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Abstract: The Red-backed Shrike (Lanius collurio) is a medium-sized, carnivorous passerine, oc-
curring throughout the western Palearctic. As with numerous other bird species, its numbers are
declining, mainly due to anthropogenic factors. Therefore, revealing the population structure and
genetic diversity is paramount in ensuring the survival of the species. However, until present, only
mitochondrial DNA has been targeted to reveal the genetic structure of the species. These studies
suggested a panmictic population structure. In this study, we employed next-generation sequencing
of 88 Red-backed Shrikes from 11 countries and used single nucleotide polymorphisms (SNPs)) to in-
vestigate the population structure. Even with such high-resolution DNA data, we found considerable
genetic variability, but our results indicate no genetic structure in the Red-backed Shrike, suggesting
a panmictic population. Migrant birds from Israel and Kuwait could not be attributed to breeding
populations. Panmixia is the genetic legacy of the widespread and continuous distribution of the
species, high locomotion capacities, and, most importantly, the numerous ice ages from the past few
million years, which forced various populations to retract to refugia and expand their ranges several
times, and to interbreed both in the glacial refugia and during warm periods in Eurasia.

Keywords: whole-genome sequencing; SNPs; Z chromosome; Red-backed Shrike; population ge-
nomics; panmixia; Western Palearctic; migration

1. Introduction

DNA sequencing began a new era in population genetics in the late 1970s with the
arrival of the Sanger sequencing technique [1]. This technique endowed researchers with
the ability to assess population differentiation at the molecular level. At its core, the
study of population genetics was a combination of Darwin’s natural selection theory and
Mendel’s genetic principles, as emphasised by the early researchers in the field [2–4]. This
indicates that, previously, population genetic research was performed while considering
morphological and behavioural aspects coupled with theoretical features [5]. Current
DNA high-throughput sequencers [6] generate an outstanding amount of genomic data,
allowing for unprecedented views on variation patterns among individuals and species
alike [7]. Once the technological capabilities of sequencing became so efficient, their
running costs subsequently decreased, making them accessible to a wider range of research
groups. Following this, it became possible to expand focus beyond model organisms, e.g.,
Drosophila melanogaster and Mus musculus, and to study species whose genetic backgrounds
were unknown. In the past decade, the number of genomes from non-model organisms
has grown at an astonishing rate [8], which broadened our understanding of population
history in terms of genetic drift, rate of mutation occurrence, gene flow, and even natural
selection [9].

Avian genomics has played a crucial role in the development of non-model organism
genomics, mainly through the efforts of the Birds 10K Avian Phylogenomics Consor-
tium [10]. This international initiative aims to obtain genomes from all extant bird species
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(around 11,000), with circa 450 genomes already assembled [11]. The history of avian
genomics unfolded relatively slowly in the beginning of the omics era [12–14], with most
sequencing aimed at resolving avian phylogenies [15–17] or targeting species with high
economic importance such as the chicken (Gallus gallus) [18] and the turkey (Meleagris gal-
lopavo) [19]. However, in the past few years, increasing numbers of studies have employed
high-throughput sequencing to decode the population genetic background, evolutionary
history, and speciation of various other bird species [20–24].

The shrike family (Aves, Laniidae) currently comprises a total of 34 species, divided
into four genera: Corvinella, Urosteles, Eurocephalus, and Lanius [25], the last one being con-
sidered true shrikes. Until present, apart from sequencing the genome of the Loggerhead
Shrike (Lanius ludovicianus) by the B10K consortium, no next-generation sequencing (NGS)
research has targeted the shrike family. Nonetheless, a number of genetic studies have
focused on shrike species, notably to elucidate phylogeographical [26–31] and speciation
patterns [26,32–34]. In the western Palearctic, the most abundant shrike species is the
Red-backed Shrike Lanius collurio (RBS), with more than 6 million breeding pairs [35,36].
Previous mitochondrial DNA research on the RBS has revealed population genetic vari-
ability, but admixture across the birds from western Palearctic, although two haploclades
without geographic separation, are obvious [37].

