can help identify the geographic origin of captive individuals or
specimens confiscated from illegal trade [50]. No studies have been conducted to analyze
the number of Military Macaw individuals trapped each year, but Cantú et al. [16] estimated
that 65,000 to 78,000 psittacid individuals are poached for illegal trade and suffer a mortality
rate of 77%. Only about 2% of poached individuals are seized by the Mexican Federal
Environmental Protection Agency (PROFEPA) [16], but given how many are poached, this
small percentage still represents several hundred individuals. In this sense, identifying the
geographic origin of captive individuals or specimens confiscated from illegal trade helps
biodiversity managers to detect locations with intense poaching, and thus, focus efforts
and resources on these sites to prevent poaching. It will also support and guide restoration
or demographic translocation programs if they are deemed necessary to increase genetic
variability [23,28].

A crucial component of this study was the availability of the set of reference samples
of known geographic origin [34]. We recommend the establishment of large DNA reference
collections and large public databases containing allele frequencies from many populations,
and the use of museum collections, which can play an essential role since DNA can be
extracted from museum skins. Any genetic analysis that attempts to identify geographic
origin of an individual/sample depends on having good data on georeferenced genetic
variation. These databases would be extremely valuable in efforts to conserve endangered
species [26], by helping to detect and reduce illegal trade and informing conservation
management plans.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/d13060245/s1, Table S1: Locus name and sequences of the eight microsatellite loci used for
assignment analysis, Table S2: Descriptive statistics over all loci for each reference locations, positive
controls, and unknown individual Military Macaw, Figure S1: Ln(DK) values plotted from 1 to 10 for
the genetic group of the (a) Sierra Madre Occidental / Sierra Madre del Sur and (b) Sierra Madre
Oriental, Figure S2: Changes in mean Bayesian information criterion (BIC) values in successive
K-means clustering.
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