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Abstract: Despite beetles (Coleoptera) representing most existing animal species, the ecological and
biogeographical factors shaping their distribution are still unclear in many regions. We implemented
state-of-the-art ecological niche models (ENMs) and niche overlap analysis to investigate climate–
occurrence patterns for five flea beetle species of the genus Chaetocnema in South Africa (C. brincki,
C. danielssoni, C. darwini, C. gahani, and C. natalensis). ENMs were fitted through Maxent and
Random Forests, testing various parameterizations. For each species, tuned ENMs attaining good
discrimination on spatially independent test data were selected to predict suitability across the study
region and individuate its main climatic drivers. Percentage coverage of climatically suitable areas by
seventeen Afrotropical vegetation formations was also computed. Predicted suitable areas do not
extend far away from known presence localities, except for C. brincki and C. gahani in north-eastern
South Africa. Temperate grasslands and shrublands cover most of suitable areas for C. brincki and
C. gahani, along with warm temperate forests, as well as for C. danielssoni, in this case being followed
by tropical flooded and swamp forests. Climatic suitability for C. darwini mainly relates to the
Mediterranean grasslands and scrublands of the southern coastal region, while suitable areas for
C. natalensis encompass various vegetation formations, coherently with its wide distribution. The
environmental niche of C. danielssoni significantly overlaps with those of the wide-ranging C. darwini
and C. natalensis, suggesting that historical factors, rather than low climatic tolerance, has determined
its restricted distribution in the Western Cape Province. Maxent and Random Forests were confirmed
to be of great help in disentangling the environment–occurrence relationships and in predicting
suitability for the target species outside their known range, but they need to be properly tuned to
perform at their best.

Keywords: flea beetles; ecological niche models; biogeography; Maxent; Random Forests; Chaetoc-
nema; South Africa; niche conservatism

1. Introduction

Insects are by far the most diversified animal class, with more than one million species
already described and at least 5 million ones estimated to currently exist [1]. Their as-
tonishing morphological and functional diversity translates into fundamental ecological
roles, spanning from plant pollination to nutrient recycling within different environmental
matrices (e.g., soil, freshwaters), to food supply for secondary consumers and pests’ bio-
control [2–4]. Despite their invaluable importance for the maintenance of the ecological
processes shaping the Earth’s biodiversity, large knowledge gaps still affect the taxonomy
(i.e., Linnean shortfall) and biogeography (i.e., Wallacean shortfall) of several insect taxa [5].
Among insects, beetles (order Coleoptera) represent a hyper-diversified group comprising
about 25% of all the animal species described up to date [4]. As for the majority of insect
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groups, beetle species richness is particularly high in tropical and subtropical regions of
Africa, Asia and South America, most of which have not been extensively sampled yet [5].
Thus, lack of comprehensive occurrence data in these regions is likely limiting our under-
standing of the ecological drivers constraining the current distribution of several beetle
species, which in turn is detrimental not only to the task of limiting the above-mentioned
Wallacean shortfall but also to the design of effective conservation measures. Nonetheless,
even relatively sparse occurrence data may provide valuable information about the eco-
logical requirements of the target species [6], as well as about macroecological patterns [5].
For instance, when presence records are accompanied by geographical coordinates, abiotic
conditions at occurrence localities can be extracted from the continuously growing set of
online databases storing environmental gridded surfaces at various spatial and temporal
resolutions, such as Worldclim [7] or CHELSA [8], and then be contrasted to conditions
characterizing the study region through through ecological niche modeling techniques [9].
In this manner, one can assess the environment-occurrence relationships affecting the ob-
served distribution of the target species, and the fitted model can successively be projected
in the geographic space to estimate the species’ potential distribution [10]. Indeed, species’
distribution at regional-to-global scales is primarily affected by abiotic factors such as
climate and topography [11,12], and insects make no exception to this general rule [13].
The implementation of ecological niche models (ENMs) in insect-related studies has gained
increasing popularity in the last decade, ranging from global assessments of the effects
of different future warming scenarios upon insect diversity [14], to the regional quantifi-
cation of potential climate-related range shifts in mountainous areas for selected insect
species [15–17], to the estimation of invasive potential for exotic species [18,19] with partic-
ular regard to those representing pests of plants being of agricultural importance [20–22].
In this contribution, we implemented a state-of-the-art ecological niche modeling frame-
work to investigate climate-related drivers influencing the distribution of five flea beetle
species of the genus Chaetocnema Stephens (Chrysomelidae: Galerucinae: Alticini) in south-
ernmost Africa. Chaetocnema is a worldwide distributed genus of phytophagous beetles
occurring in the Afrotropical region with more than 100 species [23]. These flea beetles are
primarily found within moist habitats and grasslands, associated with various plant species
belonging to the Amaranthaceae, Polygonaceae, Cyperaceae and Poaceae families [24],
and taxonomic knowledge for them is still accumulating [25]. The species selected for
our analyses are endemic or sub-endemic to the Republic of South Africa, Lesotho and
Swaziland. The region encompassed by these countries hosts three biodiversity hotspots
(i.e., Cape Floristic Region, Succulent Karoo, and Maputaland-Pondoland-Albany), and
its beetle fauna is being increasingly investigated in terms of environmental preferences
and related distributional patterns [26–29]. Here, starting from previous studies about
Chaetocnema species in the Afrotropics [23,24], we move forward by identifying the climatic
drivers behind the observed distribution of the selected species, by modeling the poten-
tial distribution of these species in the study region so as to also inform future sampling
campaigns, and by highlighting inter-specific divergences in climatic suitability and in
the associations between the latter and the vegetation formations [30] characterizing the
study region.

2. Materials and Methods
2.1. Target Species and Study Area

The target Chaetocnema species were C. brincki (Bechyné, 1959), C. danielssoni Biondi
& D’Alessandro, 2006, C. darwini Bryant, 1928, C. gahani Jacoby, 1897 and C. natalensis
Baly, 1877 (Figure 1). In terms of chorotypes (i.e., biogeographical units defined upon
groups of non-randomly overlapping species’ distributions [31]), C. brincki belongs to
the South-East African chorotype, C. darwini and C. natalensis share the Southern African
chorotype, C. danielssoni is a South-West Afrotropical species, while C. gahani falls into the
Eastern Afrotropical chorotype [24,32]. Based on available auto-ecological information,
these species apparently share a preference for wet habitats.
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Figure 1. Habitus of the target flea beetle species of the genus Chaetocnema Stephens, whose
climate—occurrence relationships and associations with vegetation groups in South Africa were
analyzed; (a) Chaetocnema gahani Jacoby, 1897; (b) C. natalensis Baly, 1877; (c) C. darwini Bryant, 1928;
(d) C. danielssoni Biondi & D’Alessandro, 2006; (e) C. brincki (Bechyné, 1959).

Occurrence records of the target species in WGS84 geographic coordinates system
were retrieved from Biondi & D’Alessandro (2006) [33] and unpublished data (MB), mostly
collected between 1980 and 2005. The data gathering led to 6 occurrence records for
C. brincki, 10 for C. danielssoni, 37 for C. darwini, 12 for C. gahani and 26 for C. natalensis; the
corresponding coordinates are provided in Supplementary Materials Table S1.

The study region (spatial extent: Longitude 16.44◦E–38.00◦E, Latitude 22.12◦S–36.00◦S)
corresponds to the administrative borders of the Republic of South Africa (excluding Prince
Edward Islands), Lesotho and Swaziland, and is characterized by a noticeable variety of
vegetation formations (Figure 2, Table 1). In order to provide a graphical representation
of the extent of occurrence (EOO) of each target species within the study region, α-hull
polygons were drawn through the ‘alphahull’ [34] R [35] package, setting α = 2.5. An
α-hull derives from a Delaunay triangulation over the considered set of points, and the
α parameter determines the shape and number of polygons forming the α-hull because
all the lines within the Delaunay triangulation exceeding the average line length by α

times are removed from the hull [36]. The α value we chose is the average between α = 2



Diversity 2022, 14, 100 4 of 24

recommended by the International Union for Conservation of Nature (IUCN) [36] for some
species and α = 3 recommended by Burgman and Fox [37].

