
Citation: Mesterházy, I.; Raffai, P.;

Szalay, L.; Bozó, L.; Ladányi, M.

Estimation of Blooming Start with the

Adaptation of the Unified Model for

Three Apricot Cultivars (Prunus

armeniaca L.) Based on Long-Term

Observations in Hungary

(1994–2020). Diversity 2022, 14, 560.

https://doi.org/10.3390/d14070560

Academic Editors: Michael Wink,

Luc Legal, Ben-Erik Van Wyk and

Michel Baguette

Received: 8 June 2022

Accepted: 10 July 2022

Published: 12 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diversity

Article

Estimation of Blooming Start with the Adaptation of the Unified
Model for Three Apricot Cultivars (Prunus armeniaca L.) Based
on Long-Term Observations in Hungary (1994–2020)
Ildikó Mesterházy 1, Péter Raffai 2 , László Szalay 3, László Bozó 4,5 and Márta Ladányi 1,*

1 Department of Applied Statistics, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43,
H-1118 Budapest, Hungary; mesterhazy.ildiko@uni-mate.hu

2 Department of Atomic Physics, Eötvös Loránd University, Pázmány Péter sétány 1/A,
H-1117 Budapest, Hungary; peter.raffai@ttk.elte.hu

3 Department of Pomology, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43,
H-1118 Budapest, Hungary; szalay.laszlo@uni-mate.hu

4 Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences,
Villányi út 29-43, H-1118 Budapest, Hungary; bozo.laszlo@uni-mate.hu

5 Hungarian Meteorological Service, Kitaibel Pál utca 1, H-1024 Budapest, Hungary
* Correspondence: ladanyi.marta@uni-mate.hu

Abstract: The aim of our research was to adapt Chuine’s unified model to estimate the beginning of
blooming of three apricot cultivars (‘Ceglédi bíborkajszi’, ‘Gönci magyar kajszi’, and ‘Rózsakajszi
C.1406’) in Hungary in the time period 1994–2020. The unified model is based on the collection
of chilling and forcing units. The complexity of the model lies in the high number of parameters
necessary to run it. Following the work of other researchers, we reduced the number of relevant
model parameters (MP) to six. In order to estimate the six MPs, we used a simulated annealing
optimization method (known for being effective in avoiding getting stuck in local minima). From the
results, we determined the local optimum of six MPs, and the global optimum parameter vector for
three apricot cultivars. With these global optimum parameter vectors, the beginning of blooming
could be estimated with a root-mean-square error (RMSE) of less than 2.5 days, using the knowledge
of the daily mean temperature in the time period 1994–2020.

Keywords: apricot cultivars; blooming start; unified model; simulated annealing; long-term observa-
tion; chilling unit; forcing unit; temperature accumulation; endodormancy break; ecodormancy

1. Introduction

The bud burst and the blooming are the most extensively studied phenophases of tem-
perate trees (for more details see [1]). Such studies found that the dominant environmental
factor affecting the growth speed of trees is air temperature [2]. In the last few decades,
several temperature-based, mechanistic phenology models were produced for simulating
the vegetative (e.g., bud burst) or reproductive (e.g., blooming) phenology of temperate
and boreal trees (for more details see [1]). These models are based on the response of
trees to the chilling requirement (the accumulation of which breaks endodormancy), and
also the response of bud growth to forcing heat requirement (which forces the growth
during spring after endodormancy break). Phenological models are important tools for
planning agricultural practices [3], particularly for the prevention of frost damage in the
short term [4,5] and for projecting the impact of climate change in the long term [6–9].

Dormancy is an important phase in the life of temperate zone fruit trees. Regular dor-
mancy is essential for surviving unfavorable temperatures in winter [10]. Sufficient chilling
units are needed for the breaking of endodormancy of apricot (Prunus armeniaca L.) buds.
According to Andreini et al. [11], early cultivars are controlled by minimum temperatures,
but intermediate and late cultivars are controlled by mean temperatures.
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Blooming time is an important phenological trait of apricot cultivars. It is determined
genetically, but modified by environmental factors, mainly by several elements of climate,
which is why, for the aspect of blooming time, there are significant differences between
cultivars, production sites, and years. Knowledge of blooming time of apricot genotypes is
also important for basic research, breeding, and good cultivation practice. It is an important
element of the exact description of cultivars [12]. Blooming time is a crucial phenological
trait for breeding [13,14]. Apricot is an early blooming species in general, and is endangered
by frost damage [15]. Extremely early blooming genotypes frequently suffer under low
temperatures [16]. There are self-incompatible cultivars in apricot orchards that need polliniz-
ers cultivars with the same blooming time [17]. Therefore, the knowledge of blooming time
of cultivars is essential from a practical aspect as well.

