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Abstract: The mating system of plants widely distributed can change in native range but also
in non-native habitats. Oenothera drummondii, native to the coastal dunes of the Gulf of Mexico,
has been introduced to Europe, Africa, Asia and Oceania. Hand self- and cross-pollination were
performed to determine compatibility and to compare fruit set, fruit weight, seed set and germination
characteristics from natives and non-natives populations and a comprehensive integral reproductive
success index (IRSI) was built. Oenothera drummondii exhibited high self-compatibility and mixed
reproductive systems in all populations. Characteristics of fruits and seeds from self- and cross-
pollination varied within and between native and non-native populations and some had a positive
clinal variation in the native range. The IRSI was sensitive to changes of fruit set, seed set and final
germination of both self- and cross-pollination, showing differences between native populations.
Differences in characteristics of fruits and seeds in the native and non-native ranges suggest the
occurrence of distinct selection factors. The mixed reproductive system of O. drummondii suggests
it can take advantage of local visitors in the native range, but also can provide advantages for the
establishment at non-native sites giving the opportunity to interact with local flower visitors.

Keywords: costal dunes; cross-pollination; reproductive success index; seed germination;
incompatibility index; self-pollination

1. Introduction

Plant reproduction is central to the studies of population ecology, since it allows
an understanding of the evolutionary processes of species throughout their distribution
range [1,2]. Flowering plants possess exceptionally diverse reproductive strategies [3]
and mating system type determines reproductive success [4]. Sexual reproduction in
hermaphroditic plants generally includes self-pollination and cross-pollination, or a combi-
nation of both strategies [5,6]. Selfing resolves competition among individual plants for
pollination services when there is a limitation of pollinators or mates [7], while outcrossing
reduces inbreeding and increases genetic diversity. However, outcrossing is less efficient
because it requires the presence of pollen vectors and neighbouring mates [4].

Studies in natural populations have indicated that mixed mating systems are fre-
quent [5,8]. With this mating strategy, reproduction occurs by both self-fertilization (self-
ing) and mating with other individuals (outcrossing). One possible explanation is that
autonomous pollination provides reproductive assurance for outcrossing species when
pollinators are limited [5]. However, the rate of selfing can vary widely among populations
throughout their natural range as a result of both biotic and environmental factors [2].
Some plant species show selfing ability, such as those with short lifetimes or that inhabit
sites with frequent disturbances [9] and selfing species are more likely to have wider
geographical ranges than those without this ability [10,11].
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Human activities have not only caused major disturbances of natural habitats but
have also led to species dispersal beyond their native ranges [12,13]. Several studies have
shown that success in the establishment and spread of these non-native species depends
on particular physiological, ecological and reproductive characteristics [14,15]. However,
reproductive ability is important in the naturalization process because seed production
and seed germination are necessaries to maintain populations [16]. Baker [17] stated that
selfing plant species that arrive at new habitats after long-distance dispersal should have
an adaptive advantage, since one or more individuals will have the opportunity to start a
sexually reproductive population through the selfing reproductive mechanism. Known as
Baker’s law, this hypothesis has been widely discussed because of contradictory findings;
however, recent studies indicate that self-fertilization is a common mating mechanism,
mainly in species that colonize, both naturally following long-distance dispersal and with
human assistance, as in the case of invasive species [11,18].

Phenotypic traits of native populations can evolve rapidly under the environmental
conditions presented by novel habitats, leading to local adaptation of the individuals [19].
Differences between native and non-native populations can be observed by growing
plants of populations of both origins in controlled uniform environments such as common
gardens [15]. To date, few studies have compared the reproductive success of self- and
cross-pollination from native and non-native populations [20–23] and none have included
almost all of the parameters that define reproductive success (v.gr., fruit set, seed set, seed
germination) and the range of the species distribution.

Oenothera drummondii subsp. drummondii Hook. naturally inhabits the back beaches
and the first dune ridges of the coasts of the Gulf of Mexico and southeastern USA; although,
during the last century it was introduced into parts of Europe, Asia, Africa, Australia and
New Zealand [24–27]. This habitat is frequently disturbed by wind, burial by sand and
impacted by waves during tropical storms. The species presents self-compatible herkoga-
mous yellow flowers with anthesis at dusk, living for one night or for a few hours into the
following morning in the native range [24,28,29]. The flowers are visited and pollinated
by sphingid moths (e.g., Hyles lineata, Manduca sp.), although some hymenopterans (e.g.,
Lasioglossum texaum, Apis mellifera) also visit the flowers [24,29]. The seeds are very small
with high germination capacity and some can germinate after floating in seawater for a
period of time [30]. The genus Oenothera L. has been widely used for studies related to
variation in pollination and breeding systems; some taxa are self-compatible and outcross-
ing, whereas others just self-compatible and autogamous [7,28,31]. Raven [32] considers
that both cross- and self-pollination can occur in Onagraceae species that present positive
herkogamy.