Figure 2. Map of the study region (WGS84 geographic coordinate system); occurrence records of the
target Chaetocnema species are overlaid on a raster map (90 m cell resolution) representing vegetation
formations of the Republic of South Africa, Lesotho and Swaziland. The name of the vegetation
formation corresponding to each of the alphanumerical codes in the legend are reported in Table 1.

Table 1. Vegetation formations of Africa and corresponding alphanumeric codes.

Formation Name Formation Code

Tropical Seasonally Dry Forest 1.A.1

Tropical Lowland Humid Forest 1.A.2

Tropical Montane Humid Forest 1.A.3

Tropical Flooded & Swamp Forest 1.A.4

Mangrove 1.A.5

Warm Temperate Forest 1.B.1

Temperate Flooded & Swamp Forest 1.B.3

Tropical Lowland Grassland, Savanna & Shrubland 2.A.1

Tropical Montane Grassland & Shrubland 2.A.2

Tropical Freshwater Marsh, Wet Meadow & Shrubland 2.A.5

Mediterranean Scrub & Grassland 2.B.1

Temperate Grassland, Meadow & Shrubland 2.B.2

Temperate & Boreal Freshwater Marsh, Wet Meadow & Shrubland 2.B.6

Salt Marsh 2.B.7

Warm Desert & Semi-Desert Scrub & Grassland 3.A.2

Tropical Cliff, Scree & Other Rock Vegetation 6.A.1

Temperate & Boreal Cliff, Scree & Other Rock Vegetation 6.B.2
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2.2. Bioclimatic Variables and Vegetation Formations

Worldwide gridded climate surfaces representing 19 temperature- and precipitation-
related “bioclimatic” variables were downloaded as raster files from the Worldclim 2.1 online
repository [7] (https://worldclim.org/data/worldclim21.html, accessed on 7 January 2022)
in WGS84 geographic coordinate system at 2.5 arc-minutes (~5 km at the equator) cell
resolution. Spatial information about vegetation formations (Table 1) characterizing the
study region was instead retrieved from a raster map of terrestrial ecosystems of Africa [30]
providing a hierarchical classification (i.e., class, subclass, formation, division, macro-group)
of African vegetation at 90 m cell resolution.

Subsequent spatial analyses were performed by means of the ‘raster’ [38] and ‘terra’ [39]
R packages.

First, each raster was cropped to the extent of the study region and masked to its
borders. Secondly, to avoid geographical biases in the selection of the background points
needed to fit the ecological niche models (see Model Fitting, Validation and Projection), the
cropped raster maps were reprojected to the equal-area projection coordinate system ‘Africa
sinusoidal’ (EPSG code: 102011). Finally, to adjust the spatial information about vegetation
formations to the same resolution of the bioclimatic variables, we used the ‘aggregate’
function from the ‘raster’ package to create, for each of the 17 vegetation formations, a
new raster file reporting the percentage coverage by that formation within each aggregated
raster cell (the aggregation factor corresponded to the ratio between the resolution of
the reprojected bioclimatic variables and that of the reprojected 90 m resolution raster of
vegetation formations).

2.3. Model Fitting, Validation and Projection

To avoid feeding the ecological niche models (ENMs) with several predictors affected
by multicollinearity, which would lead to biased estimates of the relative importance of the
single predictors [40], we performed a variance inflation factor (VIF) analysis on the full set
of 19 bioclimatic variables through the ‘usdm’ [41] R package: the variables exceeding the
conservative VIF = 5 [11] threshold across the study region were discarded.

We selected two machine learning algorithms, Random Forests [42] and Maxent [43],
to fit the ENMs. Random Forests (hereafter RF) works by fitting hundreds of classification
or regression trees (based on the type of response variable, namely categorical versus
continuous), each time using a bootstrapped sample of the training data and a random
sample of the available predictors [44]. The proportion of training data used to fit each
single tree, the number of predictors selected at each iteration, the ‘depth’ (i.e., number
of node splits) of the trees and the minimum number of observations belonging to a
terminal node (i.e., a ‘leaf’ of the tree) can all be controlled within most R packages
permitting the implementation of RF, and all contribute to shape the final model [44].
Differently, Maxent relies on the maximum entropy principle: once values of the predictors
are sampled from the species’ occurrence localities and from a set of background points
large enough to represent as comprehensively as possible the environmental conditions
characterizing the study region, the algorithm uses a combination of various feature classes
(i.e., transformations of the single predictors) to estimate the maximum entropy distribution
(i.e., the one closest to the uniform distribution but constrained by the means of the
considered features across occurrence localities) of the suitability/probability of occurrence
for the target species across the study region [43,45].

RF and Maxent have been extensively implemented in ecological niche modeling in
the last fifteen years [46–49] and they often ranked among the top-performing presence-
background models in terms of predictive accuracy within studies comparing multiple
algorithms on a same dataset [50–52]. Nonetheless, in many previous studies using ENMs
for macroecology-, biogeography- or conservation-related inferences, Maxent and RF were
implemented relying on their default parameterization, which may not be appropriate to the
specific dataset and modeling task, and thus may lead to less reliable predictions [44,53,54].
Here, we fine-tuned both algorithms choosing the parameterization setting(s) leading to

https://worldclim.org/data/worldclim21.html
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the highest accuracy on withheld data. Maxent tuning was accomplished by means of the
‘ENMeval’ R package [55], testing various combinations of feature classes and values of
the regularization multiplier (Table 2), the latter controlling the degree of smoothing in the
model via the shrinking of features’ coefficients [45]. Differently, to tune the RF models,
fitted using the ‘randomForest’ R package [56], we tested different combinations of the
number of trees composing the final model and of the size of terminal nodes (Table 2).

Table 2. Cross-validation strategy and tuning parameters used to fit and validate the ENMs for each
target Chaetocnema species.

Species CV Strategy Maxent Tuning RF Tuning

C. brincki
C. danielssoni

C. gahani
buffered LOO FC: linear, quadratic, hinge

RM:1, 1.5, 2, 2.5, 3

Number of trees: 500, 1000, 2000
Size of terminal nodes: 1, 5,

0.25 × n training occur.

C. darwini
C. natalensis Checkerboard blocking

FC: linear, quadratic, hinge,
product, threshold
RM:1, 1.5, 2, 2.5, 3

Number of trees: 500, 1000, 2000
Size of terminal nodes: 1, 5,

0.25 × n training occur.

CV = cross-validation; LOO = ‘leave-one-out’; FC = feature class; RM = regularization multiplier; 0.25 × n training
occurr. = one-fourth of the number of occurrences used to train the model.

Along with parameters’ tuning, appropriate evaluation of ENMs’ predictive per-
formance is fundamental to select the model(s) with the best trade-off between fit on
calibration data and generalizability [50,57]. For instance, when spatial autocorrelation
(hereafter SAC) structures that are intrinsic to the occurrence data are ignored and ENMs
are evaluated on randomly selected subsets of these data, estimates of model accuracy tend
to be inflated [57,58]. To avoid this risk, we implemented spatially blocked cross-validation
strategies [57,59]. For Chaetocnema brincki, C. danielssoni and C. gahani, which were repre-
sented by few occurrences (n < 15), we implemented geographically buffered leave-one-out
cross-validation (hereafter LOO CV). In LOO CV, a single presence point is iteratively
withheld for model testing along with the background points falling within a certain radius
around it (we chose a 50 km radius corresponding to about 10 grid cells, see [57]), and the
remaining occurrences and background points are used to fit the ENM: in this manner,
n models, each calibrated on n−1 occurrences, are fitted for the target species. Differently,
for C. darwini and C. natalensis we implemented the checkerboard blocking cross-validation
(hereafter Checkerboard CV) strategy. In Checkerboard CV, the available data are grouped
in two folds, each composed of non-contiguous blocks encompassing a certain portion of
the available presence and background points; the ENMs are then fitted iteratively on each
of the two folds and validated on the other one [57]. Checkerboard CV could be imple-
mented for these two species as their higher sample sizes permitted to split the available
presences between two folds without reducing too much the number of occurrences on
which the single ENMs were calibrated. To design the blocks for Checkerboard CV, we first
had to estimate the SAC range in model residuals for C. darwini and C. natalensis, because
blocks should be larger than this range to ensure the spatial independence between training
and test data [57]. Thus, for these two species, we fitted 10 preliminary Maxent models
and 10 preliminary classification RF models maintaining the default parameters defined for
these algorithms in the ‘dismo’ [60] and ‘randomForest’ [56] R packages, respectively. Each
preliminary model was fitted using all the available occurrences, along with: for Maxent, a
random sample of 10,000 background points drawn within a buffer polygon of a 600 km
radius around the presence points; for RF, a random sample of 100 background points
(see [61] for the lower number of background points chosen for RF) were drawn within a
buffer polygon ranging from 10 to 600 km around the presence points. This geographically
buffered sampling approach for background points was chosen because it has been shown
to enhance the predictive accuracy for both Maxent and RF [61,62]. Moreover, the use of an
internal buffer of 10 km for RF aimed at limiting the so-called ‘class-overlap’ (i.e., presences
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and background points sharing the same environmental conditions), which has recently
been shown to favor poor predictive performance in RF [44].

