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Abstract: The major component of the animal egg yolk is the lipoglycoprotein vitellin, derived from
its precursor vitellogenin (VTG), which is produced species-specifically in decapod crustaceans in the
hepatopancreas and/or in the ovary of reproductive females. Previous studies on Procambarus clarkii
vitellogenesis report the existence of two single VTGs. Here, from a multiple tissue transcriptome
including ovaries and hepatopancreas of P. clarkii, we characterized four different VTG and two VTG-
like transcriptomes encoding for the discoidal lipoprotein-high density lipoprotein/β-glucan binding
protein (dLp/HDL-BGBP). The relative expression of the various genes was evaluated by quantitative
Real-Time PCR in both the ovary and hepatopancreas of females at different reproductive stages (from
immature until fully mature oocytes). These studies revealed tissue-specificity and a reproductive
stage related expression for the VTGs and a constitutive expression in the hepatopancreas of dLp/HDL-
BGBP independent from the reproductive stage. This study may lead to more detailed study of
the vitellogenins, their transcription regulation, and to the determination of broader patterns of
expression present in the female hepatopancreas and ovary during the vitellogenesis. These findings
provide a starting point useful for two different practical aims. The first is related to studies on
P. clarkii reproduction, since this species is highly appreciated on the market worldwide. The second
is related to the study of new potential interference in P. clarkii reproduction to delay or inhibit the
worldwide spread of this aggressively invasive species.

Keywords: Procambarus clarkii; Crustacea; Decapoda; vitellogenesis; digital gene expression analysis;
discoidal lipoprotein; β-glucan binding protein

1. Introduction

Ovarian development is characterized by the accumulation of a major egg-yolk pro-
tein precursor, vitellogenin (VTG), that serves as a food reserve for the embryo. Since
the 1970s, the formation of a lipoprotein complex or vitellogenin has been known to be
a prerequisite to the constitution of the protein yolk in myriapods, crustaceans, insects,
amphibians, and birds. This vitellogenin is associated with other prosthetic groups and
synthetized outside the ovary, transported by the hemolymph and sequestered by the
oocytes [1]. In crustaceans the development of the oocyte comprises two distinguished
stages, named “primary vitellogenesis” characterized by glycoprotein granule accumula-
tion and “secondary vitellogenesis” or vitellogenesis strictly speaking, that occurs solely
during reproduction [2]. This latest phase, in crustaceans, is mainly heterosynthetic
since the vitellogenin is carried in the hemolymph and sequestered by the oocytes [3].
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The source of VTG in crustaceans has been controversial for many years. Several au-
thors in the late 1960s suggested hemocytes as the site of VTG synthesis [4], but the
two main tissues of VTG production are now globally accepted to be the ovaries as
shown in Callinectes sapidus [5] and Penaeus semisulcatus [6], or the hepatopancreas, as
found in Charybdis feriata [7], Macrobrachium rosenbergii [8], Oziothelphusa senex [9], and
Pandalus hypsinotus [10]. In some other crustacean species, the VTG synthesis sites are
both the hepatopancreas and ovary, as shown in Carcinus maenas [11], Eriocheir sinensis [12],
Macrobrachium nipponense [13], Marsupenaeus japonicus [14], Penaeus monodon [15], and
Scylla paramamosain [16], although the contribution of the ovary is relatively less than
that of the hepatopancreas.

Another controversial question concerns the number of VTGs discovered in a single
crustacean species, or rather whether one or more homologous VTGs participate together
in crustacean reproduction. In the Arthropoda, there are three homologous genes that
arose from ancient insect vitellogenin duplications and are known as VTG-like-A, -B, and
-C in Apis mellifera [17] and four copies in Solenopsis invicta [18]. The function of these
homologous VTGs is unclear [17]. During evolution, it seemed that crustaceans reduced
these genes up to two VTG copies, which have been described in a variety of species [19–29].