The current distribution of O. drummondii, with native and non-native populations
distributed over a wide geographic range, with different ecological histories and envi-
ronmental conditions, presents an opportunity to explore possible variation in mating
systems and reproductive success as a result of both the evolutionary history in the native
populations and the possible adaptation of non-native populations of O. drummondii to
their novel environments. Faced with these scenarios, it is possible that native populations
present a predominantly outcrossed mating system adapted to their native pollinators,
while non-native populations present a predominantly self-mating system, since in their
new habitats, flower visitors and pollinators can be not suitable for the flowers. On the
other hand, since the native range of O. drummondii corresponds to a latitudinal gradient,
we expected that the mating systems and fruit and seed characteristics will differ among
these populations, especially among the most geographical distant populations, because
change in pollinator presence (more abundant in the tropic climate than subtropical).

In this paper, we addressed the following specific questions: (1) What is the mating
system (outcrossing, selfing or mixed) of Oenothera drummondii. (2) Does the mating
system vary between native populations? (3) Do fruit and seed characteristics and seed
germination vary between hand-pollination treatments in the native population range? (4)
Does the success of self- or cross-pollination change according to the native or non-native
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status of populations? (5) Do the fruit and seed characteristics and seed germination of
self- and cross-pollination vary among native and non-native populations? (6) Do the
reproductive success and the self-compatibility index of non-native populations fall within
the range of these parameters of native populations?

2. Materials and Methods
2.1. Taxon Studied

Oenothera drummondii subsp. drummondii is a short-lived shrub (up 4 years) that
blooms from spring to autumn. In native populations, the flowers live very briefly (12–15 h)
while in non-native populations, they can last for two or more days [29,33]. The flowers
produce both nectar and pollen as floral rewards. Floral nectar is exuded by nectaries
located at the base of tubular hypanthium. Pollen grains are connected to each other by
viscin threads. The fruits are capsules with tetragonal dehiscence, which contain a large
number of small seeds (ca. 200 seeds, each of 1.2 mm in length and 0.6 mm in width) that
germinate readily under laboratory conditions [34].

2.2. Seed Collection and Plant Material

The study includes six native populations that together cover almost all of the geo-
graphic range of the natural distribution of the species in the Gulf of Mexico, four from
Mexico and two from USA and four non-native populations corresponding to locations
across its non-native distribution range (Spain, Israel, South Africa, Australia, Figure 1 and
Supplementary Material Table S1 show the full list of the populations with their origin,
countries, acronyms and geographic locations). Ripe fruits were collected during 2015
and 2016 from ca. 30 randomly selected mature-similar size plants in each population
(1–5 fruits from each plant). Seeds of each population were obtained manually from fruits,
pooled and stored in marked container. In December of 2016 and 2017, groups of seeds
taken at random from each population were germinated in pots (15 × 25 cm) filled with a
substrate composed of perlite (30%) and dune sand (70%) and regularly irrigated to field
capacity. When the seedlings emerged, we removed all but the most vigorous individual in
each pot, keeping a total of 18 plants from each population (180 plants in total). The plants
were maintained under greenhouse conditions (temperature 25 ◦C, humidity 40% and
natural daylight), with weekly irrigation of the substrate to field capacity, at the Centre of
Technological Research and Innovation of the University of Seville (CITUS-US). In addition,
the plants were fertilized every month with 200 mL of Hoagland solution (20%) throughout
the study time in order not to limit their growth.

2.3. Pollination Treatments and Fruit and Seed Data

Flowering started nearly at the same time in all populations. Once the plants were
flowering regularly, we performed the following hand-pollination treatments on the flowers
of each population: (1) spontaneous selfing: the flower remained unmanipulated, (2)
self-pollination: the flower was emasculated and pollinated with its own pollen. (3)
cross-pollination: one flower was emasculated and pollinated using pollen from another
emasculated flower of a different individual; we subsequently pollinated the latter flower
with pollen from the former. All treatments were applied using fresh newly opened flowers
with virgin styles that were pollen-saturated according to the pollination treatment. The
plants produced different numbers of flowers, but enough to make all hand-pollination
treatments on each one. Following application of the manipulation treatments, the flowers
were carefully labelled and left unbagged, since the strict insect control practiced in the
greenhouses ensured that no alien pollen could subsequently be deposited on the flowers.

The production and development of fruits were recorded regularly. The fruits were
harvested when they were ripe, at ca. 6 weeks after pollination (fruit set) and pooled in
paper bags per pollination treatment and population. With the number of fruits produced
on each pollination treatment and population, we obtained the fruit set by means of the
ratio of the number of flowers in the treatment and the number of fruits produced. Each
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fruit was weighed on an analytical balance (Ohaus Adventurer resolution 0.1 mg). The
seeds of each fruit were then extracted manually and counted. With the number of seeds
of each fruit developed, we calculate the seed set for each treatment and population, as
the average number of seeds per fruit. Seeds of each pollination treatment and population
were pooled and stored in label plastic containers in dry conditions until germination
experiments.