Residuals from predictions of these preliminary models on the training data them-
selves were then used to derive, through the ‘ncf’ R package [63], correlograms show-
ing how residuals-based Moran’s index (I) varied at increasing inter-point distance; in-
deed, the distance after which Moran’s I, computed from model residuals, approaches
0 corresponds to the SAC range [57]. Once we found the optimal block size for C. darwini
and C. natalensis, the corresponding Checkerboard CV structure was defined using the
‘spatialBlock’ function from the ‘blockCV’ R package [59], setting the minimum number of
calibration points (i.e., presences + background) within each fold to 50. For the remaining
species, the LOO CV structure was defined using the ‘blockCV’ package as well, through
the ‘buffering’ function.

Then, new Maxent and RF models were fitted for each train-test split resulting from
the species-specific CV structure, using all the parameter combinations shown in Table 2.
Maxent models were fitted through the ‘ENMevaluate’ function of the ‘ENMeval’ package,
which permits us to evaluate different model parameterizations and select the one matching
the user-defined performance criteria [55]; classification RF models were fitted again
using the ‘randomForest’ package, but this time we implemented the “down-sampling”
approach (i.e., taking an equal number of presence and background points to fit each
individual tree), which has been shown to greatly outperform the ‘basic’ classification
RF [44]. The best performing ENM for each train-test CV split was chosen according
to two hierarchical criteria: (i) AUC (i.e., area under the curve of the receiver operating
Characteristic plot) computed on the test fold (hereafter AUCtest) ≥ 0.8, corresponding
to good-to-excellent model discrimination [64]; (ii) in case two or more ENMs matched
the former criterium, the one with the lowest difference (hereafter AUCdiff) between the
AUCtest and AUC computed on the training fold was chosen, so as to penalize the models
showing overfitting [54]. In case none of the ENMs fitted for a train-test split attained
AUCtest ≥ 0.8, we chose the model with the highest AUCtest and lowest AUCdiff.

Once the best performing ENM for each train-test split was found, it was projected
across the study region, and standardized importance (hereafter Std_Imp) scores of the
bioclimatic variables selected for model fitting were computed. Std_Imp scores for the
Maxent models were computed through the ‘varImportance’ function of the ‘fitMaxnet’ R
package [65], while those for the down-sampled RF models were retrieved by means of
the internal ‘randomForest’ function looking at the decrease in the Gini coefficient after
randomizing predictors values among the observations [42].

Subsequently, for each species × algorithm combination, we computed the weighted
average (hereafter Wgt_Avg) [66] and the weighted standard deviation (hereafter
Wgt_StdDev) [67] among the different train-test splits of: (i) predicted suitability across
the study region; (ii) Std_Imp scores of the predictors. In both cases, the weight applied
to the tuned ENM selected for each split corresponded to the respective AUCtest value.
Moreover, partial response curves from the tuned Maxent and RF models fitted for each
train-test split were drawn through the evaluation strip approach [68] for the three vari-
ables attaining the highest Wgt_Avg Std_Imp scores. In this manner, we could evaluate
inter- and intra-algorithm variations in the estimated climate–occurrence relationships
and in the derived predictions of climatic suitability.
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2.4. Associations between Climatic Suitability and Vegetation Formations

Weighted average predictions of climatic suitability obtained for each target species
were binarized (i.e., suitable–unsuitable) according to two different thresholds: (i) for the
10th percentile of the Wgt_Avg suitability values sampled on the presence points, a binariza-
tion threshold is frequently used when dealing with datasets composed of records gathered
over long time periods and by various collectors [69,70]; (ii) Wgt_Avg suitability ≥ 0.8, so
that only the pixels showing high predicted suitability across the different ENMs would
be considered climatically suitable for the species. Finally, the percentage cover of the
17 vegetation formations was sampled from the pixels predicted as suitable according
to each of the two binarization thresholds, in order to assess if areas being climatically
suitable for the target species are characterized by prevalent coverage of one or more
vegetation formations.

2.5. Niche Overlap

To further highlight inter-specific affinities or differences in environmental preferences,
we implemented the PCA-Env approach described in Broennimann et al. (2012) [71], by
means of the ‘ecospat’ R package [72]. Specifically, a principal component analysis (PCA)
was performed to summarize environmental heterogeneity across the study region through
a set of uncorrelated axes derived by extracting values of the 19 bioclimatic variables
and the percentage coverage from the 17 vegetation formations corresponding to the
target species’ occurrence localities and of 10,000 randomly sampled background points.
Then, kernel-based density of occurrence (hereafter niche density) in the D environmental
space, encompassed by the top two (in terms of explained variance) principal components
(hereafter PrinComp), was estimated for each species, and pairwise overlap in niche density
was measured for all the 10 species’ pairs using the Schoener’s D metric [73]. Finally, the
niche divergence and niche conservatism hypotheses were tested, for each species’ pair,
through the niche similarity test [71]: in each of the 100 iterations, a simulated niche density
was estimated for each species from points randomly sampled within a 120 km-wide buffer
around its occurrence points (i.e., to represent the ‘available environment’), and the overlap
between the simulated densities was computed through the D metric; then, the observed D
value, previously computed for the actual niche densities of the considered species’ pair,
was compared to the distribution of the 100 simulated D values to assess if the former was
higher than the 95th percentile (niche conservatism) or lower than the 5th percentile (niche
divergence) of the latter.

3. Results

The alphahull-based extents of occurrence (EOO) estimated for Chaetocnema brincki
(Figure 3a) and C. gahani (Figure 3d) span eastern Lesotho and the South African region,
located between the latter and Swaziland, which is partially included in the Maputaland-
Pondoland-Albany biodiversity hotspot [24], with the range of the former species entirely
nested within that of the latter. On the other side, the estimated EOO for C. natalensis
(Figure 3e) spans the entire southern coastal region of South Africa and then extends across
the north-east, thus encompassing the EOOs of both C. brincki and C. gahani. Differently,
the EOO of C. danielssoni (Figure 3b) is limited to the south-westernmost portion of South
Africa, across the Cape Floristic Region and Succulent Karoo hotspots, while the EOO
of C. darwini (Figure 3c) broadly corresponds to that of C. danielssoni in the south-west
but then extends to the north-east across Lesotho, partially overlapping with the EOOs of
C. natalensis, C. gahani, and C. brincki.
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Figure 3. Alphahull-based estimated range (red lines) and occurrence records (reversed black-
contoured triangles), overlaid on a DEM map showing altitude values within the study region at
30 arc-seconds (i.e., ~1 km2) cell resolution, for: (a) Chaetocnema brincki; (b) C. danielssoni; (c) C. darwini;
(d) C. gahani, and (e) C. natalensis.
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The bioclimatic variables selected for model fitting after the VIF analysis were: bio2
(mean diurnal temperature range), bio3 (isothermality), bio8 (mean temperature of the
wettest quarter), bio9 (mean temperature of the driest quarter), bio13 (precipitation of
the wettest month), bio15 (precipitation seasonality), and bio19 (precipitation of the
coldest quarter).

