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Abstract: The creek sandpaper fig of southeastern Australia, Ficus coronata Spin, is culturally sig-
nificant to Australian traditional owners who made use of the leaves to smooth timber and ate
the fruit. The species is thought to have a long history on the continent, with some suggesting a
Gondwanan origin. However, distributional patterns and overall ecology suggest a recent expansion
across suitable habitats. We used landscape genomic techniques and environmental niche modelling
to reconstruct its history and explore whether the species underwent a recent and rapid expansion
along the east coast of New South Wales. Genomic analysis of 178 specimens collected from 32 popu-
lations throughout the species’ New South Wales distribution revealed a lack of genetic diversity and
population structure. Some populations at the species’ southern and western range limits displayed
unexpected diversity, which appears to be the result of allele surfing. Field work and genetic evidence
suggest a Holocene expansion which may have increased since European colonisation. We also
present a novel method for detecting allele surfing—MAHF (minor allele at highest frequency).
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1. Introduction

Post-glacial range expansions, from low latitudes towards the poles, have been re-
ported for multiple species globally [1–4]. During the Pleistocene, the climate oscillated
between glacial and interglacial periods, repeatedly forcing species to contract into refugia
(or become extinct), then expand as conditions improved [5,6]. Periods of contraction
condensed populations into isolated gene pools, while expansion enabled populations to
grow and diverge in response to new environments [7,8] or admix on contact with new
populations [9]. These contraction and expansion cycles formed the basis from which
today’s species distribution and population structure developed [10].

Species’ range expansion can be described as having a leading edge, with the gaps
being filled as others migrate behind. As repeat founding events migrate further from the
source, genetic diversity is reduced and homozygosity increases. Colonising populations
consisting of individuals derived from a larger source population start with a random
subset of the source population’s allelic diversity, equating to a loss of allelic diversity
or genetic drift. Being random, genetic drift is not caused by the environment, although
selective pressures will ultimately determine which alleles remain. Genetic drift and
decreasing relatedness with increasing geographic distance [11] contribute to the process of
isolation by distance (IBD [12–14]). This means opposite ends of a large continuous species
distribution can end up with distinct allelic variation [12]. Low allelic diversity and weak
population structure can identify recent range expansion [15], while refugial populations
often have high allelic diversity and strong population structure [16].
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Low and uniform variation is often observed across the distribution of many Aus-
tralian rainforest species with southeast Asian (Sunda) heritage, the result of recent migra-
tion and a short expansion period within the Australian continent [4,17–19]. Over time, as
migrant populations increase in size and number, allelic diversity can also increase, either
through mutations [20] or admixture when encountering closely related individuals [21].

The east coast of Australia has been shown to provide refugia for many rainforest
species [22–26], especially in north and southeast Queensland (QLD) and northeast New
South Wales (NSW). Das et al. [24] used climate models to identify potential rainforest refu-
gia in Australia from which species expanded during the Holocene warming. Several recent
studies explored the concept of Holocene range expansion in Australia. Fahey et al. [25]
revealed the Holocene expansion of two sympatric Tristaniopsis species differed, with one
rapidly expanding its range while the other maintained a more stable distribution. A study
of species accumulation through time across three eastern NSW rainforest communities [26]
found that the majority of species investigated had expanded into the study regions as
recently as the late Pleistocene and Holocene.

Globally there are multiple reports of Holocene expansions of Ficus species. In South
America, De Almeida Vieira et al. [27] show a southward Holocene expansion of F. boni-
jesulapensis from northern refugia. In the northern hemisphere, Nason et al. [28] discuss
the northern range expansion of F. hirta within China from two or more southern refugia.
Lin et al. [29] reported a drastic post-Last Glacial Maximum (LGM) expansion of a pollina-
tor wasp species, potentially linked to the range extension of its host F. spetica, in Taiwan.
Chen et al. [30], again based on pollinator wasps, concluded that the Chinese fig F. pumila
expanded from multiple refugia. Ours, however, is the first study using multiple lines of
evidence to investigate the putative Holocene expansion of an Australian Ficus.