Figure 1. Geographical locations of the populations of Oenothera drummondii studied. Mexico: Native populations (green
dots). Mexico: 1. Ojoshal (OJO); 2. Sontecomapan (SON); 3. La Mancha (MAN); 4. Tecolutla (TEC). US: 5. South Padre
(SPA); 6. Bolivar (BOL). Non-native populations (red dots). Israel: 7. Rishon-Lezion (LEZ); Australia: 8. Mandurah (MAH).
South Africa: 9. Muizenberg (MUI). Spain: 10. El Dique (DIQ). Line of Ecuador (solid black line) and intertropical region are
shown (dashed black lines).

2.4. Germination Experiment

To evaluate the success of the hand-pollination methods, we conducted germination
experiments with the seeds obtained. We only carry out germination experiments with the
seeds produced by self-pollination and cross-pollination, because the seeds from the spon-
taneous pollination treatment were not well developed. Four sets of 100 randomly selected
seeds were obtained from the seed mixture of each treatment and population (800 seeds
from the two treatments per population; 8000 total experimental seeds). These seeds were
placed in labelled Petri dishes with three layers of wet filter paper as a substrate and kept
in germination chambers under controlled conditions (12 h light/darkness, temperature
25/20 ◦C). Previous studies indicate that O. drummondii seeds maintain high viability
(≈90% after ca. 2 years) and do not require any pre-germinative treatment [29]. Daily,
for a 90-day period, germinated seeds were quantified and removed and distilled water
added as necessary to keep the papers moist. We considered a seed to have germinated
when growth of the radicle was visible. For each treatment and population studied, we
recorded the time to first germination in days (to), the percentage of total germination
(final germination) and the germination rate. Germination rate was estimated using a
modification of the Timson index [35] as follows,

Germination rate = ∑ G/t, (1)

where G is the percentage of germination accumulated at one-day intervals and t is the
total number of days of the experiment. Once the germination period was completed, the
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crush test [36] was performed on the remaining seeds to determine if they were empty or if
the embryo was still viable.

2.5. Data Analysis

Due to the low number of fruits and immature seeds in the spontaneous selfing
treatment, all comparisons were made only between the manual self- and cross-pollination
data; however, the data from spontaneous pollination are shown in Table A2. Prior to
analysis, the normality of all data was tested (Shapiro-Wilk test) and germination data
transformed (Arcsine). Since transformations did not produce normality of the data, non-
parametric analyses were carried out. All analyses were performed using JMP (v9.0.1,
SAS Institute Inc., Cary, NC, USA) and SPSS (IBM SPSS Statistics for Windows, version 25;
North Castle, NY, USA).

The mating system of each population was evaluated with the self-compatibility index
(SCI) [37], where:

SCI = seed set from self-pollination/seed set from cross-pollination, (2)

in which values > 1 indicate full self-compatibility. Petanidou [22] note that the SCI
allows comparison of data produced under different environmental growth conditions
(i.e., different habitats, greenhouse). In our study, plants were obtained from seeds from
populations of different geographic locations, but which were grown under the same
greenhouse conditions.

We used a Wilcoxon t-test to determine whether the fruit sizes (weight, length and
width), seed characteristics (seed set, seed set mass, individual seed weight), final ger-
mination and germination rate from each hand pollination treatment differ within each
population (native and non-native). Subsequently, since the native populations studied
are located along a latitudinal gradient, we explored whether fruit and seed characteris-
tics obtained in each hand pollination treatment differed between the native populations
by mean Wilcoxon/Kruskall—Wallis nonparametric analyses of variance and multiple
Steel—Dwass comparisons. On another hand, linear regression analysis was performed to
know any relation between the reproductive traits and the latitudinal distribution of the
populations. Likewise, the relationships between latitude and final germination percentage
and germination rate were compared by nonparametric ANOVA and explored through
regression analysis. Since each native population represents a latitudinal position along the
gradient of distribution of the study species (Figure 1), the charts presented in the results
section include the population acronyms instead of latitudinal data. Population acronyms
follow the order of latitudinal increase (see Table A1).

Latter we then explored whether reproductive success differed between the sets of
native populations and non-native populations. Each data point pertaining to fruit and
seed characteristics, as well as the final germination percentage and germination rate
of all populations, was labelled and pooled according to origin (native and non-native)
and pollination treatment (self- and cross-pollination) for inclusion in the analysis. The
data were compared through Wilcoxon non-parametric analysis of variance and multiple
Steel–Dwass comparisons, where the pollination treatment (self- and cross-) in each origin
(native and non-native) was considered as a factor.