Within the preliminary Maxent and RF models fitted for C. darwini and C. natalensis,
spatial autocorrelation of model residuals became negligible at an inter-point distance
of about 200 km (Supplementary Materials Figure S1), so we chose 250 km as block
size for both species. An example of the resulting checkerboard structure is reported
in Supplementary Materials Figure S2.

The ENMs’ tuning process led to some noticeable differences among the target species
in the selected model parameters (Supplementary Materials Table S2), for both Maxent
and RF. For instance, while the optimized Maxent models for C. natalensis used only linear
features with relatively strong smoothing (i.e., regularization multiplier = 3), accurately
modeling the climate-occurrence relationships for C. gahani required a combination of linear,
quadratic and hinge features in 11 out of 12 train-test LOO splits, with the regularization
multiplier varying between 1 and 2.5. Considering RF, at least 1000 trees were necessary
to get accurate predictions on test data in most of the train-test CV splits for C. brincki,
C. darwini and C. gahani, while 500 trees were sufficient for both the Checkerboard CV splits
of C. natalensis and for half of the LOO splits of C. danielssoni. Differently, the size of the
terminal nodes in the optimized RF models was equal to five for both the Checkerboard CV
splits of C. darwini and C. natalensis, while it noticeably varied among the train-test splits
for the remaining species.

Considering the discrimination performance of the tuned ENMs, Maxent models
generally attained higher AUCtest values than RF for all the target species (Supplemen-
tary Materials Table S2), with mean ± sd values across the train-test CV splits corre-
sponding to: (a) C. brincki: Maxent = 0.94 ± 0.05; RF = 0.79 ± 0.10; (b) C. danielssoni:
Maxent = 0.95 ± 0.02; RF = 0.88 ± 0.12; (c) C. darwini: Maxent = 0.91 ± 0.01; RF = 0.92 ± 0.07;
(d) C. gahani: Maxent = 0.82 ± 0.11; RF = 0.82 ± 0.16; (e) C. natalensis: Maxent = 0.87 ± 0.04;
RF = 0.83 ± 0.05. Differently, AUCdiff values were consistently higher for the tuned RF mod-
els when compared to the Maxent ones, except for C. darwini, with mean ± sd values across
the train-test CV splits corresponding to: (a) C. brincki: Maxent = 0.03 ± 0.04; RF = 0.21 ± 0.1;
(b) C. danielssoni: Maxent = 0.02 ± 0.02; RF = 0.11 ± 0.12; (c) C. darwini: Maxent = 0.06 ± 0.04;
RF = 0.06 ± 0.09; (d) C. gahani: Maxent = 0.06 ± 0.08; RF = 0.17 ± 0.16; (e) C. natalensis:
Maxent = 0.02 ± 0.03; RF = 0.14 ± 0.07.

Both Maxent and RF managed to correctly predict medium-to-high habitat suitabil-
ity (hereafter HS) in correspondence with the occurrence areas of all the target species
(Figures 4 and 5). On the other hand, while in the obtained Maxent models medium-to-
high predicted HS was mainly concentrated around the known occurrence localities, RF
models extended predictions of medium HS values (i.e., HS = 0.4–0.5) far away from
the species’ presence points in some cases (e.g., C. brincki and C. danielssoni, Figure 4a,b;
C. natalensis, Figure 5b). This resulted in RF overpredicting suitability when compared
to Maxent for most of the target species outside the corresponding estimated EOOs
(Supplementary Materials Figure S3). Thus, the higher AUCtest and lower AUCdiff values
attained by Maxent may be primarily due to its lower predicted HS in correspondence
with the background points comprising the test folds, which resulted in higher specificity
(although specificity cannot be properly estimated with presence–background data [74]).
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Figure 4. Weighted average predicted habitat suitability (HS_Avg) across the study region resulting
from the tuned Maxent and Random Forests (RF) models for: (a) Chaetocnema brincki; (b) C. danielssoni;
(c) C. gahani. Reversed black-contoured triangles indicate the species’ occurrence localities.



Diversity 2022, 14, 100 12 of 24

Figure 5. Weighted average predicted habitat suitability (HS_Avg) across the study region resulting
from the tuned Maxent and Random Forests (RF) models for: (a) Chaetocnema darwini; (b) C. natalensis.
Reversed black-contoured triangles indicate the species’ occurrence localities.

For both Maxent and RF, Wgt_StdDev in predicted HS among the train-test CV splits
was low across most of the study region for all the target species (Supplementary Materials
Figures S4 and S5), indicating a high level of agreement between the tuned ENMs fitted on
the different calibration datasets.

Despite the above-mentioned differences between Maxent and RF in the geographical
arrangement of Wgt_Avg HS, the two algorithms mostly agreed in identifying the variables
with the highest Std_Imp scores. Indeed, focusing on the top three variables in terms of
Wgt_Avg Std_Imp scores, Maxent and RF shared at least two of them for all the target
species (Supplementary Materials Table S3). Specifically, the tuned Maxent models selected
for C. brincki related climatic suitability primarily to precipitation patterns (bio13 and bio15)
and temperature of the wettest quarter (bio8), while in the corresponding RF models bio2
replaced bio15 among the most influential variables. Looking at the partial response curves
obtained for these variables from the Maxent and RF models (Supplementary Materials
Figure S6), the two algorithms agreed in predicting a negative relationship between HS
and bio8. Differently, Maxent models predicted a sigmoid-like response to increasing
precipitation of the wettest month (bio13) while RF predicted bimodal responses to this
variable, though with higher variability among the LOO splits when compared to Maxent.
For bio15, Maxent models from the different LOO splits agreed in predicting an increas-
ing sigmoid-like response similar to that of bio13, while in RF models bio2 showed a
weak negative relationship with HS. For C. danielssoni, increasing suitability with higher
precipitation of the coldest month (bio19) emerged from both the Maxent and the RF
models (Supplementary Materials Figure S7), with low variability among the LOO splits
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and very high Wgt_Avg Std_Imp scores for this variable, especially in Maxent models
(Supplementary Materials Table S3). Similarly to what emerged for C. brincki, predicted suit-
ability for C. danielssoni is negatively related to bio8 (Supplementary Materials Figure S7),
the variable with the second highest Wgt_Avg Std_Imp score for both Maxent and RF
(Supplementary Materials Table S3). For C. darwini, negative responses to increasing values
in bio2 and bio8 emerged from both Maxent and RF, although with noticeable variability
between the two Checkerboard CV splits (Supplementary Materials Table S3, Figure S8);
moreover, a bell-shaped response to bio19 peaking between 75 and 150 mm, depending
on the considered Checkerboard CV split, emerged for this species from RF. Maxent and
RF models shared all the top three variables for C. gahani, with particularly high Wgt_Avg
Std_Imp scores for bio13 and bio2, followed by bio15 (Supplementary Materials Table S3):
Maxent predicted monotonically increasing HS with higher values of both bio13 and bio15,
and decreasing suitability at increasing bio2 values but with higher variability among the
LOO splits (Supplementary Materials Figure S9); RF models also predicted a negative rela-
tionship between bio2 and predicted HS, while bell-shaped curves resulted for bio13 and
bio15. Finally, for C. natalensis bio2 is by far the most influential variable for both Maxent
and RF (Supplementary Materials Table S3), with sigmoid-like negative response curves
resulting from both the Checkerboard CV splits (Supplementary Materials Figure S10);
moreover, bell-shaped response to bio19, the second most influential variable, emerged
from RF models with a peak around 150 mm, similarly to what resulted for C. darwini.

The species-specific 10th percentile training thresholds computed from the Wgt_Avg
predictions obtained from the tuned Maxent and RF models were as follows: for C. brincki,
Maxent = 0.52 and RF = 0.78; for C. danielssoni, Maxent = 0.60 and RF = 0.79; for C. darwini,
Maxent = 0.12 and RF = 0.57; for C. gahani, Maxent = 0.7 and RF = 0.65; for C. natalensis,
Maxent = 0.25 and RF = 0.51. It appears that ENMs fitted through the Checkerboard CV
approach (i.e., for C. darwini and C. natalensis) had noticeably lower 10th percentile training
thresholds than those fitted through LOO CV, especially for Maxent, suggesting that in the
former case the ENMs predicted low HS for some of the presence points (see Figure 5).