Commonly referred to as the creek sandpaper fig, F. coronata (Figure 1) is one of
~80 species [31] in the monophyletic subgenus Sycidium [32], which are found in Africa,
Asia and Australia [31]. The group has 42 species in the region of Malesia (including
Malaysia, Indonesia, Philippines and New Guinea) and 13 species in Australia. The creek
sandpaper fig, F. coronata, and the shiny sandpaper fig, F. fraseri Miq, are endemic to
the east coast of NSW and QLD. Another six Sycidium species, F. aculeata A. Cunn. ex
Miq, F. carpentariensis D.J. Dixon (= F. aculeata x coronulata, see [33]), F. coronulata Miq,
F. leptoclada Benth, F. podocarpifolia Corner and F. scobina Benth, are endemic to tropical
northern Australia. The remaining five Australian species, F. copiosa Steud, F. melinocarpa
Blume, F. opposita Miq, F. tinctoria G.Forst and F. virgata Reinw. ex Blume, also occur outside
of Australia.
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Figure 1. (a) A small multitrunked Ficus coronata of around 7 m tall, Royal National Park, NSW, Australia; (b) Sandpaper-
like foliage and young figs. Photography by B.C. Wilde. 

 
Figure 2. Distribution of Ficus coronata based on herbarium data. Vouchers from Western Australia 
(WA), Northern Territory (NT) and Far North Queensland (FNQ) were found to be in error and are 
not shown. Atlas of Living Australia (ALA) (2020) Ficus coronata occurrence records. Available at: 
ala.org.au, accessed on 30 May 2020). 

2. Material and Methods 
2.1. Sampling Strategy 

At the time of writing, F. coronata was recorded for five Australian states and territo-
ries (Atlas of Living Australia (ALA) (2020) Ficus coronata occurrence records. Available 
at: ala.org.au, accessed on 30 May 2020). The species is most common in NSW with 4333 
records, southeast QLD with 413 (classified as least concern, ALA 2021), northeastern Vic-
toria (VIC) with 46 (listed as threatened, Flora and Fauna Guarantee Act 1988—Threat-
ened List November 2019), Northern Territory with five and Western Australia one. Im-
ages of collections with doubtful identifications for Northern Territory (NT), Western 
Australia (WA) and Far North Queensland (FNQ) were requested from the BRI, CANB, 
VIC and SA herbaria. None of the sighted specimens were F. coronata. One specimen, 
CANB 268023, is F. coronulata; MEL 1581926 and MEL 1581933 are possibly F. aculeata x 
coronulata [33]. Three specimens, BRI AQ1005733, BRI AQ0008071 and MEL 0274275A 
from northern QLD, are likely F. opposita. This makes F. coronata an endemic of south east 
coast Australia (Figure 2). 
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As suggested by its common name, F. coronata has sandpaper-like leaves that were
used by Aboriginal Australians to smooth timber; the fleshy purple fruit from female trees
(the species is gynodioecious) is edible. The species name ‘coronata’ refers to the crown-like
ring of bracts around each fig’s ostiole. Fig fruits are eaten by many animals [34], including
birds and bats [35,36], that can distribute the seed over long distances. Most commonly
found around the NSW–QLD border (Figure 2), an area that includes multiple persistent
rainforest refugia, the species is habitat-specific and highly dispersible, making it a good
subject to study post-glacial expansion patterns.
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Figure 2. Distribution of Ficus coronata based on herbarium data. Vouchers from Western Australia
(WA), Northern Territory (NT) and Far North Queensland (FNQ) were found to be in error and are
not shown. Atlas of Living Australia (ALA) (2020) Ficus coronata occurrence records. Available at:
ala.org.au, accessed on 30 May 2020).

Using genome-wide reduced-representation sequencing (DArTseq) and environmental
niche modelling (ENM), we investigated the landscape genomic patterns of F. coronata in
order to ascertain a recent migration event into the southern range of its distribution. In
particular, we ask: (1) can signals for rapid expansion of F. coronata be detected; and (2) can
directionality of migration be determined?