Plant reproductive success has been usually determined by the fruit set, the seed
set, or the final germination, because each parameter shows the individual success of
different reproductive phases in plants. As far as we know, however, there is no parameter
that indicates the total reproductive success in plants. In order to represent the total
reproductive success in a single value, we constructed the integral reproductive success
index (IRSI), which was obtained as follows:

IRSI = fruit set × relative seed set × final germination, (3)
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where a value of 1 indicates very high success in all reproductive phases (e.g., 1.0 [fruit
set] × 1.0 [relative seed set] × 1.0 [final germination] = 1); while values < 1 indicate that
success could have been high in some of the reproductive phases, but low in others (e.g.,
1.0 [fruit set] × 0.8 [relative seed set] × 0.5 [final germination] = 0.4). The relative seed
set data for each hand pollination treatment (self- and cross-) of each population was
obtained by dividing every seed set value by the highest seed set value recorded in all
populations, regardless of the pollination treatment from which it was derived. We made
the latter, based on the hypothesis that the highest seed set value represents that which
could potentially achieved in any treatment and population. Finally, we performed a linear
regression analysis, to explore whether the IRSI of each pollination treatment and the value
of the SCI are related to the latitude at which each population is located.

3. Results
3.1. Compatibility, Fruit and Seed Characteristics among Native Populations

The fruit set of the two pollination treatments was high in all native populations
(92–100%) and they therefore also presented a high level of compatibility (SCI 0.92–1.04)
(Table A2). In general, fruit and seed characteristics did not differ between pollination
treatments within the populations, but there was a tendency towards higher values in the
cross-pollination treatment. The weight of fruits from cross-pollination were significantly
greater in the MAN and BOL populations (Table A2).

The seeds of the two hand-pollination treatments presented a similar pattern to that of
the fruits. Seed set did not differ significantly among the two hand-pollination treatment
within almost all native populations; only in BOL seed set were significantly higher in the
cross-pollination (Table A2). Time to first germination was similar between treatments
in most native populations (4–5 d), in SON and TEC the time of first germination were
greater in seeds from cross pollination (Table A3). Meanwhile, the germination rate and
final germination was higher in seeds from cross pollination, although significant differing
in SPA, MAN and TEC (Table A3).

On the other hand, the characteristics of fruits and seeds of each pollination treatment
presented some differences between populations. The weight of the fruits derived from
self-pollination did not differ significantly and showed less variability in the OJO and
SON populations, but greater variability in SPA and BOL (Figure 2A), while the fruits of
cross-pollination were significantly heavier in BOL and lighter in SON, but similar among
the rest of the populations (Figure 2B).

The seeds of the two pollination treatments presented a similar pattern to that of the
fruits. Seed set in the self-pollination treatment did not differ significantly among the
populations (Figure 2C); however, seed set in the cross-pollination treatment did differ
significantly, being higher in BOL and lower in SON and SPA (Figure 2D).

In general, seed germination varied among the hand-pollination treatments and
populations. The populations BOL and SPA had the highest final germination percentages
in both hand-pollination treatments, while OJO and SON had the lowest values in the two
hand-pollination treatments (Figure 3), but only the final germination of seeds derived
from the self-pollination treatment was positively related to latitude (Figure 3A,B). On the
other hand, the germination rate (Timson Index) also differed among populations, showing
the same pattern as that of final germination: low values in OJO and SON and higher
values in SPA and BOL and again the germination rates obtained from seeds from the
self-pollination treatment were significant positively related to latitude (Figure 3C).
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Figure 2. Fruit weight (A,B) and seed set (C,D) obtained by self- (blue boxes) and cross-pollination (orange boxes) in native
populations of Oenothera drummondii. Comparison among populations (Kruskal–Wallis nonparametric ANOVA) and the
relationship between the reproductive characteristic and latitude (linear regression analysis) are shown in each graph.
Population acronyms are explained in Table A1. Latitudinal ubication is indicated below each acronymous. Different letters
above the boxes indicate significant differences among populations (Steel–Dwass all pairs multiple comparisons p < 0.001).
Boxes show the average (x), median (-) and quartiles.

Figure 3. Final germination and Timson index of the seeds obtained by self- (A,C) and cross- (B,D) pollination in native
populations of Oenothera drummondii. Comparison among populations (Kruskal–Wallis nonparametric ANOVA) and the
relationship between the reproductive characteristic and latitude (linear regression analysis) are shown in each graph.
Population acronyms are explained in Table A1. Latitudinal ubication is indicated below each acronymous. Dotted lines
representing significant regression analyses but are not in scale with the latitudinal increase. Different letters above the
boxes indicate significant differences among populations (Steel–Dwass all pairs multiple comparisons p < 0.001). Boxes
show the average (x), median (-) and quartiles.
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3.2. Fruit and Seed Characteristics of Non-Native Populations

As in the native populations, fruit set in the two pollination treatments of the non-
native populations was high and SCI was therefore also high in all of these populations
(Table A2). The fruit weight was not different between hand-pollination treatments within
the non-native populations; (Table A2). Meanwhile, the seed set did not differ between
hand-pollination in all non-native populations. On the other hand, time to first germination
was very similar and did not differ between the treatments in each population, although
the percentage of final germination was higher in the seeds derived from cross-pollination
in the populations MAH and MUI (Table A3).