For C. brincki, C. danielssoni and C. gahani, the binarized suitable pixels broadly corre-
sponded to their actual occurrence areas, for both Maxent (Figure 6) and RF (Supplementary
Materials Figure S11) and regardless of the used binarization threshold. For the remaining
two species, the 10th percentile training threshold appeared as being more suited to prop-
erly predict climatic suitability across their EOOs, while using Wgt_Avg suitability ≥ 0.8 as
threshold made the binarized climatic suitability noticeably underestimate the distribution
of C. darwini and C. natalensis in inland portions of their EOOs (see Figure 7 for Maxent,
Supplementary Materials Figure S12 for RF).
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Figure 6. Binarized suitability resulting from the conversion of the Maxent-derived weighted av-
erage habitat suitability (Wgt_Avg HS) to binary predictions based on the 10th percentile training
threshold (left maps) or on a threshold corresponding to Wgt_Avg HS ≥ 0.8 (right maps), for:
(a) Chaetocnema brincki; (b) C. danielssoni; (c) C. gahani. Reversed black-contoured triangles indicate
the species’ occurrence localities.
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Figure 7. Binarized suitability resulting from the conversion of the Maxent-derived weighted av-
erage habitat suitability (Wgt_Avg HS) to binary predictions based on 10th percentile training
threshold (left maps) or on a threshold corresponding to Wgt_Avg HS ≥ 0.8 (right maps), for:
(a) Chaetocnema darwini; (b) C. natalensis. Reversed black-contoured triangles indicate the species’
occurrence localities.

Climatically suitable areas for C. brincki showed high percentage cover (median cover
ranging between 65% and 75%) by Temperate Grassland, Meadow and Shrubland (2.B.2),
followed by Warm Temperate Forest (1.B.1), whose median coverage ranged from 10%
to 30% depending on the considered algorithm, with higher median coverage for RF
(Figure 8a). Temperate Grassland, and Meadow and Shrubland showed the highest per-
centage coverage (median ~75%) also within climatically suitable pixels individuated for
C. danielssoni in all the algorithm × threshold combinations (Figure 8b), followed by Tropi-
cal Flooded and Swamp Forest (1.B.3), though with noticeably lower median percentage
cover (between 5% and 10%). The highest median cover values for C. gahani (~85%) emerged
for the Tropical Lowland Grassland, and Savanna and Shrubland (2.A.1) formations when
RF-derived Wgt_Avg predictions were binarized using HS ≥ 0.8 as a threshold (Figure 8c);
in this case, however, only the occurrences located in the north-eastern portion of the species’
range fell within pixels predicted as suitable (see Supplementary Materials Figure S11), so
this climate–vegetation association should being interpreted as limited to this subset of
occurrences. Differently, when Wgt_Avg predictions for C. gahani were binarized using the
10th percentile training threshold the highest percent cover of climatically suitable areas
emerged for Temperate Grassland, and Meadow and Shrubland (2.B.2), with a median
value of about 35% for Maxent-derived predictions and 55% for RF-derived ones. Similarly
to what emerged for C. brincki, Warm Temperate Forest (1.B.1) showed a not negligible per-
centage cover of climatically suitable pixels also for C. gahani, though with far lower median
values (around ~5%) than for Temperate Grassland, and Meadow and Shrubland (2.B.2).
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Figure 8. Percentage coverage by each of the 17 vegetation formations (see Table 1) of the pix-
els predicted as climatically suitable after binarizing the Maxent-derived (left) and RF-derived
(right) weighted average predictions through either the 10th percentile training threshold or the
HS ≥ 0.8 threshold, for: (a) Chaetocnema brincki; (b) C. danielssoni; (c) C. gahani.

Mediterranean Scrub and Grassland (2.B.1) was the predominant vegetation formation
within climatically suitable areas individuated for C. darwini, with a median percentage
cover ranging from 25% for the Maxent × 10th percentile combination to 70% for the
RF × HS ≥ 0.8 one (Figure 9a); considering the 10th percentile training threshold, Tropical
Seasonally Dry Forest (1.A.1) emerged as the formation with the second highest percent-
age cover of suitable pixels for this species, particularly in Maxent-derived binarized
predictions. For C. natalensis, the percentage cover of climatically suitable pixels by the
different vegetation formations varied noticeably with the chosen binarization threshold
(Figure 9b): suitable areas individuated through the 10th percentile training threshold
appeared to be primarily covered by Temperate Grassland, and Meadow and Shrubland
(2.B.2), followed by Warm Temperate Forest (1.B.1), and Tropical Lowland Grassland, and
Savanna and Shrubland (2.A.1); differently, pixels predicted as being suitable using the
HS ≥ 0.8 threshold, primarily confined to the southern coastal region, were mainly covered
by Tropical Seasonally Dry Forest (1.A.1) and Tropical Lowland Humid Forest (1.A.2) with
median coverage values around 10%.
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Figure 9. Percentage coverage by each of the 17 vegetation formations (see Table 1) of the pix-
els predicted as climatically suitable after binarizing the Maxent-derived (left) and RF-derived
(right) weighted average predictions through either the 10th percentile training threshold or the
HS ≥ 0.8 threshold, for: (a) Chaetocnema darwini; (b) C. natalensis.

The first three axes resulting from the PCA-Env cumulatively explained 55.8% of the
environmental heterogeneity, in terms of bioclimatic conditions and vegetation cover, char-
acterising the study region (PrinComp1: 25.3%; PrinComp2: 15.9%; PrinComp3: 14.6%).
Considering the 2D environmental space defined by PrinComp1 and PrinComp2, the
bioclimatic variables (particularly bio2 for PrinComp1 and bio9 for PrinComp2) con-
tributed more than the percentage cover of the vegetation formations in defining these axes
(Supplementary Materials Figure S13), although a noticeable contribution to PrinComp2
was provided by Temperate Grassland, and Meadow and Shrubland (2.B.2). In this 2D
environmental space, niche densities of all the five Chaetocnema species overlapped to some
extent (Figure 10), although density centres were segregated for all the species’ pairs except
for C. danielssoni and C. darwini which indeed attained the highest niche overlap value
(D = 0.7), followed by C. natalensis-C. darwini (D = 0.36) and C. natalensis-C. danielssoni
(D = 0.31). Interestingly, C. brincki showed very low overlap with C. danielssoni as well as
with the two wide-ranging species C. darwini and C. natalensis (Table 3). Nonetheless, none
of the species’ pairs showed significant (at p ≤ 0.05) niche divergence within the niche
similarity tests. Instead, niche conservatism emerged for the pair C. darwini–C. danielssoni
(p = 0.01), and for the pair C. natalensis-C. danielssoni (p = 0.059) if the threshold for type I
error is relaxed up to p ≤ 0.1.
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Figure 10. Kernel-based niche densities of the five target Chaetocnema species within the 2D environ-
mental space encompassed by the top two principal components (in terms of percentage explained
variance, values in brackets within axes labels) resulting from a PCA summarizing environmental het-
erogeneity in the study region based on the 19 bioclimatic variables and on the percentage coverage
from the 17 vegetation formations.

Table 3. For each Chaetocnema species’ pair reported: overlap in niche density as measured through
the Schoener’s D index; p-value of the niche similarity test conducted testing for niche divergence as
alternative hypothesis; p-value of the niche similarity test conducted testing for niche conservatism
as alternative hypothesis.