2. Material and Methods
2.1. Sampling Strategy

At the time of writing, F. coronata was recorded for five Australian states and territo-
ries (Atlas of Living Australia (ALA) (2020) Ficus coronata occurrence records. Available
at: ala.org.au, accessed on 30 May 2020). The species is most common in NSW with
4333 records, southeast QLD with 413 (classified as least concern, ALA 2021), northeast-
ern Victoria (VIC) with 46 (listed as threatened, Flora and Fauna Guarantee Act 1988—
Threatened List November 2019), Northern Territory with five and Western Australia one.
Images of collections with doubtful identifications for Northern Territory (NT), Western
Australia (WA) and Far North Queensland (FNQ) were requested from the BRI, CANB,
VIC and SA herbaria. None of the sighted specimens were F. coronata. One specimen,
CANB 268023, is F. coronulata; MEL 1581926 and MEL 1581933 are possibly F. aculeata x
coronulata [33]. Three specimens, BRI AQ1005733, BRI AQ0008071 and MEL 0274275A from
northern QLD, are likely F. opposita. This makes F. coronata an endemic of south east coast
Australia (Figure 2).

ala.org.au
ala.org.au
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To investigate the hypothesis of a recent southern expansion, leaf material was col-
lected from 178 F. coronata individuals from 32 sites throughout the species’ NSW range
(Table 1) following the Restore and Renew collection protocol [37]. Where possible, six
individuals were collected from each population, though some populations had less than
six individuals. Individuals at least 10 m apart and older plants were prioritised. Data for
samples were collected using the Restore and Renew mobile app [38]. Samples were stored
at −80 ◦C before freeze drying and then placed in airtight containers with silica beads.

Table 1. Locations of Ficus coronata populations with a count of samples used in this study. Six
samples were collected from Royal National Park, Red Head and Sea Acres though not all were
successfully sequenced.

Population Location Latitude Longitude Samples

01 Brunby Plains −28.4874 152.6518 6
02 Billinudgel −28.4976 153.5372 6
03 Montecollum −28.5919 153.4546 6
04 Nightcap Ridge −28.6113 153.3647 6
05 Lismore −28.8034 153.2809 6
06 Washpool −29.4724 152.3302 5
07 Dorrigo −30.3947 152.7459 2
08 Mount Kaputar National Park −30.5970 150.2961 6
09 Oxley Wild Rivers National Park −30.7429 152.0148 4
10 Port Macquarie −31.4597 152.9213 6
11 Sea Acres National Park −31.4641 152.9304 4
12 Red Head −32.0438 152.5324 5
13 Barrington Tops −32.0662 151.6635 6
14 Cellito Beach −32.3782 152.5283 3
15 Fern Tree Gully −32.6595 150.0347 6
16 Putty Road −32.7304 150.9415 6
17 Colo River −33.4319 150.8311 6
18 Yarramundi Reserve −33.6098 150.7142 6
19 Govetts Leap, Blue Mountains −33.6291 150.3168 6
20 Berowra River −33.6654 151.0811 6
21 Depot Beach −33.7960 151.0681 6
22 Royal National Park −34.1535 151.0286 5
23 Stanwell Tops −34.2270 150.9805 6
24 Macquarie Pass −34.5731 150.5731 6
25 Minnamurra Forest −34.6349 150.7246 6
26 Kangaroo Valley −34.7607 150.6161 6
27 Bungonia National Park −34.7995 150.1387 6
28 Wandandian Creek −35.0982 150.5032 6
29 Mount Agony −35.7278 150.1973 6
30 Deua National Park −35.9640 149.9360 6
31 Gulaga National Park −36.3179 150.0741 6
32 Brogo −36.5569 149.8180 6

2.2. Genome Scans and Data Analysis

A 5–10 mg section of leaf from each specimen was provided to Diversity Arrays
Technology (DArT; http://www.diversityarrays.com, accessed on 30 May 2020) for ex-
traction and sequencing. DArTseq uses restriction enzymes targeting low-copy sequences
(mainly nuclear) and next-generation sequencing (NGS) to provide thousands of markers
across the genome. DArT supplied genetic data in the form of 109,377 single-nucleotide
polymorphisms (SNPs) for each sample using a proprietary analytical pipeline. The dataset
was pre-processed with an in-house R package RRtools v. 1.0 (unpublished; Jason Bragg,
Royal Botanic Garden Sydney) as per the Restore and Renew workflow described in [37],
removing low quality (reproducibility ≤ 0.98 and missingness ≥ 0.05) and duplicate SNPs,
resulting in 7492 SNPs that were used in the analyses.