Hungary is situated in the northern zone of apricot production. In Hungary, the first
flowers of apricot trees open between the end of February and second half of April, de-
pending on the genotype, the orchard site, and the year [17–21]. In southern countries, and
under milder climate conditions, the blooming time of apricot cultivars is earlier, sometimes
starting at the end of January [22–24].

Based on the long-term observations in different parts of the world, the blooming
time of apricot cultivars changed during the last few decades, similar to other temperate
zone deciduous tree species. Most studies show advancing spring phenological phases
and gradually earlier blooming time because of global warming [21,25–34]. Only a small
number of articles, on a few genotypes and locations, show the opposite, i.e., delayed
spring phenological processes and later blooming in response to warming [35–37]. The hy-
pothesis of Guo et al. [38] is the following: the spring phenological processes of temperate
zone deciduous plants in locations with cold winters should be determined primarily by
temperatures during ecodormancy, when the accumulation of forcing units is occurring,
whereas at sites with warm winters, temperatures during the endodormancy (chilling
requirement) should play a more important role in the regulation of spring phenological
processes. Insufficient chilling may cause not just delayed, but irregular, blooming, as
well as a lack of crop [14,39,40]. Temperature has a significant impact on the regulation of
phenological processes just before blooming and during blooming time [41,42].

In our study, we focused on the beginning of blooming of three apricot cultivars
in Hungary, based on daily mean temperatures. Phenology models are very sensitive
to local climatic conditions and plant species. Therefore, they must be adapted to local
conditions [43]. We used the unified model of Chuine [43]. This model is based on the accu-
mulation of chilling and forcing units. The unified model provides a statistical framework
for standard model identification, comparison, and simplification [43,44]. With the appro-
priate parameter selection, the unified model approximates the sequential model [2,45–47],
the parallel model [2,46–48], and the deepening rest model [49], as well as the four phases
model [2,50]. During the dormant period, the biochemical and biophysical processes are not
precisely known, therefore, parameter estimation is difficult. There are two methods used
to estimate parameters: the response of shoots to temperature is studied under controlled
conditions, or statistical models are run on long-term data sets [1]. For the estimation of the
unified model parameters, optimization methods such as the simulated annealing method
(SAM) are used [1]. The SAM handles the local extrema better than traditional methods, by
avoiding getting stuck in them [51–53].

2. Materials and Methods
2.1. Meteorological and Phenological Data

We used the blooming dates of three self-fertilizing apricot cultivars (Prunus armeniaca L.;
‘Ceglédi bíborkajszi’ (cb), ‘Gönci magyar kajszi’ (gm), and ‘Rózsakajszi C.1406’ (ro)) recorded
by the research team of the Department of Pomology of the predecessor institutes the Hun-
garian University of Agriculture and Life Sciences in the experimental farm in the time
period 1994–2020. The beginning of blooming (blooming start) was the day of the phe-
nological process, when at least 5% of flowers were opened on the trees of the observed
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cultivars. In addition, we used the time when the string stage occurred in at least 50% of
the trees [34]. Our collection was in Szigetcsép (47◦15′10.6′′ N 18◦57′26.6′′ E) until 2007.
Three years before the excision of this plantation, we set up a new experimental plantation
in 2004 in Soroksár (47◦23′51.8′′ N 19◦09′03.2′′ E), where we continued our studies. The
environmental conditions of the two production sites are very similar, because they are very
close to each other. The examination of the phenological process of apricot cultivars was
carried out in parallel at both plantations in 2004, 2005, and 2006. No significant difference
was found between the two production sites in these processes [34]. The beginning and
end of the blooming of cultivars occurred on the same days at both sites. Data evaluated in
this paper are from Szigetcsép between September 1994 and April 2006, and from Soroksár
from September 2006 to April 2020. The training system at both plantations is compact vase
with 5 × 3 m spacing with Prunus cerasifera seedling rootstocks. In the orchard, integrated
plant protection was applied. In both plantations, six trees per cultivars were available
for testing.