3.3. Comparison of Reproductive Characteristics between Native and Non-Native Populations

Fruit and seed characteristics differed significantly between the groups of native and
non-native populations, but no clear general pattern was shown either by the origin of the
populations (native and non-native) or by the pollination treatment (self- and cross-pollination)
(Figure 4). The weight of the fruits from cross-pollination was significantly greater and was
similar in the native and non-native populations, while fruit weight from selfing was lower
but also similar among the two sets of populations (Figure 4A). However, seed set were
both greater in the two pollination treatments of the non-native populations (Figure 4B),
while the values of final germination and germination rate (Timson index) were higher in
the cross-pollination treatment of the non-native populations (Figure 4C,D). Finally, the IRSI
also were higher of both pollination treatments for the non-native group and the lowest was
obtained for the self-pollination treatment of the native group (Figure 4E).

3.4. Integral Reproductive Success Index

The IRSI of the native populations show a positive tendency to latitudinal increase in
both pollination treatments, although self-pollination was only marginally non-significant
(Figure 5). This means that the populations located at a lower latitude (OJO and SON)
presented the lowest reproductive success, while the population at the highest latitude
(BOL) presented the highest reproductive success. Meanwhile, the compatibility index (SCI)
presented a negative, but non-significant, relationship, being higher in the populations
OJO and SON and decreasing to BOL (Figure 5). On another hand, the IRSI of both hand-
pollination treatments and the SCI of all non-native populations were as high as of the
native population located at the highest latitudinal-distribution (BOL).
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Figure 4. Comparison between groups of native and non-native populations of Oenothera drummondii of the characteristics
of fruit weight (A), seed set (B), final and rate germination (C,D) and the integral reproductive success (IRSI) (E), obtained
by self- (Self) and cross-pollination (Cross). The result of the Kruskal–Wallis nonparametric ANOVA is shown on each graph.
Different letters above the boxes indicate significant differences (Steel–Dwass all pairs multiple comparisons, p < 0.001).
Boxes show the average (x), median (-) and quartiles.
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Figure 5. Relationship between self-compatibility index (SCI) (symbols and line black) and the
integral reproductive success index (IRSI) of self- (symbols and line blue) and cross-pollination
(symbols and line orange) with the latitudinal location of native and non-native populations of
Oenothera drummondii. The boxes show the results of linear regression for each index for native
(Nat) and non-native (Non) populations. Circles indicate native populations and squares indicate
non-native populations. Numbers indicate acronyms of populations described in Figure 1.

4. Discussion

We have shown that O. drummondii presents a mixed system (self- and cross-pollination)
with a high degree of self-compatibility, both in its native distribution range and in non-
native populations. We also showed that the characteristics of the fruits and seeds produced
by both self- and cross-pollination vary between native populations, with no clear pattern.
This is also found when comparing these characteristics between the groups of native and
non-native populations. However, in the native range, final accumulated germination of
seeds and germination rate (Timson index) of self-compatibility treatment were positively
related to latitudinal increase, whereas the self-compatibility index did so slightly nega-
tively. In the non-native populations, these two parameters had values as high as those
recorded in the native populations located at the highest latitudes. We also showed that
the integral reproductive success index (IRSI) provides a better perspective of the true
reproductive success of the O. drummondii populations, both native and non-native, since it
incorporates the values of the most useful parameters of reproductive success (fruit set,
seed set and germination).

4.1. Mating System and Fruit and Seed Characteristics in Native Populations

Studies in natural populations indicate wide variability in mating systems, but also show
that mixed mating (self- and cross-pollination) are more common than expected [5,38,39]. The
genus Oenothera is no exception, since wide variation is recognized in the species mating
systems [7] and both cross- and self-pollination can occur in Onagraceae species that present,
positive herkogamy [32]. Gallego-Fernández and García-Franco [34] noted positive herkogamy
in O. drummondii, but it has not relationship with latitude increase. Our results show that O.
drummondii is a species with a mixed mating system because of the high values of fruit set and
seed set both by self- and cross-pollination.