http://www.diversityarrays.com
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Genetic structure and admixture analyses were performed with LEA, an R package
for landscape and ecological association [39], and mapped with the R library oz [40] and
mapplots [41]. The best value for K was determined using snmf from LEA by plotting cross
entropy for K = 2 to 10 and selecting the most suitable K from the average of 10 runs. Data
for populations and individuals were run separately to check for conformity.

Genetic data were converted to genlight format and Principal Component Analysis
(PCA) was performed using the function glPca (Principal Component Analysis for genlight
objects) of the R package adegenet [42,43]. Population genetic measures were obtained to
explore the distribution of genetic variation and connectivity between populations. The
fixation index (FST) was estimated using R package SNPrelate [44] using W&H02—relative
beta estimator [45]. This was also used in the FST by distance Mantel created with the R
package Vegan [46]. Estimates for population allelic richness (AR), expected heterozygosity
(HE), observed heterozygosity (HO) and inbreeding coefficient (FIS) were calculated with
the R package diveRsity [47]. Private allele counts were performed with the R package
poppr [48].

Range expansion analysis was performed with the R package rangeExpansion [49].
Genetic data were converted to snapp format and all regions were tested by supplying a
NULL region list. Falistocco [50] notes that figs are commonly diploid so the ploidy was
assumed to be two.

With the rangeExpansion results lacking sensitivity to a recently expanded population
such as F. coronata and minor allele frequency (MAF) known to strongly affect inferred
population structure [51], we experimented with using MAF to detect allele surfing. A
table of minor alleles for each site was created with the R package RRtools. We then
counted the occurrences of each minor allele for each population. An allele was regarded as
MAHF (minor allele at highest frequency) for the population with the highest occurrence
count. Each population can have 0 or more MAHF but an allele can only be MAHF for
one population. All MAHF were counted for each population and graphed. This provides
a basic visual of minor alleles being lost (through processes such as bottlenecking) and
gained (stochastically, adaptively or through allele surfing).

Environmental niche modelling (ENM) was used to estimate possible past and future
regions with suitable climate for this species, and uncover possible refugia and expansion
directionality. The R library Kuenm [52] was used to create ENMs following the steps
outlined in https://github.com/marlonecobos/kuenm (accessed on 5 January 2021). The
package automates the creation of multiple Maxent models [53] using various regular-
ization parameters, combinations of feature classes and environmental predictors. The
package can also test all models it creates and select an optimal model and transfer this to
different environmental layers or eras.

Collection records for ENM creation were downloaded from the Atlas of Living
Australia (ALA; http://ala.org.au, accessed on 30 May 2020) and filtered to remove du-
plicates, records before 1950 and records with location accuracy greater than 100 m. The
remaining records were spatially thinned with the R package spThin [54] set to 20 km,
removing multiple records in close proximity and the possible bias caused to the modelling.
Four eras of environment layers were downloaded using the R function getData() from
the R package raster [55]: The Last Glacial Maximum (LGM, paleoclim(‘lgm’, ‘2.5 m’) [56]
and Mid Holocene (MH, paleoclim(‘mh’, ‘2.5 m’) [57,58], from http://www.paleoclim.org,
accessed on 5 January 2021; the current era (‘worldclim’, var = ‘bio’, res = 2.5), from world-
clim (https://www.worldclim.org, accessed on 5 January 2021); and future era (‘CMIP5’,
var = ‘bio’, res = 2.5, rcp = 85, model = ‘HE’, year = 50) (Coupled Model Intercomparison
Project Phase 5) (https://pcmdi.llnl.gov/mips/cmip5/, accessed on 5 January 2021).