In the present study, we used Procambarus clarkii (Girard, 1852) as a model organism to
identify and investigate the expression of VTGs and VTG-like transcripts. The red swamp
crayfish, native to Mexico and the United States, is considered a ubiquitous invasive
species worldwide, while representing a valuable aquaculture resource on international
markets [30–32]. It is an r-selected species with a ductile life cycle that breeds year-round,
with variable recruitment peaks in summer, early winter, and spring [33,34]. A constant
100% of mature males observed in the North Italy population from July to September
indicates possible successful mating during this season which may extend to the end of
October at these latitudes [35].

Many studies focusing on VTG and P. clarkii reproduction refer to one single VTG
in this decapod species [36–39]. To investigate this aspect, a comprehensive P. clarkii
transcriptome assemblage consisting of 12 different tissues was previously constructed by
one of us (Manfrin communication) and used here to identify the available P. clarkii VTG
transcripts and those of the high-density lipoprotein/β glucan binding protein (dLp/HDL-
BGBP, hereinafter referred to as BGBP). The later gene is responsible for transport of
lipids and is also fundamental for the innate immune response of crustaceans [40,41]. The
transcript characterization was followed by examination of their transcription patterns in
the female ovary and hepatopancreas during the ovarian development period, observing
their transcription level during the ovarian developmental period.

2. Materials and Methods
2.1. Ethical Note

The following experimental procedures are in accordance with current Italian law.
No special permits were required for this study, as no endangered or protected species
were involved. Individuals were kept under appropriate laboratory conditions to ensure
their welfare and responsiveness. After completion of the experiments, the crayfish were
euthanized by hypothermia.

2.2. Transcripts Identification

The identification of VTGs and general lipid carriers which share domains with VTG
followed a similarity-based process based on the use of conserved domains, both in public
repositories (i.e., NCBI) and using a comprehensive transcriptome assembly (hereafter
defined as ATLAS). The ATLAS consisted of 12 different P. clarkii tissues, namely brain,
heart, ventral ganglia, eyestalk, green gland, ovary, testis, hepatopancreas, muscle, Y-organ,
gill, and hemocyte, Illumina sequenced (depth 2 × 100 bp) (unpublished results). CLC
Genomics Workbench v.12 (Qiagen, Hilden, Germany) was used to map the reads from
each tissue to the assembly for initial identification of tissues of interest, using the RNA-
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seq analysis tool with the following parameter settings: mismatch cost 2, gap insertion
and deletion cost 3, end gaps 0, length fraction 0.95, similarity fraction 0.98. The protein
molecular weight was estimated by Expasy-Compute pI/Mw and the presence of cleavage
site was evaluated with SignalP 5.0.

2.3. Comparative Studies

The phylogeny of VTGs was inferred using the online tool NGPhylogeny.fr [42].
Briefly, the VTGs corresponding to all available complete proteins from the group “Crus-
tacean” at GenBank, were aligned through MAFFT v.7 [43] and the alignment was curated
by BMGE [44]. PhyML was used to infer the tree [45].

The ovaries of females were removed to photographically record the external mor-
phology at various stages of development; photos were taken with an Olympus BX50.2.4.

Total RNA was extracted from tissues (ovary and hepatopancreas) frozen in liquid
nitrogen using the TriReagent RNA isolation kit (Sigma-Aldrich, Saint Louis, MO, USA)
according to the manufacturer’s instructions. The resulting RNAs were further puri-
fied using the E.Z.N.A.™ MicroElute RNA Clean-up Kit (Omega Bio-Tek, Norcross, GA,
USA). The amount of RNA was quantified spectrophotometrically using Nanodrop 2000
(Thermo Fisher Scientific, Waltham, MA, USA) and its quality was analyzed by capillary
electrophoresis BioAnalyzer 2100 (Agilent, Santa Clara, CA, USA).