Species’ Pair Schoener’s D SimTest_Divergence SimTest_Conservatism

C. darwini–C. danielssoni 0.7 1 0.01
C. natalensis–C. darwini 0.36 0.822 0.149

C. natalensis–C. danielssoni 0.31 0.98 0.059
C. natalensis–C. gahani 0.2 0.624 0.465
C. gahani–C. darwini 0.14 0.604 0.327
C. gahani–C. brincki 0.12 0.911 0.228

C. gahani–C. danielssoni 0.12 0.683 0.257
C. natalensis–C. brincki 0.04 0.693 0.317
C. darwini–C. brincki 0.02 0.703 0.287

C. danielssoni–C. brincki 0.01 0.723 0.307

4. Discussion

The southernmost African region encompassed by the Republic of South Africa,
Lesotho and Swaziland hosts very diversified vegetation formations, ranging from desert
or semi-desert grassland and shrubland in the north-west, to temperate grassland, meadow
and shrubland, interspersed by patches of Afromontane forest, characterizing the Central
Plateau and the highlands in the north-east, to the southern coastal humid or season-
ally dry forests [24,75]. This diversity derives from paleoclimatic and orographic pro-
cesses, and is currently linked to three main air circulation cells: an anticyclonic system
from the Indian Ocean, bringing summer rainfalls in the eastern portion of the region; a
westerly Polar Front system from the South Atlantic Ocean, producing particularly rainy
winters followed by dry summers in the south-west; the cool and dry trade winds from
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South Atlantic Ocean, bringing aridity in the north-west [26]. The variety of vegetation
formations and climatic conditions in turn have produced a noticeable richness in beetles
from various families, such as Curculionidae, Chrysomelidae and Scarabeidae [24,26–28],
with several species being rare [28].

Within Chrysomelideae, the Chaetocnema genus is very diversified in the Afrotropics
and the five target species investigated here represent South African endemics or sub-
endemics (C. gahani and C. natalensis). Given the paucity of occurrence records available
for some of these species (e.g., C. brincki, C. danielssoni) and their geographically clustered
arrangement, we differentiated the model fitting and evaluation procedures using either
LOO cross-validation or checkerboard spatial blocking, depending on the sample size of
the considered species, to increase the spatial independence of the test data. This stratagem,
along with the tuning of Maxent and RF parameters to select the ones best suited to
the specific dataset, permitted us to obtain ENMs with a noticeably high discrimination
performance for most species and without relevant overfitting on training data. In this
manner, the AUC-based weighted average predictions obtained for both algorithms are
likely to not suffer from strong biases deriving from spatial autocorrelation or poor model
tuning [44,54,57]. Moreover, it is noteworthy that the tuning process led to different
optimal parameterizations, for both Maxent and RF, depending on the considered species:
this reinforces previous claims about the need to avoid automatically relying on default
parameterization for these machine learning algorithms, and instead explore various
parameter settings to individuate the one(s) best fitting the specific modeling task (e.g.,
extrapolation versus interpolation) and the characteristics of the available datasets [44,54].

The weighted average predicted suitability, particularly from the tuned Maxent mod-
els, suggests that the available occurrence records of the target Chaetocnema species cover
most of the climatically suitable areas, with the exception of C. brincki and C. gahani for
which some highly suitable areas in the north-east (Limpopo Province for both species,
KwaZulu-Natal for C. gahani) have no observed records so far. A drop in predicted suitabil-
ity with a mean temperature of the wettest quarter (i.e., bio8) higher than 15 ◦C is shared by
C. brincki and C. danielssoni: for the former, this relates to a relatively low temperature in the
eastern highlands during summer; for C. danielssoni this pattern may instead be linked to
the southern Polar Front determining a moist winter (i.e., low temperatures coupled with
intensive precipitation) in the lowlands of the Western Cape Province. Nevertheless, while
climatic suitability for C. danielssoni is also predicted to be strongly related to heavy rainfall
during the coldest quarter (i.e., bio19), coherently with its EOO restricted to south-western
South Africa, suitability for C. brincki is predicted to mainly depend upon precipitation
higher than 100 mm during the wettest (summer) month (i.e., bio13). Similar to C. brincki,
climatic suitability for C. gahani steadily increases with bio13 values higher than 100 mm;
moreover, suitability for both species is strongly related to marked precipitation seasonality,
here again reflecting their distribution that is limited to the eastern portion of Southern
Africa. Nevertheless, climatic preferences of these two species differ in that suitability for
C. gahani is negatively related to diurnal thermal excursion (i.e., bio2) rather than being
limited by the average temperature of the wettest quarter, possibly explaining its wider
EOOs. The wide EOO of C. darwini, ranging from the south-western lowlands to the moun-
tainous regions of Lesotho and north-eastern South Africa, makes the climate-occurrence
patterns modeled for this species a mix of those characterizing the three previously ana-
lyzed species: indeed, both Maxent and RF predicted decreasing suitability with increasing
values of bio2 and bio8, one of the two tuned Maxent models predicted a steep increase in
suitability with bio13 > 100 mm, and both the tuned RF models predicted a bell-shaped
response to bio19. Finally, modeled suitability for C. natalensis partly differs from those of
the other species because it is predicted, particularly by Maxent, to be heavily reduced as
diurnal temperature range exceeds 7–8 ◦C; moreover, RF models also related suitability for
C. natalensis with bio13 and bio19 through bell-shaped curves with the optimum placed
around 100 mm and 150 mm, respectively. These modeled climate-occurrence patterns are
coherent with C. natalensis being totally absent from the arid Northern Cape Province.
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Temperate Grassland, and Meadow and Shrubland were the dominant vegetation
formations, in terms of percentage cover of climatically suitable areas, for C. brincki,
C. danielssoni and C. gahani, confirming previous observations [24]. For C. danielssoni,
the flooded forests of the Western Cape Province also represent an important component
of climatically suitable areas. Chaetocnema brincki and C. gahani also share the noticeable
coverage of their climatically suitable areas by the Warm Temperate Forest formation. The
southern Mediterranean Scrub and Grassland represents instead the vegetation formation
primarily associated with areas predicted as climatically suitable for C. darwini, although
also the Tropical Seasonally Dry Forest and the Temperate Flooded and Swamp Forest
formations, this latter likely limited to the south-western portion of the species’ range,
attained moderate coverage values. Chaetocnema natalensis, coherently with its range span-
ning almost the entire west-east gradient of the study region, showed climatic suitability
associated to various vegetation formations, ranging from Temperate Grassland, Meadow
& Shrubland, to Lowland Grassland, and Savanna and Shrubland, to Tropical Lowland
Humid Forest.

The niche overlap analysis performed through the PCA-Env approach confirmed the
similarities and differences emerging from the ENMs among the five target Chaetocnema
species, and provided a novel, important insight: Chaetocnema danielssoni significantly
shares the portion of its environmental niche represented by the considered predictors
with C. natalensis and, more pronouncedly, with C. darwini, despite being evidently more
narrow-ranging than these latter species. This niche conservatism pattern suggests that
the current occurrence localities of C. danielssoni are limited to south-westernmost South
Africa for reasons not relating to climate or localized vegetation formations. Moreover,
given that strict trophic association with one or few plant species is quite rare among flea
beetles [76], it is improbable that the restricted distribution of C. danielssoni is due to its
inability to feed outside its current range. The factors which have constrained C. danielssoni
within the Western Cape Province could be further investigated in the future by applying
molecular techniques to shed light on the historical demography of this species and its
neighbouring ones.

