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Abstract: Body condition is increasingly used to assess the status of populations and as a proxy
for individual fitness. A common, quick and non-invasive approach is to estimate condition from
the relation between body length and mass. Among the methods developed for this purpose, the
Scaled Mass Index (SMI) appears best suited for comparisons among populations. We assembled
data from 17 populations of European green toads (Bufotes viridis) with the aim of devising a standard
formula applicable for monitoring this species. The mean value of the exponents describing length–
mass allometry in these samples was 3.0047. Hence, we propose using 3 as a scaling coefficient for
calculating the SMI in green toads. From the contrast of SMI values for both sexes within populations,
estimated with either the population-specific or the standard coefficient, we conclude that applying
the standard formula not only facilitates comparisons among populations but may also help to avoid
misinterpretation of variation within populations.

Keywords: amphibia; biometry; conservation; life history; population ecology

1. Introduction

The body condition has received increasing attention in amphibian ecology, especially
in the context of conservation. It can be defined as the nutritional state or amount of energy
stores of an animal and is often regarded as a measure or proxy of fitness [1]. For instance,
body conditions can be used to measure environmental as well as anthropogenic effects on
amphibian individuals and populations and might be used to detect species declines and
habitat needs [2–4]. Assessing the condition from the relation of body mass to a measure of
body length, usually snout-vent length in anurans, is a quick and non-invasive method.
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Various condition indices have been developed for this purpose [2,5]. We do not intend to
provide a full review of these methods here but focus on a pragmatic approach to allow
comparisons among different populations.

A widely applied approach uses residuals of ordinary least square (OLS) regression of
mass on length [6,7]. For our aim, this residual index is out of question, as its values only
make sense within the context of a certain dataset and would not allow a population com-
parison between two publications. In recent years, the scaled mass index (SMI) proposed
by Peig and Green [5,8] has been increasingly employed in amphibian ecology. Following
the feeding trials by MacCracken and Stebbings [9] it was utilized in a variety of studies,
both in the field and in experimental settings [10–14].

One advantage of SMI is that the values can readily be compared among different
populations of the same species [8]. To fully realize this advantage, however, researchers
have to use the same formula with identical parameters for calculating the index. It seems
to be common practice now that, for each project, reference lengths and scaling exponents
for computing the SMI are newly determined. Thus, comparisons between results would
require further tedious calculations, possibly only if scaling exponents and reference lengths
were reported in all publications.

Here, we assemble and analyze data from 17 populations of European green toads,
Bufotes viridis, to underpin a proposal for a unified approach to measuring body condition.
We stipulate a reference length and explore the effects of varying the scaling exponent on
the results of comparisons between sexes. We conclude that using a standard exponent not
only facilitates comparisons of results among different studies but may also help to avoid
misinterpretation of variation within populations.

2. Materials and Methods
2.1. Study Species

The green toad Bufotes viridis (Laurenti, 1768) is widespread in central, eastern and
southern Europe and reaches southernmost Scandinavia. It has been characterized as a
‘typical inhabitant of cultivated steppes, avoiding wood complexes’ [15], and is regarded as
a pioneer species breeding in temporary water bodies that it can colonize rapidly. Owing
to its synanthropic occurrence, this species is strongly affected by changes in land use; its
high mobility makes it particularly susceptible to road-kills [16,17]. There are noticeable
local declines, for instance, in Cologne, where the green toad populations decreased rapidly
in the matter of a decade [18]. Despite the fact that green toads could be observed in the
centers of many cities, Polish urban populations also face strong declines [19–21].

The taxonomy of this group has been unstable, partly due to widespread cytonuclear
discordance. Dufresnes et al. [22] clarified the relationships among the major lineages, but
the species rank of several taxa is still disputed. Speybroek et al. [23] suggested treating
balearicus from the Apennine peninsula and Western Mediterranean islands and sitibundus
as subspecies of B. viridis rather than distinct species. Range boundaries between B. v. viridis
and its eastern neighbor, B. v. sitibundus, are currently not well defined. Our sampling is
somewhat biased toward north-western populations, but covers a considerable extent of
latitude, longitude and altitude in the distribution of B. viridis.