2.4. Transcript Expression by qRT-PCR

The relative gene expression of selected VTGs and BGBPs in P. clarkii was examined
by quantitative Real-Time PCR (qRT-PCR), in both ovary and hepatopancreas of twenty
females containing oocytes from the 2nd to 6th developmental stages [46]. Preparation
of cDNAs was performed using M-MLV reverse transcriptase (Promega) and oligoT(18)
primer starting from 1 µg of total RNA and following the manufacturer’s instructions.
Specific primers were designed using Primer3Web version 4.0.0 [47] and Oligo Calculator
version 3.26 [48] to predict possible secondary structure and hairpin formation, as shown in
Table 1. A dilution of 1/5 of the initial cDNA was used for qRT-PCR, which was performed
in triplicate on the CFX96 Real-Time PCR detection system (Bio Rad, Hercules, CA, USA),
using the following thermal profile: denaturation at 95 ◦C for 1’, 40 cycles at 95 ◦C for 15”
and 60 ◦C for 20” and a final melting curve analysis from 65 ◦C to 95 ◦C with an increment
of 0.5 ◦C every 5”. The 15 µL reaction mix contained the SsoAdvanced universal probes
supermix (BioRad, Hercules, CA, USA), and the reverse and forward primers were used at
the final concentration of 0.5 µM each.

Table 1. Primer sequences used for VTGs and BGBPs qRT-PCR experiments. PcVTG1-4 amplify
VTGs, PcBGBP1 and 2 amplify discoidal lipoprotein-high density-β-glucan binding transcripts.
PcEF1α: Elongation factor 1α. Pcβ-Actin: beta-Actin. PcGAPDH: Glyceraldehyde 3-phosphate
dehydrogenase. The two letters Pc stands for Procambarus clarkii.

Primer ID Forward 5’-3’ Reverse 5’-3’

PcVTG1 TCACCAGTCAACAGAGCAGC TTCTCAGCACACCGAACTGC

PcVTG2 GAGGGTGGAAAGTCAGCTCC ACAGTTCATCGCTCCTTCGG

PcVTG3 GTCGGACTGCAGATGAAGGG AACAAAGCCTTCGGTTTGCG

PcVTG4 TCTGTTGAGAAAGCCGAGCC TCTAGGCGTACTAGACCCAGC

PcBGBP1 CACACAAGACGAAGTGCTGC TAAACGGTGCTAAGGGCTGG

PcBGBP2 CCCCTAGCATTAGCAACCCC ACAACTCGGCGTCTTTCTCG

PcEF1α AGATCTGAAACGTGGTTTTGTT TCAATCTTTTCCAGAAGTTCGT

Pcβ-Actin AGGGCGTGATGGTTGGTAT CCGTGCTCAATGGGATATTT

PcGAPDH CTCCATCTTTGACGCTAAGGC GCACTATCCACCTTCTGCATG
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Primer efficiencies were calculated using LinReg v.12.18 [49] for all primer sets used.
As putative housekeeping genes, Elongation factor 1 alpha (EF1α), β-Actin and Glyceralde-
hyde 3-phosphate dehydrogenase (GAPDH) were tested by qRT-PCR following the same
thermal cycle profile as the target transcripts. Their expression in all the experimental sam-
ples was evaluated using the BestKeeper [50], NormFinder [51] and geNorm [52] software
to select at least the two most suitable and stable reference genes. Expression values of
all examined transcripts for each experimental group and gene expression analysis were
performed using Bio Rad CFX Manager v. 3.1 software.

3. Results
3.1. Characterization of VTG-like Transcripts

The full length VTG of Cherax quadricarinatus (GenBank identifier AAG17936; [19])
was used as initial reference to characterize the identified VTGs from the P. clarkii ATLAS
transcriptome library. This reference sequence is 7944 nucleotides long and encodes for
a protein of 2584 aa. Four domains were found by CDD [53] at NCBI: a vitellogenin_N
domain (pfam 01347) in the interval 42–585 aa, a domain of unknown function (DUF1943,
pfam09172) in the range 617–918 aa, a von Willebrand factor type D domain (2345–2491 aa)
and a C8 domain (pfam08742) in the range 2530–2576 aa.

The four identified VTGs from P. clarkii (Figure S1) had an open reading frame length
between 6024 bp (VTG3) and 8361 bp (VTG1) encoding for proteins ranging from 2007 to
2777 aa (Figure 1A), while the two identified BGBPs ranged for proteins of 4234 aa and
4806 aa (Figure 1B).

