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Abstract: The diversity and spatial distribution of ectoparasites of a large colony of white stork Ciconia
ciconia at Dréan, in north-eastern Algeria, were investigated during two consecutive breeding seasons.
The results indicated that nestlings were infested by the following four louse species: Colpocephalum
zebra (Burmeister, 1838), Neophilopterus incompletus (Denny, 1842), Ardeicola ciconiae (Linnaeus, 1758),
and Ciconiphilus quadripustulatus (Burmeister, 1838). Overall, the distribution of chewing lice exhibited
a clustered distribution, with C. zebra being the most frequent species, with a prevalence of 39.6% and
41.0% in 2011 and 2012, respectively. Our results also suggested niche partitioning among the four
louse species within the host’s body parts. A generalized additive model indicated that size, sex, and
year influenced the abundance of ectoparasites; the abundance of chewing lice increased with the
size of the host and was greater in females, as well as in the first year of study. Further studies are
needed to explore the spatio-temporal variability in white storks’ lice infestations.
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1. Introduction

Owing to complex interactions with their hosts, parasite diversity is an important
selective force that drives population, community, and ecosystem dynamics. The influence
of parasites on their hosts is manifold [1], and they can shape the behavior, population
dynamics, and the evolution of their hosts. Thus, host survival, fecundity, quality of
offspring, and mating success may all be modified by parasites [2–5]. Host strategies, how-
ever, for dealing with parasites are equally complex, often leading to an evolutionary arms
race [6]. As ectosymbionts, lice have proved to be models of choice to study host–parasite
co-adaptation and co-adaptive diversification [7].

Lice are one of the most widespread ectoparasites, due to their high reproductive
efficiency, their ability to tolerate adverse conditions, and their elusiveness, making them
pests that are capable of seriously debilitating, or even killing, their hosts [8]. Lice are
traditionally divided into sucking lice and chewing lice, with more than 3000 species of
chewing lice being recorded worldwide [9]. Furthermore, chewing lice are known as highly
specialized, obligatory, and stationary ectoparasites of mammals and birds. They live on
the feathers, skin, and hair of their hosts, which functions as their living environment,
providing them with food and shelter [10]. Chewing lice may also have many of the
structural and behavioral transformations that help them spend their life cycle with their
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hosts [11]. The role of ectoparasites in bird migration and in the dispersal of infectious
diseases is understudied [12–15]. Although chewing lice are permanent and obligate
ectoparasites with a high degree of host specificity [16,17], some species exhibit lesser host
specificity [18–21].

The white stork Ciconia ciconia (Linnaeus, 1758) is one of the most important indi-
cators of environmental conditions, providing useful information on the biodiversity of
agricultural rural areas [22]. The white stork is also a migratory bird with a breeding range
that spans Europe, North Africa, and the Middle East [23]. The Algerian population is
mainly confined to the coastal area and the Hauts Plateaux, with a few scattered nests on
the northern fringes of the Sahara [24–26]. Most research has focused on the reproductive
ecology of North African white storks [27–32]. In contrast, no systematic research has in-
vestigated the ectoparasites of this emblematic species [33]. Because studies of waterbirds’
ectoparasites in Algeria are relatively recent, only a few species, such as the common coot
Fulica atra [34], greater flamingo Phoenocopterus roseus [35], glossy ibis Plegadis falcinellus [36],
little egret Egretta garzetta [37], and white stork [33], have been investigated. In addition,
a checklist of ectoparasites of twelve bird species, including passerines and waterbirds,
has been published by Baziz-Neffah et al. [38]. Thus, to date, there is scant information
on chewing lice species that parasitize white storks, their distribution and impact on their
hosts, and their geographical range. As a colonial species, white storks are expected to host
more parasites than solitary species, assuming that the proximity of the hosts increases the
probability of parasite transmission [39–41].

This study, part of a project investigating the ecology and population dynamics of
a large colony of white storks at Dréan, in north-eastern Algeria [31,32], focuses on the
ectoparasites found on nestlings, assesses changes in their abundance, and tests whether
their distribution on their host’s body parts is spatially structured.