For the model building, we used the daily mean temperatures observed in the synoptic
station of Marczell György main observatory of the Hungarian Meteorological Service
(47◦25′49.2′′ N 19◦06′43.7′′ E) between September 1994 and April 2020. These data were
considered to be good estimations of the daily mean temperature in the apricot planta-
tions, taking into account the close distance between the observatory and experimental
plantations and the low variance of the temperature layer, as well as the flat terrain of the
surrounding area [54].

2.2. The Unified Model

The unified model [43] uses nine parameters (ac, bc, cc, b f , c f , w, k, Ccrit, tc) to estimate
the day of bud burst or the beginning of blooming of woody trees. In what follows, during
the description of the unified model (UM), we use the definition of UM in the sense that it
estimates the beginning of blooming.

The estimated critical amount of accumulated chilling units (Ccrit) necessary to break
the endodormancy and the total accumulated chilling units (Ctot) are defined as follows:

t1

∑
t0

1

1 + eac(T−cc)
2+bc(T−cc)

, (1)

Ctot =
tc

∑
t0

1

1 + eac(T−cc)
2+bc(T−cc)

, (2)

where ac and bc are estimated weight parameters, cc is the estimated parameter of the
maximum point, T is the daily mean temperature, t0 is a fix date (1st of September), t1
is the beginning of ecodormancy (beginning of the forcing period), and the estimated
parameter tc is the last day of chilling unit accumulation.

By fixing t0 to 1st of September, we begin our chilling unit accumulation calculations
on this date [43], but this does not constrain the model accuracy, because under Hungarian
environmental conditions, chilling unit accumulation starts much later, mainly around the
end of October [9,55].

The function of the chilling unit accumulation (1) or (2) is a bell-shape curve (Figure 1a)
with its maximum value taken at the temperature that is optimal for the plant for chilling
unit accumulation (cc). This optimal value is usually a positive temperature close to zero.



Diversity 2022, 14, 560 4 of 15Diversity 2022, 14, x FOR PEER REVIEW 4 of 15 
 

 

 
Figure 1. The schematic diagram of the chilling (upper panel: (a)) and forcing (lower panel: (b)) unit 
accumulation depending on the daily mean temperature for ’Ceglédi bíborkajszi’, ’Gönci magyar 
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ship [56]. This relationship expresses that a higher amount of chilling units means a lower 
amount of forcing units is needed to set the beginning of blooming off, which was proven 
experimentally [57–61]. 

Figure 1. The schematic diagram of the chilling (upper panel: (a)) and forcing (lower panel: (b)) unit
accumulation depending on the daily mean temperature for ‘Ceglédi bíborkajszi’, ‘Gönci magyar
kajszi’, and ‘Rózsakajszi C.1406’.

The estimated critical amount of forcing units (Fcrit) necessary to stimulate the bud
burst is calculated as follows:

Ftot =
t2

∑
t1

1

1 + eb f (T−c f )
, (3)

Fcrit = wekCtot , (4)

where b f is an estimated weight parameter, c f is an estimated parameter of the inflexion
point of the function, T is the daily mean temperature, t1 is the beginning of ecodormancy
(beginning of the forcing period), t2 is the day of the beginning of blooming, w > 0 is an
estimated weight parameter, and k < 0 is an estimated parameter of the relation of Fcrit
and the total amount of chilling units Ctot. The beginning of blooming is set off when
Ftot ≥ Fcrit. Considering Equation (4), it is obvious that Fcrit and Ctot are in a negative
relationship [56]. This relationship expresses that a higher amount of chilling units means a
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lower amount of forcing units is needed to set the beginning of blooming off, which was
proven experimentally [57–61].

The function of the forcing unit accumulation (3) is an S-shape curve (Figure 1b),
expressing the higher and higher forcing effect of warming temperatures.