All the transcripts contained both a Vitellogenin_N super family and DUF1943 do-
mains and various domains such as von Willebrand factor, type D domain shared among
VTG from C. quadricarinatus, VTG1, VTG4 and BGBP2 from P. clarkii or C8 domain present
in VTG from C. quadricarinatus and BGBP2.

The VTG1 (GenBank ID OK142726) in P. clarkii consisted of an open reading frame
of 8361 bp and a deduced protein of 2777 amino acids with a predicted molecular weight
(MW) of 315 kDa. It has a putative cleavage site between position 19 and 20: VRA-AP
(probability: 0.93) indicating the secretory nature of the molecule. The domains alongside
their positions on the transcripts are indicated in Figure 1.

The VTG2 (GenBank ID OK142727) consisted of an open reading frame of 6075 bp
encoding for a protein of 2024 aa with a predicted MW of 270 KDa. A cleavage site was
identified between position 18 and 19: ARA-AP (probability: 0.90).

The VTG3 (GenBank ID OK142728) consisted of an open reading frame of 6024 bp
encoding for a protein of 2007 aa with an estimated MW of 223 KDa. The cleavage site was
identified between position 18 and 19: ARA-AP (probability: 0.90).

The VTG4 (GenBank ID OK142729) consisted of an open reading frame of 7746 bp
encoding for a peptide of 2571 aa (MW 289 KDa). A cleavage site was present between aa
in position 18 and 19: ARA-AP (probability: 0.90).

The VTG1 resulted the longest transcript followed by VTG4, whereas VTG2, and 3 had
roughly the same length (Figure S2).

The high-density lipoprotein/β glucan binding protein (BGBP) is a pattern recognition
protein responsible for the transport of lipids which is also fundamental for the innate
immune response of crustaceans [40,41].

The BGBP1 (GenBank ID OK142730) and the BGBP2 (GenBank ID OK142731) were
found to be longer than VTGs with 14,661 bp (encoding for a protein of 4886 aa) and
12,705 bp (protein of 4234 aa), respectively. DUF 1943 domain is the only domain shared
with the VTGs and a VWF domain, type D is shared between VTG1 and BGBP2.

Phylogenetic inference (Figure 2) suggests that all vitellogenins descend from two
lineages that hold Cladocera, Isopoda and Copepoda together (cluster in light grey in
Figure 2) and Decapoda apart (cluster in dark grey in Figure 2). As expected, all VTGs
found in P. clarkii belonged to the Decapoda lineage and formed a cluster with the VTG of
C. quadricarinatus and H. americanus.
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3.2. Expression of VTG-Like Transcripts during Ovarian Development

The expression pattern of the 4 VTGs and the 2 BGBPs in the ovary and in the
hepatopancreas of twenty P. clarkii females expressing all stages of oocyte development
from stage 2 to 6 (Figure 3) was investigated. The oocyte development staging followed
Alcorlo et al. [46] criteria and the expression level was evaluated by qRT-PCR.

Figure 4 shows the different VTGs and BGBPs expression profiles at the diverse
ovarian stages. Three different gene expression patterns have been observed. The first
one is characteristic of the VTG1 with a gradual increase of its expression from ovarian
development stage 4 exclusively in the ovary. The second one is characteristic of VTG2-4,
with a marked expression in the hepatopancreas only at ovarian development stage 6. The
third one concerns BGBP1-2, whose expression appears to be homogeneous and stable
among all ovarian stages, but only in the hepatopancreas tissue.
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Figure 3. Appearance and coloration of the ovaries of P. clarkii in relation to their stage of maturity. The ovaries at different
stages are shown at the same magnification. Stage 2 represents immature oocytes until stage 6, when the ovary is fully
mature and active. Scale bar 2.5 mm.
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Figure 4. Relative VTGs and BGBPs expressions in P. clarkii during ovarian development assessed through qRT-PCR, using
GAPDH and EF1α as reference genes. Results are mean ± SD of three technical replicates. The y axis of each graph is scaled
based on the highest level of expression and indicates the relative expression of each target transcript. Dark bars represent
the ovary and grey bars the hepatopancreas tissues; 2, 3, 4, 5, and 6 are the ovary developmental stages.