Field observations in most of the studied native populations of O. drummondii indicate
high fruit production [29]. The low fruit set recorded by spontaneous self-pollination
in the greenhouse suggests low capacity of autogamy, so the high fruit set recorded in
the field could be result of assisted pollination. The flowers of O. drummondii produce
abundant nectar and pollen [24,29] and they are visited by sphingids and crepuscular bees,
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as occurs with other Oenothera species [28,40]. Observations made in one of the native
populations studied (MAN) [29] show that bees (Apis mellifera) arrive to flowers shortly
before sunset to collect pollen. The foraging activity is carried out in groups (2–5 bees) in
one or two flowers of the same plant, limiting the pollination to selfing or geitonogamy.
However, the sphingids (aff. Manduca sp.), which are nectar collectors with high energetic
requirements, arrive shortly after dusk and fly around the population, visiting a large
number of flowers of different individuals with no clear foraging sequence among plants,
thus constituting potential outcrossing pollinators. This suggests that bees and sphingids
both play important roles in the reproduction of O. drummondii in its native range of
distribution. However, further observations and experiments are required in other native
populations in the field in order to corroborate these findings.

Non-native populations also presented low fruit set and seed set by spontaneous self-
pollination, but a high production of fruits and seeds in both hand-pollination treatments
(self- and cross-pollination). Furthermore, opposed to the low number of fruits expected
because of the alien environment in the non-native locations, it has been recorded a large
production of fruits in one of our studied population (DIQ; [41]). On the other hand, in O.
drummondii populations located in Europe and Israel (DIQ and LEZ), it has been recorded
crepuscular anthesis and flower visits by local sphingids and bees [28,29,40]. This suggests
that flowers of the non-native populations will have the same pattern of visits as those
natives have. However, the flower lifespan in non-native populations is twice than in
natives [29], which may be associated with limitation of pollinators [42]. Nevertheless, if
pollinators are, in fact, limited, the constant coastal wind present probably shake violent
the flowers and autogamy could thus be achieved.

The above indicates that O. drummondii presents those characteristics proposed by
Baker [17] for colonizer species of new habitats. Oenothera drummondii has all of the benefits
of being highly compatible and able to incorporate itself into the pollinator community,
taking full advantage of its mixed mating system. Furthermore, there have been recorded
low genetic variation in MAN (native) and DIQ (non-native) populations [43], which is
evidence of colonization-extinction processes typical on coastal dunes [44,45].

4.2. Fruit and Seed Characteristics of Native Populations

The differences in most the characteristics of fruits and seeds among the native popula-
tions of O. drummondii showed a no relationship with latitudinal increase. However, there
were a clear positive relationship in the fruit width and individual seed weight and a tendency
in the seed-set weight to be smaller in lower latitudes and greater in those populations at
higher latitudes. This pattern was also reflected in the final accumulated germination and in
the germination rate (Timson index), since the populations located at low latitude had the
lowest values of these parameters in the two pollination treatments studied.

Several studies have recorded floral trait variation patterns related to latitude increase,
but rather than species following a general pattern, they respond differently to the condi-
tions imposed by the latitudinal gradient [4]. In particular, the floral phenotypic features
of O. drummondii differ among native and non-native populations and they do present
a negative pattern with latitudinal increase [34]. The latitudinal positive relationship of
individual seed weight in the two pollination treatments and of final germination and the
germination rate in self-pollination suggest that the environmental conditions prevalent at
higher latitudes can favour these reproductive characteristics of O. drummondii, since the
wide contrasts found with the southern populations (OJO and SON). Reduction in seed
set, seed size and germination are generally attributed to changes in local environmen-
tal conditions, due to the nutrient and water contents in the substrate, as well as pollen
limitation (pollen load and quality) as a result of the absence or scarcity of pollinators
and inbreeding [46,47]. Our study plants were maintained under controlled greenhouse
conditions (in terms of nutrients, water, temperature and relative air humidity) throughout
the experiment and all flowers were manually pollinated following a standardized method,
so these factors did not influence the observed differences. The differences in seed size and
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germination recorded in the studied populations may therefore be the result of inbreeding.
Such results have been recorded in self-compatible species and can be important in small
and isolated populations [48,49]. Although we do not have information regarding the size
of all studied populations in the field, we do know that those located at lower latitudes
(OJO, SON, MAN and TEC) are small and relatively isolated; therefore, our results possibly
reflect the effects of inbreeding taking place in the field.

4.3. Comparison between Native and Non-Native Populations

The characteristics of the fruits and seeds obtained by the hand-pollination treatments
varied between the sets of native and non-native populations and, although in general they
do not show a particular pattern, some tendencies towards higher values were observed
in the germination of the non-native populations. This indicates that, even though non-
native populations are isolated in geographically distant sites, they maintain a high level
of self-compatibility and have not modified their potential for a mixed pollination system.
This also suggests that these populations can take advantage of local pollinators [29,50],
which could allow them to invade new sites [7]. Several Oenothera species have become
successfully established in Europe and in other regions of the world, where some taxa are
considered to be actively invasive species [7,44,51], similarities in environmental conditions
between their native habitats and invaded sites must be important factors in the success of
these species.