We applied two simplifications to Chuine’s unified model, because the high number
of parameters can complicate the optimization, often impairing the accuracy of the esti-
mate [62–64]. Moreover, there is a high probability that the underlying biological content
disappears during optimization [7,65]. The simplifications are as follows:

(1) According to Caffarra and Eccel [7], bc can be set to 0, so we described the c accumu-
lation in the endodormancy with the following equation:

C′∗(T) = ∑
2

1 + eac(T−cc)
2 . (5)

(2) It does not strongly constrain the model accuracy if we assume that the chilling unit
accumulation ends at the beginning of ecodormancy (tc = t1), [43]. We defined this
day as the one when the string stage occurs [66,67]. The observed string stage data
were available from the data base of the examined apricot cultivars in the time period
1994–2020. Assuming tc = t1, it follows that Ccrit = Ctot. In our study, t2 is the day of
the beginning of blooming.

We had six parameters left to estimate (ac, cc, b f , c f , w, k). Based on the literature, we
chose a particularly large parameter space for the first runs [7–9,43,63,64]. The limits of this
parameter space are shown in Table 1. Since k is a negative number very close to zero, we
performed the optimization for kexp according to the following equation:

k = −10−kexp . (6)

Table 1. The boundaries of the parameter space and the step length 1 used for the first estimation.

Parameter Minimum Value Maximum Value Step Length

ac 0 10 0.01
cc −50 50 0.10
cc −10 0 0.01
b f −30 30 0.10
c f 0 200 0.10
w 2 9 0.01

1 These are not fixed step lengths: the σ parameter of the Gaussian distribution was used to select the step length.

2.3. Parameter Estimation with the Simulated Annealing Method

We used the simulated annealing method to estimate the parameters [51,52]. During the
simulated annealing calculation process, we searched for the optimal six-dimensional pa-
rameter vector, which results in the best-fit to the measured blooming data set. The goodness-
of-fit was defined as the root-mean-square error (RMSE) between the estimated and ob-
served data. This measure was minimized within the boundaries of the parameter space. To
achieve this, we started a random walk process within the chosen allowed parameter space
(Table 1). The starting coordinates were randomized according to a uniform distribution
defined between the boundaries of the individual parameters.

At the beginning of the random walk, we set a so-called ‘temperature’ parameter T∗ to
its starting value Tstart, defined as the goodness-of-fit at the starting point. In each random
walking step, the temperature parameter T∗ was lowered (‘cooled’) by a factor of 1− Tstep,
where Tstep = 0.001. The ‘cooling’ process was performed from Tstart to Tcrit = 0.01·Tstart,
so the random walk was finished when T∗ ≤ Tcrit.

At the beginning of each walk, we randomly chose a parameter to modify (i.e., the
axis along which to step with optimization by ‘cooling’), and a step length from a Gaussian
distribution with zero mean and σ deviation (σ was fixed, Table 1). If a step moved out
from the interval of allowed parameters, we stepped towards the opposite direction along



Diversity 2022, 14, 560 6 of 15

the axis of the same parameter. Note that in some exceptional cases when this opposite step
also moved out from the boundaries (i.e., the step length was too large), we terminated the
whole fitting process, and sent an error message.

A step is accepted with a probability 1 if the measure of goodness-of-fit is smaller

than it was previously, and it is accepted by a probability of p = e−
Di f f
T∗ if the measure

is larger than before. Here, Di f f is the absolute difference between the old and the new
goodness-of-fit measure. One can see that as T∗ decreases in every step, the same Di f f
results in a decreasing probability of the new position being accepted. This step acceptance
algorithm ensured that the optimization is not stuck in local minima [53]. As a result of
one optimization run (a ‘walk’), we obtain the best-fitting vector of six parameters and the
corresponding root-mean-square error (RMSE) value. Altogether, we performed 10,000
simulated annealing walks per cultivar to estimate the parameter vectors of the three
apricot cultivars.

We used the MATLAB program system, Microsoft Excel (version: 2015), and Microsoft
paint.net 4.2.15 software for our calculations and representations of our results.

3. Results

In reporting our results of 10,000 random walks to estimate the parameters of the three
cultivars, we use the following notations for the cultivars: ‘Ceglédi bíborkajszi’ as ‘cb’,
‘Gönci magyar kajszi’ as ‘gm’, and ‘Rózsakajszi’ as ‘ro’.