Mitochondrial DNA can reveal the phylogeographic details of recent evolutionary
history, but nuclear DNA should be more informative regarding the distant past and offer
data on separation events going back many thousands of years. In this study, we used
next-generation DNA sequencing and SNPs to elucidate the population genetic structure
of the breeding RBS in the western Palearctic from nuclear DNA. We also explored if SNPs
could help identify the breeding site of migrant birds captured in Israel and Kuwait.

2. Materials and Methods
2.1. Sampling, DNA Extraction, and Sequencing

We obtained blood and tissue samples from 88 Red-backed Shrikes in 11 countries:
Bulgaria, Czech Republic, Germany, Israel, Kuwait, Latvia, Norway, Poland, Romania,
Russia, and Sweden (see Figure 1). Birds were captured and sampled by experienced
bird ringers, following national regulations. All samples were from breeding birds, except
the birds from Israel and Kuwait, which are migratory individuals. Complete details of
the samples used are found in Table S1. We extracted genomic DNA following a classic
phenol-chloroform protocol [38]. After isolation, we quantified DNA quality with a WPA
Biowave II spectrophotometer (Biochrom Ltd, Cambridge, UK).

Whole-genome sequencing was performed by Berry Genomics (Beijing, China) at
15× coverage, with paired ends, on an Illumina Novaseq 6000 machine. Sequencing was
completed in two batches: the first in January 2018 (n = 56) and the second in December
2018 (n = 32).

2.2. NGS Data Analysis

We assembled the raw sequences (fastq files) and mapped them using the Burrows–
Wheeler Aligner [39]. We employed the complete genome of the Loggerhead Shrike (Lanius
ludovicianus) as a reference. Currently, this is the only complete genome available for the
shrike family. It split from the RBS circa 8 Mya [26]. In the new alignments, we removed
the clonal reads via SAMtools [40], with the rmdup command. Using the same software,
we created a multiple VCF file containing the genomic variation from all 88 alignments.
We then filtered the VCF file by (i) removing the indels and (ii) setting a minor allele
frequency (MAF) of 0.1. We added this filtering step as some software requires the indels
to be removed, while the second procedure helped to exclude errors in sequencing. Until
this stage, our methodology closely resembles the technique employed by the Genome
Analysis Toolkit (GATK) pipeline as best practice for variant discovery [41].
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Figure 1. Map with countries from which we obtained samples, as well as the total number of samples
per country.

For the first analysis step, we performed a principal component analysis (PCA) via
PLINK [42] and used R [43] to visualise the results. We further investigated population
membership of our individuals using Admixture software [44], and for visualising the runs,
we uploaded the output files in the online POPHELPER Structure Web App v1.0.10 (https:
//roymf.shinyapps.io/structure/, accessed on 14 January 2020). Third, we constructed a
tree based on single nucleotide polymorphisms (SNPs) from the sex chromosome Z. To
do so, we initially downloaded the chromosome Z from a Collared Flycatcher (Ficedula
albicollis) (NC_021700) from GenBank and then compared it to our Loggerhead Shrike
genome reference, from which we then extracted the same scaffolds. Finally, with the list of
scaffolds belonging to the chromosome Z, we were able to extract the respective scaffolds
from our multiple VCF file. Via the vcf2phylo pipeline [45], we extracted the chromosome
SNPs and built an IQ-TREE [46]. We visualised the results in FigTree 1.4.4 [47].

A schematic representation of our NGS data analysis workflow is available in Figure 2.

https://roymf.shinyapps.io/structure/
https://roymf.shinyapps.io/structure/
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Figure 2. Schematic representation of our complete NGS data analysis workflow.

3. Results

We obtained short-read (i.e., 150 base pairs) whole-genome sequences for 88 individu-
als. On average, each sequence had 63,883,753 clean reads and 19,165,126,023 clean bases
(Table 1, and full details in Table S1). Our PCA did not reveal any group structure among
the 11 populations in our dataset (Figure 3). Although with minimal variation, it appears
that several of the German birds are different, but this aspect was not confirmed by our
other analyses.

Table 1. Average quality values of the 88 whole-genome sequences.