Layer names for environment sets LGM and MH were renamed and ordered to match
those in the current and future sets. All environmental sets were cropped to include Papua
New Guinea and Eastern Australia. Four of the 19 environmental layers were removed
because of their possible bias effect [59], while others were removed after tests with maxent
showed they had no effect of the model. The remaining layers were placed into three

https://github.com/marlonecobos/kuenm
http://ala.org.au
http://www.paleoclim.org
https://www.worldclim.org
https://pcmdi.llnl.gov/mips/cmip5/
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different sets of reduced size for use in kuenm. Set 1 included bio layers: 1, 2, 5, 6, 7, 11,
12, 13, 14, 15, 16, 17; Set 2: 1, 5, 6, 11, 12, 14, 15, 17; Set 3: 1, 12, 15, 17. Kuenm created
1581 candidate models before selecting the final model from which the 4 different eras
were created with no extrapolation. On completion, kuenm creates a Final_Model directory
containing a .bat file for each model tested, in this case LGM, MH, Current and Future.
Images of the models were generated by copying the Java code contained in the .bat files
and running it in a bash terminal window.

Data visuals were combined and edited in Adobe inDesign (Adobe Inc., San Jose,
CA, USA, 2019. Adobe InDesign, Available at: https://adobe.com/products/indesign,
accessed on 10 June 2020).

3. Results
Genetic Structure

Results for population genetic structure derived from LEA admixture results (Figure 3)
show an overall north to south latitudinal gradient (population 01—Brunby Plains to 32—
Brogo), with the western extreme population (08—Mount Kaputar National Park) and
most southerly (32—Brogo) resolving as distinct from the other sites.

The Mantel test (FST by distance Figure 4; r = 0.3181, P = 0.001) showed a strong
association between geographic and genetic distances, excluding populations 08 and 32,
(r = 0.3966, P = 0.0001). Populations 08 and 32 show variation probably not explained by
isolation by distance (see Appendix A Figure 1) or admixture (see Appendix B Figure A2),
with no other sandpaper fig species nearby. Pairwise comparison of allele frequencies (see
Appendix B Table A1) shows populations 08 and 32 have the highest levels of differentiation.
The highest pairwise differentiation (FST = 0.395) was between populations 08 and 32 and
the smallest was between populations 01 and 05 (FST = 0.013).

Principal component analysis (PCA, Figure 5) of genetic data for all 178 individuals
shows very little clustering into their respective populations, with most individuals forming
one continuous cluster in a broad north to south pattern. The western population (08) and
the most southern population (32) are separated from all other populations, though overall
variation displayed is very low (PC1 = 3.9%, PC3 = 2.9%; Figure 5).

MAHF (minor allele at highest frequency, Figure 6) analysis showed an overall loss of
minor alleles from north to south (population 01 to 32). There was also a loss of alleles in an
east to west direction (population 01 to 08). The MAHF count is almost zero before a large
peak at the western extreme (population 08), and reduces again before another smaller
peak for the most southern (population 32).

https://adobe.com/products/indesign
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Range expansion analysis (Figure 7A) highlighted all of the northern distribution as
a possible origin of expansion and the southern limits as being non-origin, suggesting a
general southerly expansion pattern.

Table 2. Population genetic diversity estimates for Ficus coronata collected from 32 NSW locations,
showing population allelic richness (AR), expected (HE) and observed (HO) heterozygosity, inbreeding
(FIS), and private alleles (PA). Prefix of L shows the 4 lowest results for each variable and H the 4 highest.
See Figure 7 for mapped highs and lows and Table 1 for site population details of populations. * Possible
biased results with only 2 individuals collected, this site has been excluded from the maps in Figure 7.