In what follows, we lead the reader through the optimizing procedure in eight steps.

1. First, we observe that for each apricot cultivar, the forcing parameters c f and w are
strongly related, although not linearly (see the upper panel in Figure 2). Therefore,
these two parameters cannot be optimized independently. Using the empirical rela-
tionship between c f and w obtained from the optimization process, we calculate the
optimal values of c f for all fixed values of w;
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dom walk optimization processes. (We obtained similar diagrams for ‘Gönci magyar kajszi’ and
‘Rózsakajszi C.1406’).



Diversity 2022, 14, 560 7 of 15

2. Based on the resulted parameter vectors of all walks, we plot the histogram of the op-
timal parameter values of w (see the lower panel in Figure 2). We see that the optimal
parameter values of w are dense mainly around three or four small to high values;
more exactly, around one small, two medium, and one high value for ‘Rózsakajszi
C.1406’, while around one small, one medium, and one high value for the other two
cultivars. We immediately exclude the high values, because we obtained C f values
in those cases between −10 ◦C and −30 ◦C, which are unlikely during the forcing
period in Hungary [9,68];

3. The results of most walks are dense around the small value for each apricot cultivar,
and we obtained the lowest RMSE values here, too. So, we fix the parameter value
w at the median of the preferred range of ‘small’ optimal parameters w: wcb = 15.6,
wgm = 17.9, wro = 19.4;

4. As a next step, we narrow the parameter space according to the biologically possible
parameter values for Hungary (Table 2) [7,9,65,69,70]. In the original parameter space,
we find several similarly good parameter vectors, that fit statistically very well to the
observed blooming dates, but they are biologically impossible.

Table 2. The boundaries of the parameter space and the step length1 for the second estimation.

Parameter Minimum Value Maximum Value Step Length

ac 0.2 1.0 0.001
cc 1 5 0.005
b f −0.9 −0.1 0.001
c f 6 14 0.010

kexp 2 6 0.005

With the aim of finding biologically realistic optimal parameter vectors [68], we started
another 10,000 walks for each cultivar, applying the fixed parameters wcb, wgm, and wro.
As a result, we obtained 10,000 limit vectors of the six parameters that the optimization
converged to. In order to visualize this result, we created fifteen histograms (for five
parameters of the three cultivars based on 10,000 limit values, not shown) to find the local
optimum parameter values. To detect the significantly more frequent limit values, we
divided the histograms into one hundred bins, because it is the square root of the amount of
the limit parameter values. Thus, in the random case, an average of one hundred data points
falls in each bin (µ = 100). Unsurprisingly, this happened with natural fluctuation following
a Poisson distribution. Having such a large number of limit points, the Poisson distribution
could be approximated by the Gaussian distribution with standard deviation σ =

√
µ = 10.

Focusing on a histogram, we define the limit point frequency in a bin as significantly
high if it is above the value µ + 3σ = 130. From the optimized 15 parameters, in seven
cases, namely for ccb

f , kcb
exp, agm

c , cgm
c , cgm

f , aro
c , and cro

f , we obtain one or more significantly

frequented bins next to each other. In another six cases, namely for the parameters bcb
f ,

bgm
f , kgm

exp, cro
c , bro

f , and kro
exp, there are more non-adjacent significantly frequented bins. In

the remaining two cases (acb
c , ccb

c ), we do not obtain any bin with at least 130 data points,
but there are several bins with more than µ + 2σ = 120 optimized parameter values. We
define the local optima of the parameters as the medians of the significantly frequented
bins. In the case of non-adjacent significant bins, we searched for the local optimum of the
parameter in the bin with the largest number of optimized values (Table 3).
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Table 3. Characterization of the local optimum parameter vectors of the unified model: the minimum and maximum values of the bins with significantly higher
number of optimized limit values (optimum bins), the number of the limits in them, the median and the standard deviation, together with the maximum, the median,
and standard deviation of the RMSE. The values belonging to the cultivars ‘Ceglédi bíborkajszi’, ‘Gönci magyar kajszi’, and ‘Rózsakajszi C.1406’ are denoted by the
superscripts ‘cb’, ‘gm’, and ‘ro’ respectively.