2. Materials and Methods

White storks usually arrive at their Algerian breeding grounds in December/early
January, before starting to breed at the end of February [32]. A small number of birds,
however, reside all year round [42]. The nestling period is rather long, 63–71 days [23], and
most chicks leave the nest in June and July. Prior to fledging, sampling of nestlings was
carried out in 2011 and 2012 at a colony that sat in an olive grove of 25 ha, close to a refuse
tip (36◦41′2′′ N, 07◦44′47′′ E) (Figure 1). Nests were constructed in olive trees Olea europea
with heights varying between 3.5 m and 6.5 m. The colony’s white storks used the refuse
dump, an adjacent reservoir, and the surrounding agricultural fields as foraging grounds.
The climate of the area is typically Mediterranean, divided into two periods, a rainy season
(November–April) and a hot and dry season (May–October). Total annual rainfall ranged
from 500 to 800 mm and air temperatures for the first six months (January–June) were
similar for both study years, averaging 16.4 ◦C. It rained, however, substantially less during
the first six months (September–February), preceding the onset of breeding in the first
study year (520 mm in 2011 vs. 740 mm in 2012).

We looked for ectoparasites during the annual nestling ringing operation. A total of 59
and 61 nestlings were examined in 2011 and 2012, respectively. Each bird was handled for
approximately 5 min, with sampling of external parasites carried out by visual examination
of six different body parts (head, wings, back, belly and breast, legs, and crissum and tail).
The chewing lice were collected using a pair of tweezers and stored in tubes containing 70%
ethanol until they were mounted on permanent slides, following the technique described by
Palma [43], and deposited in the entomology collection of the Laboratoire de Conservation
des Zones Humides (L.C.Z.H), University of Guelma.
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Figure 1. Map of Numidia, north-eastern Algeria, with the location of the studied white stork colony.

For identification, we proceeded with the help of various keys [44–46]. Recorded
nestling measurements were body mass (measured with a spring balance with a precision
of 0.1 g), head–beak and tarsus lengths (measured with a sliding calliper to the nearest
0.1 mm). Furthermore, the half-wing length was measured to the nearest 0.5 mm using
a ruler. Feather samples were taken for DNA extraction and sex identification using
polymerase chain reaction (PCR) amplification of the CHD genes [47].

Different indices were used to analyze the structure of the parasite community (preva-
lence, mean intensity, mean abundance, variance, and aggregation) [48–51]. In order to
quantify the degree of aggregation, we calculated the ratio variance/mean abundance.
This ratio, also named index of dispersion, can have the value unity representing random
dispersion, whereas parasites dispersed regularly yield a ratio <1 and those dispersed
contagiously yield a ratio >1.

Statistical Analysis

To test the influence of size, year, and sex of host on lice’s abundance, we performed a
generalized additive model (GAM) with a negative binomial distribution. An exploratory
data analysis indicated that weight, tarsus, head and beak, and wing were collinear. We
used weight as a proxy to size. Thus, size, year, and sex of hosts were used as fixed
effects. Not all individuals were sexed and chicks with unknown sex were incorporated
as “unknown”. Model validation included tests of homogeneity, normality, influential
observations, and independence, and was carried out to check the robustness of the model.
Data analyses (Fisher’s exact test, Kruskal–Wallis rank sum test, GAM) were carried out
using R [52].

3. Results

The ectoparasite community consisted of the following four chewing louse species (Ph-
thiraptera: Amblycera and Ischnocera) in both study years: Colpocephalum zebra (Burmeis-
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ter, 1838); Neophilopterus incompletus (Denny, 1842); Ardeicola ciconia (Linnaeus, 1758);
Ciconiphilus quadripustulatus (Burmeister, 1838) (Table 1). Overall, 37 infested birds were
recorded out of 120 sampled nestlings (30.8%) and a total of 134 chewing lice were collected.

Table 1. Feather lice collected from white stork nestlings at Dréan (2011 and 2012) with prevalence,
mean abundance and mean intensity of ectoparasites.

Ectoparasites Year Infested Hosts Prevalence (%) Mean Abundance
(±sd)

Mean Intensity
(±sd)

Colpocephalum zebra
(Amblycera, Menoponidae)

2011 10/59 19.92 0.59 ± 1.52 1.4 ± 2.12
2012 5/61 8.19 0.27 ± 1.02 1.41 ± 1.85

Neophilopterus incompletus
(Amblycera, Menoponidae)

2011 6/59 10.16 0.38 ± 1.27 0.92 ± 1.2
2012 3/61 4.91 0.16 ± 0.72 0.83 ± 1.42

Ardeicola ciconiae
(Ischnocera, Philopteridae)