2.2. Data Acquisition

Data were provided by the co-authors, originating from several different green toad
monitoring projects (Figure 1). Toads were caught at or close to the breeding site, weighed,
measured (snout-vent-length, SVL) and in the majority of studies sexed by external charac-
teristics (i.e., nuptial pad). Only sites with data from at least 12 animals were included in
the analysis.
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Figure 1. Locations of green toad populations in Europe included in this study.

For details of the methods, see the studies at Urmitz [24], Donaufeld [25], Hochries-
gebiet [26,27], Fehmarn [28], Jesenwang [29] and Riem [30]. Investigations in Bednar Park,
Seewinkel and Simmering followed the same protocol as Sistani et al. [25], protocols for Bulgar-
ian studies (Plovdiv and Galabovo) were described in Zhelev et al. [31], the Warsaw dataset
followed Mazgajska and Mazgajski [32]. For surveys in the Cologne area (sites 3 to 7, Figure 1),
length was measured with sliding calipers (precision: 2.54/325.12 cm ± 0.05 mm) and mass
was measured with a lab scale (precision 200/0.01 g). Individuals were photographed to
determine recaptures.

2.3. Statistical Analysis

All analyses and figures were prepared using R [33]. The general approach of this
index is to calculate mi = m* (L0/L)b, where mi is the (scaled) mass index (SMI), m is
the individual mass, L0 is a reference (often “mean”) snout vent length (SVL), L is the
individual’s SVL, and b is a coefficient. We followed the method described by Peig and
Green [8] for calculating b using the coefficient of the standardized major axis from a linear
model including the natural logarithm of mass as y and the natural logarithm of length
as x (ln(m)~ln(L)). In contrast to the original paper, which used ordinary least squares
(OLS), we used a robust linear model (rlm function in R); this approach is less sensitive to
outliers ([34], see also Chen-Pan Liao [35] for a comparison). We used a reference length (L0)
of 60 mm throughout. The coefficient b was calculated for each population (n = 17) and then
either used directly to calculate the ‘population-specific’ SMI or used to calculate an average
b for all populations, which was used as the ‘green toad coefficient’ for all individuals.
This overall average b was calculated without weighting based on the sample size, as a
higher number of individuals in one population should not change the mean (instead
reduce random variation). In the case of several measurements for the same individual,
we averaged each individual before calculating the SMI. To further explore the variation
between population-specific and overall b, we calculated the difference between them and
plotted it against the range of SVL variation within each sample. For comparisons between
sexes, we calculated the SMI separately for females and males using the scaling exponents
derived from the entire sample.

Data were summarized using the mean mass, length and SMI indices for each popula-
tion with the according range and standard deviation, respectively. The map was plotted
using the packages rnaturalearth and ggplot2 [36]. Predictions were calculated and plotted
using the ggeffects package [37], scatterplots for each site were plotted using ggplot2 [36]
and the boxplots using ggpubr [38], data points were added using a small random error (‘jit-
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ter’) to reduce overplotting. The elevation data was retrieved using the elevatr package [39]
and the table was created using gt [40].

3. Results

The average b across all studies was 3.0047 and we therefore used 3 as our ‘green
toad coefficient’. The population-specific b varied between 2.042 and 4.198 (Table 1).
The variation around the ‘green toad coefficient’ appeared to decrease with an increasing
range of toad lengths, i.e., including juvenile toads as well as adults (Figure 2). We wrote
an R function (“scaledMassGT”) and example R script that uses the Donaufeld dataset to
showcase how this method is applied (suppl.RCode, Supplementary Materials).

Table 1. Summary table of the results for each population. Shown are the location-specific parameters
and population-specific coefficient, as well as the means and ranges toad measurements. The mean
and standard deviation (SD) of the scaled mass index (SMI) calculated using the population-specific
coefficient (SMI pop. specific), as well as the SMI using the overall coefficient (SMI.gt), are also shown.