acb
c ccb

c bcb
f ccb

f kcb
exp agm

c cgm
c bgm

f cgm
f kgm

exp aro
c cro

c bro
f cro

f kro
exp

Minimum 0.568 1.400 −0.436 7.600 2.080 0.248 3.160 −0.420 7.280 2.040 0.312 2.640 −0.556 7.360 2.040
Maximum 0.576 1.440 −0.428 9.280 2.480 0.256 3.200 −0.380 9.040 2.400 0.320 2.720 −0.484 8.560 2.600

No. of items 128 129 156 7480 1592 143 138 735 7950 1680 132 270 1318 7180 2210
Median 0.572 1.420 −0.432 8.210 2.260 0.252 3.180 −0.400 7.880 2.220 0.316 2.680 −0.520 7.710 2.310

St. deviation 0.002 0.010 0.002 0.420 0.110 0.002 0.010 0.011 0.430 0.100 0.002 0.020 0.021 0.310 0.160
Maximum RMSE 4.40 4.17 3.40 4.60 4.39 5.04 4.66 4.58 7.18 4.68 4.78 5.63 4.62 5.78 5.05

Median RMSE 2.92 2.94 2.84 2.86 2.66 2.82 2.81 2.79 2.81 2.49 2.47 2.38 2.41 2.41 2.15
St. dev. RMSE 0.33 0.33 0.18 0.21 0.31 0.49 0.43 0.27 0.25 0.33 0.57 0.63 0.31 0.31 0.50
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5. Then, we searched for the global optimum of the parameter space for each apricot
cultivar. We define the global optimum parameter vector as the parameter vector
with the lowest root-mean-square error (RMSE) among the grid of values of Table 4.
It is seen that, in many cases (acb

c , ccb
c , bcb

f , agm
c , cgm

c , bgm
f , aro

c , cro
c , bro

f , and cro
f ), the

global optimal parameter values do not fall in the local optimum bins. This is most
surprising for the parameter cro

f , where more than 70% of the walk limits fall in the
local optimal bin, but the global optimum parameter value does not;

Table 4. The values of the global optimum parameter vectors of the unified model and the corre-
sponding RMSE values for ‘Ceglédi bíborkajszi’, ‘Gönci magyar kajszi’, and ‘Rózsakajszi C.1406’.

Parameter ‘Ceglédi bíborkajszi’ ‘Gönci magyar kajszi’ ‘Rózsakajszi C.1406’

ac 0.949 0.216 0.608
cc 1.50 2.13 2.42
b f −0.626 −0.443 −0.365
c f 8.30 9.04 8.84
w 15.60 17.90 19.40

kexp (k) 2.14 (−0.0072) 2.08 (−0.0083) 2.07 (−0.0086)
tc = t1 14th of January 22nd of January 30th of January

t2 27th of March 29th of March 1st of April
Ccrit = Ctot 12.73 29.78 19.69

Fcrit 14.24 13.99 16.41
Ftot 14.57 14.31 16.82

RMSE 2.37 2.10 1.49

6. Using the global optimum parameter vector, we estimated the blooming date for each
apricot cultivar with an average error less than 2.5 days (RMSE < 2.5). For comparison,
if we take the mean blooming data calculated over all the years as a constant [64],
the average error of the estimation (i.e., the error of the base model) is as high as
9.7–10.6 days, depending on cultivars;