2011 5/59 8.47 0.37 ± 1.2 0.88 ± 1.73
2012 3/61 4.91 0.24 ± 1.08 1.25 ± 2.14

Ciconiphilus quadripustulatus
(Ischnocera, Philopteridae)

2011 4/59 6.77 0.22 ± 0.99 0.52 ± 1.53
2012 1/61 1.63 0.03 ± 0.25 0.16 ± 0.53

In 2011, 25 out of 59 inspected nestlings were infested by lice (42.4%). In total, 92 lice
were collected, corresponding to 25 males (27.2%), 57 females (62.0%), and 10 nymphs
(10.9%). The prevalence, mean abundance and mean intensity are presented in Table 1.
The number of lice per individual bird ranged from one to seven (mean: 3.7), with most of
the infested birds parasitized by only one species. With respect to relative frequencies, the
ectoparasites community was dominated by C. zebra (19.9%), and its mean abundance was
0.59 ± 1.52. The second most abundant taxa were N. incompletus (10.2%), and the two other
ectoparasites, A. ciconia, and C. quadripustulatus, were less common, with 8.5% and 6.8%,
respectively (Table 1).

In 2012, 61 nestlings were examined and only 12 (19.6%) were recorded as being
infested by louse species. A total of 42 lice, made up of 12 males (28.6%), 24 females
(57.1%), and 6 nymphs (14.3%), were collected from the sampled birds. The number of
chewing lice per individual bird ranged from one to six (mean: 3.5), with, once more, the
majority of infested birds parasitized by only one species. The ectoparasite community
was dominated by C. zebra, with a prevalence of 8.2%, followed by N. incompletus and
A. ciconia, represented by the same percentage, 4.9%. Finally, C. quadripustulatus was the
least frequent, with 1.6% (Table 1). While the prevalence of the four chewing lice declined
markedly during the second study year (Fisher’s exact test for count data: p = 0.009; CI:
1.24–7.46), the composition of the ectoparasites hosted by the white stork remained identical
(Figure 2a).

3.1. Spatial Distribution of Ectoparasites on Their Host

With the exception of the legs, the chewing lice were distributed differentially on
the body parts of their hosts for both of the two study years. In 2011, wings (59.1%),
and crissum and tail (19.4%) supported the most ectoparasites. In contrast, relatively few
were located on the head, the back (8.6% for both parts), and the belly and breast (5.4%)
(Figure 2a). Similarly, in the following year, the wings harbored the greatest number of
ectoparasites (45.5%). The back (18.2%) also supported a number of ectoparasites, slightly
superior to other parts of the host’s body. The same percentage of ectoparasites (13.6%)
was shared by the belly and breast. In contrast to the preceding year, the crissum and tail
sheltered the lowest number of feather lice (Figure 2b).
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Figure 2. Temporal variation in prevalence of lice at the Dréan colony (a). Percentage of lice on the
following different body regions of white stork nestlings: BB, breast and belly; BK, back; CT, crissum
and tail; HD, head; LG, legs; WG, wings in 2011 and 2012 (b).

The spatial distribution of ectoparasites on the different parts of the host was hetero-
geneous in both study years. Overall, C. zebra, A. ciconiae, and C. quadripustulatus were
the dominant species on the wings and other parts of the body. In contrast, N. incompletus
was dominant on the breast and belly, and on the crissum and tail (Figure 3b). In 2011,
C. zebra was found mainly on the wings (89.5%) and the back (10.5%) (Figure 3a), whereas
N. incompletus was only recorded on the crissum and tail (78.3%), and the belly and breast
(21.8%) (Figure 3b). In contrast, A. ciconiae was noted on the following three major body
parts: wings (86.4%), head (5.5%), and back (9.1%) (Figure 3c). Similarly, C. quadripustulatus
was recovered mainly on the head (53.8%), and, to a lesser extent, on the wings (30.8%) and
back (15.4%) (Figure 3d).