5. Conclusions

The implemented ecological niche modelling framework permitted the deepening of
the current understanding of the climatic drivers shaping the distribution patterns of South
African Chaetocnema species, also highlighting the associations between suitable climatic
conditions for these flea beetles and the diversified vegetation formations of the study
region. Moreover, the obtained maps of climatic suitability suggest that, at least for some
of the considered species, additional sampling campaigns in eastern South Africa may
provide new occurrence records, contributing to reduction in the Wallacean shortfall for
these (and likely other ecologically similar) phytophagous beetles. Both the algorithms here
implemented, Maxent and Random Forests, showed noticeable explanatory power coupled
with good generalizability (low overfitting); thus, they were confirmed to be a fundamental
part of the ecological niche modelling toolbox, so long as they are properly tuned.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/d14020100/s1, Table S1: Target species’ occurrence coordinates;
Table S2: Parameterization and discrimination performance of tuned models; Table S3: Variables
importance scores; Figure S1: Correlograms from preliminary models; Figure S2: Checkerboard cross-
validation blocks; Figure S3: Between-algorithm suitability difference; Figure S4: Suitability standard
deviation for Chaetocnema brincki, C. danielssoni and C. gahani; Figure S5: Suitability standard deviation
for Chaetocnema darwini and C. natalensis; Figure S6: Response curves for Chaetocnema brincki; Figure
S7: Response curves for Chaetocnema danielssoni; Figure S8: Response curves for Chaetocnema darwini;
Figure S9: Response curves for Chaetocnema gahani; Figure S10: Response curves for Chaetocnema
natalensis; Figure S11: Binarized suitability for Chaetocnema brincki, C. danielssoni and C. gahani; Figure
S12: Binarized suitability for Chaetocnema darwini and C. natalensis; File S1: the whole R script written

https://www.mdpi.com/article/10.3390/d14020100/s1
https://www.mdpi.com/article/10.3390/d14020100/s1


Diversity 2022, 14, 100 21 of 24

to perform all the analyses presented in this article; a CSV file containing coordinates (in WGS84
reference system) of occurrence records of the target Chaetocnema species.

Author Contributions: Conceptualization, M.B. and F.C.; methodology, F.C. and M.B.; data curation,
M.B. and P.D.; software, F.C.; formal analysis, F.C.; investigation, F.C., P.D. and M.B.; resources, M.B.;
writing—original draft preparation, F.C.; writing—review and editing, F.C., P.D. and M.B. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Coordinates of occurrence points used to fit the ENMs and perform the
niche overlap analysis for the target Chaetocnema species are provided in Supplementary Materials
Table S1, as well as in a separate .csv file; a commented version of the R script written to conduct the
analyses is also provided as Supplementary Materials File S1.

Acknowledgments: We thank two anonymous reviewers for their stimulating comments on a
previous version of this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cardoso, P.; Leather, S.R. Predicting a global insect apocalypse. Insect Conserv. Divers. 2019, 12, 263–267. [CrossRef]
2. Iannella, M.; De Simone, W.; D’Alessandro, P.; Console, G.; Biondi, M. Investigating the current and future co-occurrence of

Ambrosia artemisiifolia and Ophraella communa in Europe through ecological modelling and remote sensing data analysis. Int. J.
Environ. Res. Public Health 2019, 16, 3416. [CrossRef] [PubMed]

3. Mantoni, C.; Di Musciano, M.; Fattorini, S. Use of microarthropods to evaluate the impact of fire on soil biological quality. J.
Environ. Manag. 2020, 266, 110624. [CrossRef] [PubMed]

4. Cardoso, P.; Erwin, T.L.; Borges, P.A.; New, T.R. The seven impediments in invertebrate conservation and how to overcome them.
Biol. Conserv. 2011, 144, 2647–2655. [CrossRef]

5. Diniz-Filho, J.A.F.; De Marco Júnior, P.; Hawkins, B.A. Defying the curse of ignorance: Perspectives in insect macroecology and
conservation biogeography. Insect Conserv Diver. 2010, 3, 172–179. [CrossRef]

6. Graham, C.H.; Ferrier, S.; Huettman, F.; Moritz, C.; Peterson, A.T. New developments in museum-based informatics and
applications in biodiversity analysis. Trends Ecol. Evol. 2004, 19, 497–503. [CrossRef]

7. Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37,
4302–4315. [CrossRef]

8. Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, H.P.; Kessler, M.
Climatologies at high resolution for the earth’s land surface areas. Sci. Data. 2017, 4, 170122. [CrossRef]

9. Peterson, A.T.; Soberón, J. Species distribution modeling and ecological niche modeling: Getting the concepts right. Nat. Conserv.
2012, 10, 102–107. [CrossRef]

10. Elith, J.; Leathwick, J.R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev.
Ecol. Evol. Syst. 2009, 40, 677–697. [CrossRef]

11. Guisan, A.; Thuiller, W.; Zimmermann, N.E. Habitat Suitability and Distribution Models: With Applications in R; Cambridge
University Press, University Printing House: Cambridge, UK, 2017.

12. Newbold, T. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios.
Proc. R. Soc. B-Biol. Sci. 2018, 285, 20180792. [CrossRef]

13. Hortal, J.; Roura-Pascual, N.; Sanders, N.J.; Rahbek, C. Understanding (insect) species distributions across spatial scales. Ecography
2010, 33, 51–53. [CrossRef]

14. Warren, R.; Price, J.; Graham, E.; Forstenhaeusler, N.; VanDerWal, J. The projected effect on insects, vertebrates, and plants of
limiting global warming to 1.5 C rather than 2 C. Science 2018, 360, 791–795. [CrossRef]

15. Cerasoli, F.; Thuiller, W.; Guéguen, M.; Renaud, J.; d’Alessandro, P.; Biondi, M. The role of climate and biotic factors in shaping
current distributions and potential future shifts of European Neocrepidodera (Coleoptera, Chrysomelidae). Insect Conserv. Diver.
2020, 13, 47–62. [CrossRef]

16. Sistri, G.; Menchetti, M.; Santini, L.; Pasquali, L.; Sapienti, S.; Cini, A.; Platania, L.; Balletto, E.; Barbero, F.; Bonelli, S.; et al. The
isolated Erebia pandrose Apennine population is genetically unique and endangered by climate change. Insect Conserv. Diver. 2022,
15, 136–148. [CrossRef]

17. Urbani, F.; D’Alessandro, P.; Biondi, M. Using Maximum Entropy Modeling (MaxEnt) to predict future trends in the distribution
of high altitude endemic insects in response to climate change. Bull. Insectol. 2017, 70, 189–200.

http://doi.org/10.1111/icad.12367
http://doi.org/10.3390/ijerph16183416
http://www.ncbi.nlm.nih.gov/pubmed/31540033
http://doi.org/10.1016/j.jenvman.2020.110624
http://www.ncbi.nlm.nih.gov/pubmed/32392148
http://doi.org/10.1016/j.biocon.2011.07.024
http://doi.org/10.1111/j.1752-4598.2010.00091.x
http://doi.org/10.1016/j.tree.2004.07.006
http://doi.org/10.1002/joc.5086
http://doi.org/10.1038/sdata.2017.122
http://doi.org/10.4322/natcon.2012.019
http://doi.org/10.1146/annurev.ecolsys.110308.120159
http://doi.org/10.1098/rspb.2018.0792
http://doi.org/10.1111/j.1600-0587.2009.06428.x
http://doi.org/10.1126/science.aar3646
http://doi.org/10.1111/icad.12376
http://doi.org/10.1111/icad.12538


Diversity 2022, 14, 100 22 of 24

18. Iannella, M.; D’Alessandro, P.; Longo, S.; Biondi, M. New records and potential distribution by Ecological Niche Modeling of
Monoxia obesula in the Mediterranean area. Bull Insectol. 2019, 72, 135–142.