Population AR HE HO FIS PA

01 1.458 0.274 0.265 H 0.018 H 154
02 1.449 0.271 L 0.260 H 0.020 H 222
03 1.451 0.268 0.266 −0.006 H 150
04 1.430 0.257 0.265 −0.038 115
05 H 1.470 H 0.276 0.274 −0.006 H 149
06 1.455 0.271 0.266 0.001 149
07 *L 1.368 *L 0.208 0.266 *L −0.290 *L 28
08 L 1.347 L 0.196 L 0.236 L −0.183 51
09 1.446 0.261 0.269 −0.047 69
10 1.452 0.264 0.273 −0.039 146
11 1.451 0.261 H 0.277 −0.078 95
12 H 1.472 H 0.275 H 0.276 −0.020 71
13 H 1.474 H 0.278 H 0.276 −0.006 61
14 1.417 L 0.236 0.272 L −0.159 67
15 1.421 0.242 0.269 L −0.108 59
16 1.466 0.273 0.276 −0.022 101
17 1.460 0.271 0.266 0.000 73
18 1.465 0.269 0.273 −0.028 87
19 1.438 0.248 0.271 −0.086 52
20 1.438 0.256 0.275 −0.065 69
21 H 1.470 H 0.275 0.270 H 0.005 67
22 1.461 0.271 0.274 −0.028 56
23 1.465 0.274 0.275 −0.017 77
24 1.460 0.271 0.269 −0.004 54
25 1.464 0.272 0.268 −0.001 69
26 1.462 0.273 0.264 H 0.008 58
27 L 1.415 0.244 L 0.243 −0.012 46
28 1.463 0.266 H 0.277 −0.045 L 39
29 L 1.413 L 0.234 L 0.261 −0.105 L 33
30 1.442 0.258 0.267 −0.043 L 44
31 1.446 0.261 0.261 −0.012 51
32 L 1.329 L 0.177 L 0.259 L −0.34 L 30
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Figure 7. (A) Range expansion analysis; blue shows possible origin of expansion and red shows non-origin regions. (B–D)
Population genetic diversity estimates (Table 2) mapped for Ficus coronata. The four highest results are shown in blue, the
four lowest in red. (B) Population allelic richness (AR). (C) Heterozygosity observed (HO). * Population 02 in red at the
northeast boundary is unexpectantly low, though the difference is only 0.001 between it and populations 29 and 30 at the
southern boundary. (D) Private alleles (PA); the third highest value is the same for two sites.

Genetic diversity estimates for the 32 NSW populations in this study (Table 2 and
Figure 7) show allelic richness (AR; Figure 7B) is lowest for the western extreme (08,
AR = 1.347) and most southern population (32, AR = 1.329). AR is highest at two central
coast populations (12—Red Head, AR = 1.472 and 13—Barrington Tops, AR = 1.474), though
there is very little difference over the whole study region. Observed heterozygosity (HO,
Figure 7C) was found to be lowest in a southern population (27—Bungonia National Park,
HO = 0.243) and western population (08, HO = 0.236). HO is highest in a central population
(11—Sea Acres National Park, HO = 0.277) and in a southern population (28—Wandandian
Creek, HO = 0.277) though another two central populations, 12 and 13, are only slightly
lower (HO = 0.276). The highest number of private alleles (PA, Figure 7D) occurs in
the northern populations ((01, PA = 222) and (02—Billinudgel, PA = 154)). Population
07 (Dorrigo) has the lowest amount of private alleles PA = 28; only two samples were
sequenced for the site, so this may be a biased result. Excluding population 07 leaves the
southern populations 29 (Mount Agony) and 30 (Deua National Park) with the lowest PA.
Inbreeding coefficient was highest for the two most northern populations (01, FIS = 0.018
and 02, FIS = 0.020) and lowest for the most southern population (32, FIS = −0.34) and
population 07 (FIS = −0.290).

Environmental niche modelling (Figure 8) for LGM, MH, the current era and the
future (2050) show a north to south movement of suitable environment for the species,
with an overall decline over time. LGM shows the largest area of suitable environment
(in red) centred around southeastern QLD and northeastern NSW. The MH prediction
shows suitable areas reduced by about half and located more southernly than during the
LGM. The current era maintains similar levels of suitability to the MH and a continued
southward shift of suitable habit. The future predication shows the species losing more
suitable habitat, with only small patches of highly suitable environment shifting south. At
the northern extent, suitable patches have moved westwards.
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4. Discussion

The results from our genetic analysis indicate a rapid and recent southern range
expansion for F. coronata. Very little genetic structure was detected over the complete
NSW range (Figure 5), a recognised signal of expansion [60]. All analytical approaches
(Figures 3–6; and Appendix A Figure 1) identified the extreme western (08) and southern
(32) populations as more genetically distinct than other populations over similar distances.
Our range expansion analysis (Figure 7A) defines most of the northern distribution of this
species as the origin of expansion and the tip of the southern distribution as non-origin.
Although the analysis provided no clear population of origin, a consequence of very low
differentiation across the species distribution, it does support a north to south expansion.
Private allele counts (PA, Figure 7D) also support a north to south expansion, with the
highest PA in the north and lowest in the south. Environmental niche models (Figure 8 also
support a southern shift of suitable habitat from the LGM to now, and the MAHF analysis
(Figure 6 supports a recent expansion with a gradual loss of MAHF in a north to south and
east to west direction.