In 2012, C. zebra was found mainly on the wings (66.7%), and was present on the head
(5.6%) and the back, with a proportion of 27.8% (Figure 3a). In contrast, N. incompletus was
encountered on its privileged areas, as follows: the breast and belly (60%), and crissum and
tail (40%) (Figure 3b). The distribution pattern of Ardeicola ciconiae remained stable over the
two study years, and it was recorded in 2012 on the following three distinct parts of the
host body: the wings, with a relatively high value of 57.1%; the head and the back, with the
same percentage of 21.4% (Figure 3c). Finally, C. quadripustulatus was found to be confined
to the head of white storks (Figure 3d).
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Figure 3. Frequency and spatial distribution of (a) Colpocephalum zebra; (b) Neophilopterus incompletus;
(c) Ardeicola ciconiae; (d) Ciconiphilus quadripustulatus on five body parts of white stork nestlings in
2011 and 2012. BB, breast and belly; BK, back; CT, crissum and tail; HD, head; WG, wings.

3.2. Aggregation

During 2011, the mean abundance of C. zebra (0.59) was very much lower than the
variance value of 2.31. The ratio (variance/mean abundance) was 3.9, thus highlighting the
aggregated distribution of C. zebra. This typical distribution for parasites was found in N.
incompletus (4.2), A. ciconia (3.9), and C. quadripustulatus (4.7) (Table 2). Similarly, in 2012,
the index of dispersion varied between two for C. quadripustulatus and five for A. ciconiae
(Table 2).

Table 2. The index of dispersion for feather lice at Dréan (2011 and 2012).

Ectoparasites Year Variance (S2) Mean Abundance (±sd) Index of Aggregation

Colpocephalum zebra
(Amblycera, Menoponidae)

2011 2.31 0.59 ± 1.52 3.91
2012 1.02 0.27 ± 1.02 3.77

Neophilopterus incompletus
(Amblycera, Menoponidae)

2011 1.59 0.38 ± 1.27 4.18
2012 0.53 0.16 ± 0.72 3.31

Ardeicola ciconiae
(Ischnocera, Philopteridae)

2011 1.44 0.37 ± 1.2 3.89
2012 1.20 0.24 ± 1.08 5.00

Ciconiphilus quadripustulatus
(Ischnocera, Philopteridae)

2011 1.03 0.22 ± 0.99 4.68
2012 0.06 0.03 ± 0.25 2.00

The GAM model (deviance explained = 22.4%, n = 111) indicated a significant effect
of host size, sex, and year on the abundance of lice (Table 3). The positive relationship for
size was linear (Figure 4). The results of the GAM also revealed that, after accounting for
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size, there was a significant decline in abundance between the two study years. Finally, the
abundance of lice was greater in females than in males and unsexed chicks.

Table 3. Estimated regression parameters, standard errors, z-values, and p-values for the GAM.

Parametric Coefficients Estimate Std. Error z-Value p-Value

Intercept −0.48 1.1 −0.44 0.662

Weight 9.60 × 10−4 4.50 × 10−4 −2.15 0.031

Year_2012 −1 0.44 −2.29 0.022

Sex_Male −1.16 0.58 −1.99 0.046

Sex_Unknown −2.2 0.51 −4.36 1.33 × 10−5
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4. Discussion

The ectoparasite community of the Dréan white storks was mainly dominated by chew-
ing lice, with the following four species: Colpocephalum zebra, Neophilopterus incompletus,
Ardeicola ciconiae, and Ciconiphilus quadripustulatus. These four genera, Colpocephalum,
Neophilopterus, Ardeicola, and Ciconiphilus, are known as common ectoparasites of the Ci-
coniiformes [53–63]. In addition, all four species were previously recorded from Ciconia
ciconia [9,33,45,64,65]. Similarly, a previous study in Romania showed that the most abun-
dant taxa were C. zebra and N. incompletus [66]. Our results also support the results of Dik
and Uslu [65] on storks examined in Turkey, where a high number of lice from four specific
species were recorded, with the most dominant being C. zebra and N. incompletus.

The level of infestation depends on the concentration or density of birds, with ec-
toparasites spreading easily within a dense population. Thus, the number and variety of
ectoparasites are greater on colonial birds than on territorial birds [41]. The density of the
Dréan colony did not change between the two study years and our results did not reveal
any between-year variation in the composition of the ectoparasites hosted by the white
stork chicks. There was, however, a difference in prevalence levels between the two study
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years. Generally, variation in the parasitic fauna may be linked to climatic factors, such
as temperature, humidity, and vegetation, which may limit the distribution [7]. Further
investigations are required to uncover the causes of variation in the Dréan colony.