Raw Reads Raw Bases Clean Reads Clean Bases Read Length Q30 Percent

Average 64,015,481 19,204,644,286 63,883,753 19,165,126,023 150;150 94.00;91.22
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Figure 3. PCA containing both breeding and migratory individuals included in our dataset. Breeding
birds are represented by circles, while migratory individuals are distinguished by triangles (Israel)
and squares (Kuwait).

For the Admixture software analysis, our assumptions that the birds are subclustered
were also proven incorrect (Figure 4). From K = 2 until K = 7, there is no stand-alone
population. All individuals from the 11 countries share genetic elements. For example,
breeding shrikes from Germany do not show a singular population structure; the corre-
sponding genetic elements also occur in other countries. Furthermore, the FST values for
the admixture analysis (Table 2) offer additional support for almost complete panmixia,
with the overwhelming majority of values between 0.051 and 0.097. The only three values
that do not fit in this range are from the Czech Republic: the first, compared with the
Bulgarian population, at 0.102; the second, compared with Israel, at 0.113; and the third,
compared with Latvia, at 0.103. Overall, the population from the Czech Republic has the
highest FST variation (average = 0.094) compared to the other groups. However, in terms of
FST theoretical values, this is still considered almost complete panmixia.

Table 2. Fst values for Admixture analysis, considering each of the 11 countries as possible populations.

Bulgaria CzechRep Germany Israel Kuwait Latvia Norway Poland Romania Russia Sweden

Bulgaria
CzechRep 0.102
Germany 0.074 0.095

Israel 0.093 0.113 0.085
Kuwait 0.072 0.093 0.064 0.083
Latvia 0.082 0.103 0.074 0.093 0.072

Norway 0.064 0.085 0.056 0.075 0.054 0.064
Poland 0.067 0.087 0.059 0.078 0.057 0.067 0.049

Romania 0.067 0.087 0.059 0.077 0.057 0.067 0.048 0.052
Russia 0.077 0.097 0.069 0.087 0.067 0.077 0.059 0.062 0.061

Sweden 0.069 0.090 0.061 0.080 0.059 0.069 0.051 0.054 0.053 0.063
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Figure 4. Admixture analysis (K = 7), containing the 11 populations in our dataset. In each row, the
number of colours indicates the possible number of subgroups in the dataset (as indicated on the
y axis).
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In several taxa, the DNA from Z sex chromosome was highly informative [48,49]. Our
last tool in elucidating the population structure of the RBS, the chromosome Z SNPs tree,
also indicates panmixia. Birds from the same country do not cluster together. Instead, there
is a general admixture, with individuals occupying random positions on the tree branches,
regardless of their natal origin. Migrating birds captured in Israel and Kuwait could not be
attributed to a breeding population (Figures 5 and 6).
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4. Discussion

Our insight into the population genetic structure of the Red-backed Shrike, provided
by next-generation sequencing of 88 individuals from 11 countries, revealed complete
admixture, also known as panmixia. These findings confirm the results from our previous
study, based only on mitochondrial DNA [37]. Across the western Palearctic, genomic
studies have indicated population differentiation in a number of species. For the Saker
Falcon (Falco cherrug), SNP sets differentiated between birds of central Europe, eastern
Europe, and central Asia, with the westernmost populations showing demographic iso-
lation [20]. For the Great Tit (Parus major), all continental European populations share a
common genetic background, except the birds from Spain, Corsica, and Sardinia; similarly,
birds from the UK also exist within their own cluster [21]. For Barn Swallows (Hirundo
rustica) breeding in Sweden, Germany, and Switzerland, an assessment based on ddRAD,
mtDNA sequencing, and microsatellites did not detect any unique genetic elements be-
tween the populations [23]. However, the European Turtle Dove (Streptopelia turtur) is
characterised by population genetic admixture, according to a study that employed both
RAD and mtDNA sequencing [22].
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Unfortunately, we could not assess the natal origin of the RBSs sampled along the
migratory flyways in Israel and Kuwait, which represented a special point of interest
for us. For a number of species, previous studies were successful in tracking population
membership of migrating birds. Using stable isotopes, Kloskowski et al. [50] were able to
connect wintering areas with breeding areas for the Red-necked Grebe (Podiceps grisegena).
Employing the same technique, Guillemain et al. retraced the natal origin of Greylag Geese
(Anser anser) wintering in Camargue, France [51]. European breeding Ortolan Buntings
(Emberiza hortulana) were also assigned to their east African wintering grounds based on
stable isotopes extracted from tail feathers [52]. Last, migrating Pied Flycatchers (Ficedula
hypoleuca) and European Robins (Erithacus rubecula) over the Italian Alps were connected
to their breeding areas via stable isotopes as well as bird ringing data [53]. The isotope
analysis, however, offers only limited information, as it reflects the recent situation, whereas
DNA data go back thousands and even millions of years.