4.4. Integral Reproductive Success Index (IRSI)

Reproductive success in plants usually is measured by seed set (e.g., [52]), number and
weight of fruits (e.g., [53]), fruit set, seed set, seed development [54,55]) or germination [56].
However, the most commonly used parameters are fruit set, seed set and germination,
since these represent the final product of one reproductive stage process (pollination,
fertilization, or seedling emergence). In the studied populations of O. drummondii, we
tested all of the parameters that indicate reproductive success (Tables A2 and A3) but found
that the individual responses were inconsistent. If we had considered the most common
reproductive success parameters (fruit set, seed set and total germination) separately,
interpretation of the reproductive success of O. drummondii can be biased in different ways.
The fruit set was very high in the two pollination treatments of all populations, the seed
set showed some differences among populations, while final germination in the native
populations followed the latitudinal gradient and the non-native seeds showed similarity
to the northernmost native populations in terms of final germination. When considering
the three most common reproductive parameters, the proposed Integral Reproductive
Success Index (IRSI) shows the full success of O. drummondii in each of the pollination
treatments studied in the different populations, since the IRSI integrates the effects of each
of the parameters in a final unique reproduction value for the species. The two populations
located in the southernmost part of the native distribution had the lowest IRSI, but this
positively increased in the higher-latitude populations. In addition, the values of the latter
were similar to those of the non-native populations. This suggests that the southern native
populations can be subject to a different selection of reproductive factors than those of
the northern, while the great integral reproductive success of non-native populations of
O. drummondii can be an important factor in their establishment success.

To our knowledge, there has been no reproductive index that integrates the different
components of plant reproductive success. In our study, the IRSI and final accumulated
germination values presented the same pattern. The latter had a strong effect on the
value obtained by the former since neither fruit set nor seed set clearly differed between
populations. However, under other situations, where each parameter can change, the IRSI
can help to more clearly understand reproductive success.
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5. Conclusions

Oenothera drummondii is a coastal species, which has ecological characteristics that allow
it to live and colonize these ecosystems with stressful environmental conditions [30,41].
Our results showed that O. drummondii presents a mixed mating system. This can confer
reproductive advantages both in native and non-native ranges, allowing the flowers to
interact with the local fauna (bees and sphinxes). However, the environmental and biotic
conditions present throughout the entire range of O. drummondii can impose contrasting
selection pressures on its reproductive characteristics. Self-compatibility and germination
responses (rate and final germination) are reduced in low latitude populations, while they are
increased in higher latitude populations, including native and non-native. These reproductive
traits may contribute to the successful establishment of O. drummondii outside the native
range. However, field studies evaluating pollinators, mating and the same reproductive
parameters studied here, including more both native and non-native populations, will allow
us to understand the adaptation process of Oenothera drummondii in the new environments.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/d13090431/s1, Table S1: Characteristics of the fruits and seeds (mean ± SD) obtained
by spontaneous, self- and cross-pollination (Self and Cross, respectively) in flowers of native and
non-native populations of Oenothera drummondii.
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Appendix A

Table A1. Geographic location of native and non-native populations of Oenothera drummondii studied.
Numbers corresponding with geographic location in Figure 1.

Origin Country Population Acronym Latitude Longitude

1 Native Mexico Ojoshal OJO 18◦15′ N 93◦59′ W
2 Native Mexico Sontecomapan SON 18◦33′ N 94◦59′ W
3 Native Mexico La Mancha MAN 19◦37′ N 96◦22′ W
4 Native Mexico Tecolutla TEC 20◦29′ N 97◦01′ W
5 Native USA South Padre SPA 26◦13′ N 97◦11′ W
6 Native USA Bolivar BOL 29◦30′ N 94◦30′ W
7 Non-native Israel Rishon-Lezion LEZ 31◦59′ N 34◦43′ W
8 Non-native Australia Mandurah MAH 32◦32′ S 115◦41′ E
9 Non-native South Africa Muizenberg MUI 34◦06′ S 18◦28′ E

10 Non-native Spain Dique DIQ 37◦09′ N 06◦54′ W

https://www.mdpi.com/article/10.3390/d13090431/s1
https://www.mdpi.com/article/10.3390/d13090431/s1
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Table A2. Characteristics of the fruits and seeds (mean ± SD) obtained by spontaneous, self- and cross-pollination (Self and Cross, respectively) in flowers of native and non-native
populations of Oenothera drummondii. The last row of each trait of fruits and seeds show the comparison (Wilcoxon test) between self- and cross-pollination data of each population
(ns = not significant; * p = 0.05; ** p = 0.01; *** p = <0.001). Population acronyms provided in Figure 1and Table A1.