Ectoparasite infracommunities are spatially structured in relation to the host’s body,
and the spatial distribution of chewing lice is, in part, driven by feather morphology and
chemistry [7]. Our results show that ectoparasites inhabit the following different body parts
of white stork chicks: head, wings, back, breast and belly, and crissum and tail. While some
ectoparasites exhibited no microhabitat preferences, others tended to confine themselves
to limited areas of their host’s body [20,67,68]. The differential abundance of the four
species on the different parts of their hosts is indicative of apparent ecological partitioning
among them. C. zebra was mainly located on the wings and the back [9]. The finding that
Colpocephalum was mainly located on the wings agrees well with the ecological study of
lice in domestic pigeons [69].

Another genus, Ardeicola, is also found on the wings, and is known as a wing louse
of Ciconiiformes, being recorded throughout the order and differing only specifically on
different hosts [67]. These findings agree with previous observations that slender, elongate
lice inhabit wing feathers [70]. Both Colpocephalum and Ardeicola are found at lower densities
on the head and the back of birds, but they rarely, if ever, co-occur with high densities on
the wings of the same host. There is probably competition between the two species in the
preferred area of the same host, and the distribution of the two species is distinct in the
other body parts, as follows: dorsal parts in the case of Colpocephalum, and the head and
back for Ardeicola.

Habitat preferences and competition avoidance may also explain the distribution of
N. incompletus, which was mainly recorded in the crissum and tail, and the belly and breast.
Size and morphological differences between parasite species may be a likely explanation for
the microhabitat preferences. Similarly, the high frequency of C. quadripustulatus found on
the head of white storks reflects the preferred location on the host’s body. Species living on
the head and neck are in little danger of being removed by the host’s beak during preening,
and tend to be slow-moving, round-bodied lice with relatively large heads and mandibles.
In contrast, slimmer, more elongated lice are free to exploit the remainder of the host’s body,
since they can move easily and rapidly among the feathers to avoid the host’s beak [17,71].
In the dorsal area, C. quadripustulatus has a body shape that makes it easier to attach onto
the feather surface and can cling firmly with its strong legs. Differences in the size and
shape of the feathers seem to provide the necessary habitat heterogeneity for parasites
to segregate [72]. Indeed, most studies suggest that feather morphology and the ability
of chewing lice to escape preening are the major factors determining the distribution of
lice on birds [7,73], and preening is the main defensive behavior of birds against harmful
ectoparasites [74].

4.1. Aggregation and Sex Ratio

Lice are known to exhibit an aggregated distribution within their hosts [75,76]. The
clustered dispersion of Colpocephalum zebra suggests its occurrence within the colony for
a long period of time, with a full spreading process across its members. Among the ten
birds found infected in 2011, we found both mature female and male lice. In the other
three hosts, we found either females and nymphs or only males and nymphs. In this case,
reproduction and development of the parasite would only be possible if at least one of the
nymphs was of the opposite sex. We recorded females, males, and nymphs for three species
(N. incompletus, A. ciconiae, and C. quadripustulatus), which would facilitate the process of
reproduction. On the other hand, some nestlings hosted either females or males, and it
is probable that these individuals were infected shortly before being sampled, by direct
contact with infected siblings or adults exhibiting a higher intensity of infestation.
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4.2. Factors Affecting Louse Abundance

Our results are congruent with previous research, indicating that louse abundance
is significantly correlated with host body mass [77,78]. A larger body size offers more
resources and represents more refugia [77]. In contrast, the relationship between louse
abundance and the host’s sex is unclear, a result possibly constrained by the limited
quantitative resolution of the sampling method used [79], and should be probed further.
Similarly, the yearly variation in louse abundance deserves further investigation. In regards
to the importance of humidity to the population dynamics of chewing lice [7], climatic
factors deserve close scrutiny.

5. Conclusions

Four louse species (Colpocephalum zebra, Neophilopterus incompletus, Ardeicola ciconiae,
and Ciconiphilus quadripustulatus) infested white storks’ chicks at the Dréan colony, with the
former being the most frequent ectoparasite. Owing to the lengthy nestling period and the
offspring care provided by parents, these chewing lice were probably transmitted vertically
between adults and offspring in the nest, with a varying degree of horizontal transmission
between nestlings [80,81]. Our results also suggest niche partitioning among the four louse
species within the host’s body parts. A generalized additive model indicated that host
size, sex, and year influenced the abundance of ectoparasites; the abundance of chewing
lice increased with the size of the host and was greater in females, as well as in the first
study year.
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