19. Roura-Pascual, N.; Brotons, L.; Peterson, A.T.; Thuiller, W. Consensual predictions of potential distributional areas for invasive
species: A case study of Argentine ants in the Iberian Peninsula. Biol. Invasions 2009, 11, 1017–1031. [CrossRef]

20. De Simone, W.; Iannella, M.; D’Alessandro, P.; Biondi, M. Assessing influence in biofuel production and ecosystem services when
environmental changes affect plant–pest relationships. GCB Bioenergy 2020, 12, 864–877. [CrossRef]

21. Iannella, M.; De Simone, W.; Cerasoli, F.; D’Alessandro, P.; Biondi, M. A Continental-Scale Connectivity Analysis to Predict
Current and Future Colonization Trends of Biofuel Plant’s Pests for Sub-Saharan African Countries. Land 2021, 10, 1276. [CrossRef]

22. Iannella, M.; De Simone, W.; D’Alessandro, P.; Biondi, M. Climate change favours connectivity between virus-bearing pest and
rice cultivations in sub-Saharan Africa, depressing local economies. PeerJ 2021, 9, e12387. [CrossRef] [PubMed]

23. Biondi, M.; D’Alessandro, P. Afrotropical flea beetle genera: A key to their identification, updated catalogue and biogeographical
analysis (Coleoptera, Chrysomelidae, Galerucinae, Alticini). Zookeys 2012, 253, 1–158. [CrossRef] [PubMed]

24. Biondi, M.; Urbani, F.; D’Alessandro, P. Relationships between the geographic distribution of phytophagous insects and different
types of vegetation: A case study of the flea beetle genus Chaetocnema (Coleoptera: Chrysomelidae) in the Afrotropical region.
Eur. J. Entomol. 2015, 112, 311–327. [CrossRef]

25. Biondi, M.; D’Alessandro, P. Two new species of Chaetocnema Stephens from South Africa (Coleoptera: Chrysomelidae, Galeruci-
nae, Alticini). Fragm. Entomol. 2018, 50, 11–18. [CrossRef]

26. Davis, A.L.; Scholtz, C.H. Dung beetle conservation biogeography in southern Africa: Current challenges and potential effects of
climatic change. Biodivers. Conserv. 2020, 29, 667–693. [CrossRef]

27. Iannella, M.; D’Alessandro, P.; De Simone, W.; Biondi, M. Habitat specificity, host plants and areas of endemism for the
genera-group Blepharida sl in the afrotropical region (Coleoptera, Chrysomelidae, Galerucinae, Alticini). Insects 2021, 12, 299.
[CrossRef]

28. Swart, R.C.; Samways, M.J.; Roets, F. Latitude, paleo-history and forest size matter for Afromontane canopy beetle diversity in a
world context. Biodivers. Conserv. 2021, 30, 659–672. [CrossRef]

29. Biondi, M.; D’Alessandro, P.; De Simone, W.; Iannella, M. DBSCAN and GIE, Two Density-Based “Grid-Free” Methods for
Finding Areas of Endemism: A Case Study of Flea Beetles (Coleoptera, Chrysomelidae) in the Afrotropical Region. Insects 2021,
12, 1115. [CrossRef]

30. Sayre, R.; Comer, P.; Hak, J.; Josse, C.; Bow, J.; Warner, H.; Kelbessa, L.E.; Kehl, B.H.; Andriamasimanana, R.A.R.; Benson, L.B.L.;
et al. A New Map of Standardized Terrestrial Ecosystems of Africa; Association of American Geographers: Washington, DC, USA, 2013.

31. Olivero, J.; Real, R.; Márquez, A.L. Fuzzy chorotypes as a conceptual tool to improve insight into biogeographic patterns. Syst.
Biol. 2011, 60, 645–660. [CrossRef]

32. Biondi, M.; D’Alessandro, P. Biogeographical analysis of the flea beetle genus Chaetocnema in the Afrotropical Region: Distribution
patterns and areas of endemism. J. Biogeog. 2006, 33, 720–730. [CrossRef]

33. Biondi, M.; D’Alessandro, P. (Eds.) A revision of the South African Chaetocnema gahani speciesgroup, with descriptions of four
new flea beetle species (Coleoptera: Chrysomelidae). In Annales de la Société Entomologique de France; Taylor & Francis Group:
Abingdon, UK, 2006; Volume 42, pp. 183–196. [CrossRef]

34. Pateiro-Lopez, B.; Rodriguez-Casal, A. alphahull: Generalization of the Convex Hull of a Sample of Points in the Plane. R Package
Version 2.2. Available online: https://rdrr.io/cran/alphahull/ (accessed on 7 January 2022).

35. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021.
36. IUCN Standards and Petitions Committee. Guidelines for Using the IUCN Red List Categories and Criteria. Version 15. Available

online: http://www.iucnredlist.org/documents/RedListGuidelines.pdf (accessed on 7 January 2022).
37. Burgman, M.; Fox, J. Bias in species range estimates from minimum convex polygons: Implications for conservation and options

for improved planning. Anim. Conserv. 2003, 6, 19–28. [CrossRef]
38. Hijmans, R.J. Raster: Geographic Data Analysis and Modeling. R Package Version 3.4-13. Available online: https://rdrr.io/cran/

raster/ (accessed on 7 January 2022).
39. Hijmans, R.J. Terra: Spatial Data Analysis. R package version 1.3-22. Available online: https://rdrr.io/cran/terra/ (accessed on

7 January 2022).
40. Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; Münkemüller, T.; et al.

Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46.
[CrossRef]

41. Naimi, B.; Hamm, N.A.; Groen, T.A.; Skidmore, A.K.; Toxopeus, A.G. Where is positional uncertainty a problem for species
distribution modelling? Ecography 2014, 37, 191–203. [CrossRef]

42. Breiman, L. Random forests. Mach. Learn 2001, 45, 5–32. [CrossRef]
43. Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model 2006,

190, 231–259. [CrossRef]
44. Valavi, R.; Elith, J.; Lahoz-Monfort, J.J.; Guillera-Arroita, G. Modelling species presence-only data with random forests. Ecography

2021, 44, 1731–1742. [CrossRef]
45. Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib.

2011, 17, 43–57. [CrossRef]

http://doi.org/10.1007/s10530-008-9313-3
http://doi.org/10.1111/gcbb.12727
http://doi.org/10.3390/land10111276
http://doi.org/10.7717/peerj.12387
http://www.ncbi.nlm.nih.gov/pubmed/34820174
http://doi.org/10.3897/zookeys.253.3414
http://www.ncbi.nlm.nih.gov/pubmed/23378812
http://doi.org/10.14411/eje.2015.040
http://doi.org/10.4081/fe.2018.279
http://doi.org/10.1007/s10531-019-01904-7
http://doi.org/10.3390/insects12040299
http://doi.org/10.1007/s10531-020-02108-0
http://doi.org/10.3390/insects12121115
http://doi.org/10.1093/sysbio/syr026
http://doi.org/10.1111/j.1365-2699.2006.01446.x
http://doi.org/10.1080/00379271.2006.10700622
https://rdrr.io/cran/alphahull/
http://www.iucnredlist.org/documents/RedListGuidelines.pdf
http://doi.org/10.1017/S1367943003003044
https://rdrr.io/cran/raster/
https://rdrr.io/cran/raster/
https://rdrr.io/cran/terra/
http://doi.org/10.1111/j.1600-0587.2012.07348.x
http://doi.org/10.1111/j.1600-0587.2013.00205.x
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1016/j.ecolmodel.2005.03.026
http://doi.org/10.1111/ecog.05615
http://doi.org/10.1111/j.1472-4642.2010.00725.x


Diversity 2022, 14, 100 23 of 24

46. Duque-Lazo, J.; Van Gils, H.; Groen, T.; Navarro-Cerrillo, R. Transferability of species distribution models: The case of Phytophthora
cinnamomi in Southwest Spain and Southwest Australia. Ecol. Model 2016, 320, 62–70. [CrossRef]

47. Jamwal, P.S.; Di Febbraro, M.; Carranza, M.L.; Savage, M.; Loy, A. Global change on the roof of the world: Vulnerability of
Himalayan otter species to land use and climate alterations. Divers. Distrib. 2021. [CrossRef]

48. Mi, C.; Huettmann, F.; Guo, Y.; Han, X.; Wen, L. Why choose Random Forest to predict rare species distribution with few samples
in large undersampled areas? Three Asian crane species models provide supporting evidence. PeerJ 2017, 5, e2849. [CrossRef]

49. Urbani, F.; D’Alessandro, P.; Frasca, R.; Biondi, M. Maximum entropy modeling of geographic distributions of the flea beetle
species endemic in Italy (Coleoptera: Chrysomelidae: Galerucinae: Alticini). Zool. Anz. 2015, 258, 99–109. [CrossRef]

50. Heikkinen, R.K.; Marmion, M.; Luoto, M. Does the interpolation accuracy of species distribution models come at the expense of
transferability? Ecography 2012, 35, 276–288. [CrossRef]

51. Qiao, H.; Feng, X.; Escobar, L.E.; Peterson, A.T.; Soberón, J.; Zhu, G.; Papeş, M. An evaluation of transferability of ecological niche
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