Chracteristics of
Fruits and Seeds

Pollination
Treatment

Native Populations Non-Native Populations

OJO SON MAN TEC SPA BOL LEZ MAH MUI DIQ

Spontaneous 0 12 20 15 2 19 5 4 0 7
Fruit set (%) Self 96 100 96 96 100 92 96 97 100 100

Cross 92 100 96 100 100 100 100 100 100 100

Self-Compatibility
Index 1.04 1.00 1.00 0.96 1.00 0.92 0.96 0.97 1.00 1.00

Spontaneous 11.4 ± 2.1 18.1 ± 14.6 34.2 ± 29.4 24.3 ± 24.1 22.9 ± 17.2 35.8 ± 48.6 18.0 ± 12.2 22.9 ± 5.3 11.9 ± 12.9 17.8 ± 24.9

Fruit weight (mg)
Self 112.7 ± 28.5 104.6 ± 37.6 105.6 ± 56.8 112.4 ± 56.9 107.8 ± 68.5 117.5 ± 85.0 112.6 ± 64.0 139.0 ± 81.7 97.7 ± 35.5 109.0 ± 48.7

Cross 131.3 + 51.4 102.8 + 41.5 149.2 + 50.7 127.9 + 70.9 113.8 + 44.0 192.8 ± 66.5 96.3 ± 61.6 176.1 ± 67.5 116.6 ± 37.3 84.4 ± 56.6
ns ns *** ns ns *** ns ns * ns

Spontaneous 0.0 ± 0.0 46.7 ± 38.8 42.0 ± 36.6 54.8 ± 83.2 62.0 ± 35.4 89.8 ± 109.9 58.0 ± 0.0 10.0 ± 0.0 0.0 ± 0.0 72 ± 100.4

Seed set
Self 165.5 ± 47.1 137.7 ± 34.7 159.6 ± 58.7 139.7 ± 61.8 137.8 ± 66.1 159.8 ± 95.2 215.7 ± 59.0 165.6 ± 96.8 161.5 ± 35.8 190.5 ± 60.3

Cross 168.4 ± 67.5 120.2 ± 44.7 164.9 ± 65.4 164.6 ± 75.4 117.9 ± 62.8 227.1 ± 45.3 176.8 ± 94.8 175.2 ± 87.8 173.2 ± 49.7 161.7 ± 83.3
ns ns ns ns ns ** ns ns ns ns
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Table A3. Seed germination characteristics and the integral reproductive success index (IRSI) of self- and cross-pollination treatments in flowers of native and non-native populations of
Oenothera drummondii. The last row of each germination parameter shows the comparison (Wilcoxon test) between self- and cross-pollination data of each population (ns = not significant;
* p = 0.05). Population acronyms provided in Figure 1and Table A1.

Pollination
Treatment

Native Populations Non-Native Populations

OJO SON MAN TEC SPA BOL LEZ MAH MUI DIQ

First, germination (d) Self 4.0 ± 0.0 4.5 ± 1.0 5.0 ± 0.8 5.5 ± 1.0 5.0 ± 1.2 4.0 ± 0.0 4.5 ± 1.0 4.0 ± 0.0 4.0 ± 0.0 4.0 ± 0.0
Cross 4.0 ± 0.0 7.3 ± 1.5 5.0 ± 0.8 4.0 ± 0.0 5.75 ± 0.50 4.0 ± 0.0 4.0 ± 0.0 5.0 ± 1.2 4.0 ± 0.0 5.3 ± 1.5

ns * ns * ns ns ns ns ns ns

Timson Index Self 18.8 ± 5.9 16.3 ± 3.9 49.0 ± 4.9 43.7 ± 5.6 68.8 ± 3.2 70.9 ± 2.2 61.6 ± 3.6 65.2 ± 1.8 62.9 ± 3.7 54.5 ± 15.4
Cross 27.1 ± 5.3 20.9 ± 2.5 43.8 ± 6.7 69.2 ± 3.8 57.2 ± 2.3 63.6 ± 6.2 72.0 ± 3.8 87.6 ± 1.6 76.7 + 4.5 67.6 ± 12.9

ns ns * * * ns * * * ns

Final germination (%) Self 31.8 ± 8.9 31.0 ± 3.7 68.8 ± 2.6 57.0 ± 7.1 78.0 ± 2.8 81.3 ± 2.5 73.0 ± 4.3 72.8 ± 2.1 77.3 ± 4.4 62.8 ± 15.5
Cross 32.3 ± 8.2 48.3 ± 6.1 53.8 ± 4.9 91.25 ± 4.4 73.8 ± 9.9 73.8 ± 9.9 79.8 ± 4.9 95.3 ± 1.9 85.3 ± 3.9 78.3 ± 15.8

ns * * * ns ns ns * * ns

Integral Reproductive
Success Self 0.23 0.20 0.49 0.35 0.50 0.50 0.70 0.54 0.58 0.55

Index (IRSI) Cross 0.22 0.26 0.38 0.66 0.38 0.74 0.62 0.74 0.65 0.56
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