7. Finally, based on the daily average temperature and the global optimal parameter
vectors, we calculated the critical amount of chilling and forcing units, and deter-
mined the chilling and forcing process for each cultivar in the period 1994–2020
(Figures 1 and 3). We provide the parameter values that are optimized with the simu-
lated annealing method, applying the unified model and the observed string stage
and blooming data of years 1994–2000 (Table 4). The temperature that is optimal
for the plant for chilling unit accumulation (cc) is 1.50 ◦C for ‘Ceglédi bíborkajszi’,
2.13 ◦C for ‘Gönci magyar kajszi’, and 2.42 ◦C for ‘Rózsakajszi C.1406’ in the period
1994–2020. According to our calculations, the most chilling units (Ccrit = 29.8 units)
are necessary for ‘Gönci magyar kajszi’, and the least chilling units (Ccrit = 12.7 units)
are required by ‘Ceglédi bíborkajszi’ for breaking the endodormancy (Table 4). The
inflection point of the forcing unit accumulation (i.e., c f ) is between 8.30 and 9.04 ◦C,
depending on the cultivars. This curve has no maximum point, but the forcing unit
accumulation is close to the maximum (1 unit) at 12–15 ◦C (more than 0.9 units) that
could be considered as ‘optimal temperature’ for the plant in their preparation for
blooming. The average accumulated forcing units for the blooming are between 14.0
and 16.4 units for each cultivar in the period 1994–2020 (Table 4). Surprisingly, the ab-
solute value of parameter k of our results is larger than is reported in the publications
of other researchers (i.e., in between −10−4 and −10−8) [8,9,43,64]. This may lead to a
conclusion that, in the case of Hungarian apricots, the chilling unit accumulation has
a relatively larger effect on forcing unit accumulation.
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Figure 3. The annual chilling (blue curves) and forcing unit (orange curves) accumulation in the time
period September 1994–April 2020 (highlighted: September 2014–April 2015 as a ‘pattern period’:
this period has the lowest RMSE compared to the chilling units calculated from the mean daily
temperatures of the twenty-six studied periods, i.e., the results of the year that can be considered as
the most similar one to the ‘average year’) for ‘Ceglédi bíborkajszi’ (a), ‘Gönci magyar kajszi’ (b), and
‘Rózsakajszi C.1406’ (c).

Note that though the change in the observed and estimated blooming start is not
proven as significant in the past 26 years, the slopes of their trends are all negative, below
−0.2 (Table 5). Since the slopes of the parameters Fcrit, Ccrit = Ctot, and Ftot are almost
equal to zero, i.e., they seem to not be changing with time as the blooming start does,
our model can be directly applied in climate change impact studies as well. While the
unsatisfactory or slowed down chilling unit accumulation delays the blooming start, the
warming temperatures speed up the forcing accumulation. This complex relation with
opposite directions can be simulated by our model.
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Table 5. The mean, standard deviation (StDev), range, lower and upper 95% confidence limits (LCI,
UCI) of the observed and estimated blooming start (BM), and the parameters of the unified model
Fcrit, Ccrit = Ctot, and Ftot, together with their slope in the measured 26 years (1994–2020) with their
corresponding significance levels (p)of the varieties ‘Ceglédi bíborkajszi’, ‘Gönci magyar kajszi’, and
‘Rózsakajszi C.1406’.