4. Discussion

The study investigated the number of VTGs orthologs present in the red swamp
crayfish P. clarkii, since up to two VTGs were found in previous studies [19–29]. From
the ATLAS library derived from the sequencing of 12 different tissues, four VTGs and
two BGBP (VTG-like) transcripts were assembled and mapped (Figure 1), and this novel
phenomenon was probably the result of multiplicity of VTG genes and/or alternative
spliced forms.

The full length of the single VTG cDNA in crustaceans is about 8 kilobases (kb) in size
and encodes 2500–2600 amino acid residues. The VTG sizes identified in P. clarkii are in
line with the work by Avarre and colleagues [54].

To validate the bioinformatic results, phylogenetic analyses on all the complete VTGs
available at present from public repositories were analyzed, identifying a separation
between Decapoda and a group clustering Copepoda, Isopoda and Cladocera (Figure 2).
The presence of an N-terminal lipid binding domain and a DUF 1943 domain suggests
the relationship with the large lipid transfer proteins [41]. Two putative dibasic furin
cleavage sites (with the motifs RAKR and RARR, respectively) were identified bordering
the sequence of the BGBP. A similar protein with identical domain architecture was found
in the prawn Macrobrachium rosenbergii suggesting a conserved structure among crustacean
species [41].

The present study was aimed at two additional aspects of the vitellogenesis, the differ-
ential contribution of the hepatopancreas and the ovary in the process and the relationships
of the dLp/HDL-BGBP protein to the vitellogenic process in view of its mutual domains with
the VTG and its role as lipid carrier. The dLp/HDL-BGBP was found to not to be affected by
ovarian development regulation pathways, hence not specifically contributing to ovarian
development. Its expression in both organs is constitutive, higher in the hepatopancreas in



Diversity 2021, 13, 445 8 of 11

comparison to the ovary. This high hepatopancreatic expression may be generally required
to carry lipid products from this metabolic organ to other tissues.

The major novel finding of this work is the multiplicity of VTG transcripts in P. clarkii
above the previously recognized two genes, and their organ-specific transcription in the
ovary or the hepatopancreas with different expression scheduling. It starts in the ovary
at stage 4/5 in which the ovary quickly enlarges and accumulates reserve materials. The
hepatopancreas contributes to VTG production only at stage 6 probably to reinforce VTG
production and boost maturation (Figure 4). These results support the idea that multiple
VTGs are involved in ovarian maturation and that the contribution comes from both the
hepatopancreas and the ovary, especially at stage 6 (complete ovarian maturation) in
red swamp crayfish. Monitoring the four VTGs identified here could expand studies of
reproduction in this species and shed light on potential methods that interfere ovarian
maturation to develop new methods to contrast the spread of P. clarkii. Conversely, an
in-depth analysis of the expression of VTGs could also be useful for aquaculture. It may be
suggested that the ovary is the primary site of VTG production, required by the oocytes
located in the ovary. However, the need for fast development of bigger ova led to the
evolutionary need for an external reinforcement of the production by the major crustacean
metabolic organ, the hepatopancreas. Only one VTG is expressed in the ovary, VTG1, while
the others (VTG2-4) are expressed only in the hepatopancreas (Figure 4).

Cambarid crayfish complete their larval development within the ova and consequently
have relatively large ova containing sufficient amounts of reserve materials to complete the
development without external feeding. Future studies may focus on the full sequencing of
all involved genes, attempting at the elucidation of mutual or different regulatory upstream
sequences which may explain the different transcription patterns.

Supplementary Materials: The following figures are available online at https://www.mdpi.com/
article/10.3390/d13090445/s1, Figure S1: Tracks of each reconstructed VTGs and lipid carriers,
Figure S2: Schematic alignment of the 4 VTGs retrieved from the ATLAS of P. clarkii.
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