Our panmixia results for the RBS are in concordance with the general situation of
bird species inhabiting the western Palearctic. Out of 145 species that have been the
focus of population genetic studies, the majority of them show genetic admixture, as
indicated by a recent literature review [54]. Only species on the Atlantic islands or on
separated mountain ranges show a higher degree of genetic isolation and speciation.
Extended gene flow among populations on the landmass of the western Palearctic leads
to homogenisation of mutations and contributes to general admixture, as shown in the
Northern Wheatear (Oenanthe oenanthe) [55]. Furthermore, as in the case of the Red-
backed Shrike, low philopatry rates [56] also significantly reduce population differentiation.
Overall, for avian species, their high locomotion capacity also acts as a catalyst for gene
flow, dispersal, and admixture [57].

Although the phylogeography and population history of other highly mobile ver-
tebrates, e.g., Killer Whales [58] and saltwater fishes [59], have been resolved via high-
throughput sequencing, we think the flying ability of many bird species represents a strong
underlying factor for their general genetic admixture. This is particularly evident in com-
parison to several tropical passerines, which have reduced flying capabilities and show a
thoroughly differentiated genetic structure. Furthermore, the numerous ice ages in the past
few million years had a crucial influence on the panmixia of the majority of bird species in
the northern hemisphere. These glaciations and the harsh conditions they imposed forced
bird populations to retreat into southern refugia, where different lineages mixed. During
the interglacial periods, when the ice pack melted and the majority of the hemisphere
was once again hospitable, these bird populations expanded and lineages from different
refugia came into contact. These consistent and consecutive admixtures of lineages in
the past millennia were a decisive cause in the panmixia of modern bird species in the
northern hemisphere.

In theory, population membership can be linked to certain genetic variation, but in
practice, population differentiation ranges from complete isolation to full panmixia [60].
There are still limitations in understanding population histories from large, whole-genome
datasets, especially regarding the number of samples, magnitude of sequencing depth, and
complexity of computational analyses, among others [61]. Although an array of performant
analysis software [62] has helped elucidate the history and dynamics of many species,
the current bioinformatic pipelines still show limitations for selecting population specific
genetic elements [63]. Today, we are witnessing the generation of datasets containing
thousands of genomes; the main challenge derived from the ever-increasing size of these
datasets is building software capable of processing the amount of data. However, as more
efficient software and scanning algorithms emerge, coupled with the constantly improving
sequencing techniques [6], future research on population genomics will greatly improve
and further shed light on evolutionary aspects of the natural world.
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5. Conclusions

High-throughput sequencing of 88 RBSs from 11 countries and subsequent data
analysis could neither detect an unambiguous population genetic substructure nor could
it allocate migrating RBS from Israel and Kuwait to their natal populations. Although
genetic variation is evident, neither PCA, admixture analysis, nor SNP tree investigation
could provide us with differentiating elements between the 88 samples used in the current
study. Our results are in concordance with mtDNA studies of RBS and previous research on
western Palearctic bird species, of which the majority are characterised by population
genetic admixture. This is the legacy of multiple ice ages, which forced a back-and-
forth population expansion process, in which different subpopulations mixed. Although
our bioinformatic approach was performed with the most up-to-date and recommended
software, we think that there are limitations in the amount of data that current software can
process. Finally, we emphasise the need for additional population sampling and deeper
sequencing to challenge our current results.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/d14030216/s1, Table S1: Complete details of samples used.
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