Observed BM Estimated BM Fcrit Ccrit=Ctot Ftot

C
eg

lé
di

bí
bo

rk
aj

sz
i Mean 207.9 208.4 14.2 12.7 14.6

StDev 10.8 12.1 0.4 3.8 0.5
Range 48.0 51.0 1.5 14.8 1.7

LCI 203.8 203.7 14.1 11.3 14.4
UCI 212.1 213.1 14.4 14.2 14.7

Slope −0.224 −0.219 0.004 −0.041 −0.001
p 0.438 0.500 0.696 0.686 0.933

G
ön

ci
m

ag
ya

r
ka

js
zi Mean 210.3 210.2 14.0 29.8 14.3

StDev 10.6 11.2 0.8 6.5 0.8
Range 46.0 47.0 2.6 22.3 2.8

LCI 206.2 205.9 13.7 27.3 14.0
UCI 214.3 214.5 14.3 32.3 14.6

Slope −0.283 −0.213 0.001 −0.005 −0.003
p 0.316 0.479 0.978 0.977 0.881

R
óz

sa
ka

js
zi

C
.1

40
6 Mean 212.9 212.8 16.4 19.7 16.8

StDev 10.0 10.2 0.7 4.7 0.7
Range 41.0 40.0 2.6 18.9 3.2

LCI 209.0 208.9 16.2 17.9 16.5
UCI 216.7 216.7 16.7 21.5 17.1

Slope −0.305 −0.257 −0.001 0.012 0.003
p 0.252 0.344 0.933 0.925 0.880

4. Discussion and Conclusions

Phenology models play an important role in planning agricultural practice [3–5], and
also in research of phenological changes in plants caused by climate change [6–9]. In our
work, we fit Chuine’s unified model [43] to the blooming data sets of three apricot cultivars
(‘Ceglédi bíborkajszi’, ‘Gönci magyar kajszi’, and ‘Rózsakajszi C.1406’) in Hungary in time
period 1994–2020. Szalay et al. [34] analyzed the same data sets in the period 1994–2018.
They observe a shift in string stage of ca. 0.5 days/year later, and in the beginning of
blooming of ca. 0.125 days/year earlier. They explained this change by the warming
climate in the recent decades in Hungary [71]. The chilling units accumulate more slowly
in mild winters, which delays the phenological phases in dormancy [72,73]. On the other
hand, the warmer spring causes an earlier beginning of blooming [31].

Due to the higher winter temperatures, and the inhibitory effect on chilling unit
accumulation, the phenology models that consider only forcing unit accumulation are
no longer suitable for estimating the beginning of bud burst and blooming [74–77]. That
is why we chose the unified model [43], which contains both chilling and forcing unit
accumulation. For the estimation of the parameters, we used the simulated annealing
method [51,52], which avoids the problem of getting stuck in local minima.

We reduced the nine-parameter model to a six-parameter model with two simplifi-
cations [7,43], thus, we could accelerate the parameter estimation [63,64]. We show that
there is a strong, non-linear relationship between the parameters c f and w. After obtaining
a great number of parameters from our random walk optimization, using the histograms
of the limit parameters, we defined the local optimum parameter values as the median
of the bins with a significantly high number of limits that the optimization converged
to. Finally, we defined the global optimum parameter vector as the one with the lowest
root-mean-square error (RMSE). It is an interesting result that two-thirds of the global
optimum parameter values do not fall into the local optimum parameter bins.
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We estimated the beginning of blooming during the period of 1994–2020, using the
global optimum parameter vector with an RMSE of less than 2.5 days, which can be consid-
ered as a good estimation compared to the results of several papers (2.6–5.6; [8,9,68,78]).

In our calculations, the maximum of the chilling unit accumulation is between 1.50
and 2.42 ◦C, depending on the cultivars. The inflection point of the forcing unit accumu-
lation curve is between 8.30 and 9.04 ◦C, while the forcing unit accumulation is almost
maximal (more than 0.9 units) between 12 ◦C and 15 ◦C, depending on the cultivars. Other
research [68,79,80] determined the maximum of the chilling and forcing unit accumulation
for European fruit trees at temperatures that are slightly higher: around 5 ◦C and around
25 ◦C, respectively. But there may be differences in response to temperature even within
populations of a given species [81]. Thus, it is possible that the results of various studies
cover a relatively wide range of chilling and forcing unit requirement values. The maximum
of chilling unit accumulation is found between −28 ◦C and 9 ◦C for Quercus mongolica [63]
and Taxus baccata [43], respectively, and the inflection point of forcing unit accumulation is
shown to be between −14.5 ◦C and 16 ◦C in the case of Olea europaca [43] and Vitis vinifera
L. [7], respectively. In the case of extreme negative values, the limit is probably statistically
the best parameter vector, but biologically it may be incorrect or hardly interpretable [68].
In the case of mechanistic phenology models, however, the biological representativeness
is essential.

In some cases (when parameter k is around −10−7 or more), a simplification can be
applied with k = 0 and w = Fcrit. But, in view of our research, this simplification is not
justified, because the absolute value of parameter k is larger (between−0.0072 and−0.0086)
than it is in publications of other researchers (−10−8–−10−4) [8,9,43,64]. It can mean that,
in the case of Hungarian apricots, the chilling unit accumulation has a larger effect on
forcing unit accumulation.

With our adapted Chuine’s unified model, in the future we can provide a more accurate
estimation for the blooming time of the apricot varieties in the studied area. Therefore, the
preparation for frost-hazardous conditions can become notably more effective. Since the
blooming times of apricot varieties in Hungary are quite close to each other [21], and the
climatic conditions of apricot growing areas are also very similar [82], our results can easily
be adapted to other Hungarian varieties and regions.

Making estimations for the future using climate model data requires other prelim-
inary studies, because the extension of the phenological models for the future may be
questionable [7,9,64,68,83,84], though we also can find very promising new results [85,86].
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