The increased frequency of MAHF for populations 08 and 32 are a likely signature
of allele surfing [61–63]. Allele surfing occurs when alleles ‘surf’ through populations on
the ‘wave’ or leading edge of migration. This causes alleles that are uncommon across
the species distribution (low minor allele frequency—MAF) to be represented at high
frequencies in populations at the migration front (minor allele at highest frequency—
MAHF). Declines in population densities towards the expansion front can intensify the
effects of drift [62] and the chance for alleles to surf. Mutations that develop near the wave
front have a higher probability of being caught by the wave [64] and all alleles that have
surfed can likely be traced to an ancestor that lived on a previous wave front [65]. As a
population expands and loses alleles through genetic drift, the remaining variants can be
found at higher frequency in the new front than in any other population. Surfing alleles
can become fixed in a newly occupied habitat at the species’ range boundaries [66], leading
to populations with allelic combinations found nowhere else in the range.

The dramatic difference between MAHF (Figure 6) for populations 07 and 08 may
indicate that shorter distances between origin and leading-edge populations increase the
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chance of surfing. The more distant southern population 32 has a much smaller increase
in MAHF; however, this may be because it is not the current migration front, which is
located 150 km to the south in Victoria. The Victorian population may also show a dramatic
increase in MAHF.

The idea that a newly expanded population has unusual allelic frequencies appears
counter intuitive and may lead to an inference of local adaptation [67], historical persistence
within refugia, or even cryptic speciation. Peischl et al. [64] suggested that some studies
on human adaption to local environments, e.g., [68,69], may be misinterpreted allele
surfing events.

Environmental niche modelling (Figure 8), based on climatic data, supports a post-
LGM southern expansion of habitat suitable to F. coronata, a southerly shift that will
potentially continue into the future. The period with the greatest availability of suitable
habitats appears to be the LGM (Figure 8) especially around northern NSW and southern
QLD. The genetic signal of rapid expansion displayed by F. coronata is similar to that seen
in rapidly expanding Sunda-derived taxa [4,19,70].

5. Conclusions

Our results, including the novel MAHF analysis, highlight F. coronata as an example of
the little explored topic of allele surfing and another example of a rainforest species rapidly
expanding distribution during the Holocene. This study has implications for conservation
and management of this species, which is currently regarded as threatened in Victoria
(Flora and Fauna Guarantee Act 1988—Threatened List November 2019). Although not
sampled in this study (we have included collections from Brogo, 150 km north), it appears
likely the F. coronata has recently expanded into eastern Victoria, possibly in the last century.
The earliest herbarium collections from the region are by Wakefield in 1950 and only
46 collections have been made to date, all around Mallacoota. This study suggests the
small Victorian population is more likely the product of on-going southern expansion
than a relictual population in decline. The widespread practice of planting this species
in bush regeneration may be introducing the species to new areas, a process that needs
greater consideration in view of possible range shifts as a consequence of anthropogenic
climate change.
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Figure 1. (A) Heatmap showing pairwise comparison of population geographic distance or genetic isolation by distance (IBD). Scale
from white to blue; no genetic difference to high genetic difference. (B) Heatmap of pairwise comparison of the fixation index
(FST). Scale from white to red; no difference or total gene flow with paired population to high differentiation or no gene flow with
paired population.
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Table A1. Individuals of Ficus aculeata and Ficus fraseri used in this study.

Voucher Species Latitude Longitude

D0274341 Ficus aculeata −15.6463 136.7555
D0272678 Ficus aculeata −17.7832 137.8992
D0232704 Ficus aculeata −16.4274 129.6194
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