Population Latitude Longitude Elevation Sample
Size (n)

Population-
Specific

Coefficient

Length in
mm

(Mean)

Length in
mm

(Range)

Mass in g
(Mean)

Mass in g
(Range)

SMI Pop.
Specific
(Mean)

SMI Pop.
Specific

(SD)

SMI.gt
(Mean)

SMI.gt
(SD)

Fehmarn Island (DE) 54.4518 11.0426 1 19 2.349 73.8 62–95 37.5 27.2–70.6 22.8 1.9 20.0 2.3
Warsaw (PL) 52.2676 21.0008 92 78 3.128 65.7 51–81 29.0 13.7–61.4 21.4 2.8 21.6 2.8

Esser Kieswerke (DE) 51.0113 6.8690 39 12 3.233 62.0 54.8–66.2 21.8 15.7–27.1 19.5 1.5 19.6 1.4
Ginsterpfad (DE) 50.9858 6.9315 42 20 2.763 65.3 58.3–73.6 25.3 19.6–34.2 19.8 2.0 19.5 2.0
Westhoven (DE) 50.9030 7.0106 45 24 2.747 66.2 44.4–82.7 28.9 11.93–66.4 21.0 3.5 20.4 4.1
Porz-Wahn (DE) 50.8631 7.0896 54 23 4.198 65.6 56.1–76.6 25.4 15.9–38.63 17.3 3.2 19.2 3.3

Basell (DE) 50.8591 6.9485 46 33 3.559 63.2 34.6–72.2 21.9 3.95–31.9 17.7 2.6 18.2 2.0
Urmitz (DE) 50.4081 7.5251 66 209 2.973 58.5 41–76 20.2 6.6–64.2 20.7 3.1 20.7 3.1

Donaufeld (AT) 48.2499 16.4196 161 68 2.689 69.8 40–86 41.2 8.5–73.2 27.1 3.7 25.9 3.7
Bednar Park (AT) 48.2258 16.3972 161 178 2.853 58.0 23–78 23.6 1.4–63.4 24.4 3.9 24.4 4.0
Simmering (AT) 48.1690 16.4454 156 840 2.816 61.1 30–84 22.4 3.5–54.56 20.8 3.5 20.7 3.7
Jesenwang (DE) 48.1680 11.1551 556 131 3.522 61.8 48–83 27.5 14–69 24.1 3.2 24.4 3.1

Riem (DE) 48.1336 11.7000 527 110 3.169 27.4 11.25–81 6.8 0.11–65.4 26.8 3.0 22.8 3.4
Seewinkel (AT) 47.7680 16.7866 116 100 2.956 65.6 55–81 30.3 17.5–49.5 22.8 3.2 22.7 3.3

Hochriesgebiet (DE) 47.7465 12.2608 1186 21 2.852 76.6 67–91 47.6 30.5–87.2 23.3 3.3 22.5 3.2
Plovdiv (BG) 42.1573 24.7433 164 61 3.230 67.3 49–79.15 29.6 9–53 21.0 5.1 21.6 5.1

Galabovo (BG) 42.1378 25.8670 96 269 2.042 71.6 61.33–81.12 41.1 30.58–53.22 28.6 2.4 24.3 3.0
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Figure 2. The range of toad lengths for each population plotted against the absolute differences be-
tween the green toad coefficient (overall b) and population-specific coefficient (specific b). Variations
around the mean decreased with a larger length range; above 40 mm (dashed line) variation remained
under 0.5.
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There were no consistent differences between males and females in terms of SMI
across sites, however at some sites females showed slightly higher indices. At one site
(Galabovo, BG), such a difference was present using the population-specific coefficient but
absent when using the green toad coefficient (Figure 3).
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the population-specific coefficient (B) and the green toad coefficient (C). Boxplots show median (bold
line), the 25th and 75th percentiles (lower and upper end of the box), as well as the 0% and 100%
percentiles (lower and upper end of whiskers, excluding outliers). The reference length for SMI
calculations was 60 mm and coefficient b was 2.042 (population-specific SMI) and 3 (green toad SMI).

4. Discussion

Sample-specific estimates of the scaling exponent varied widely, but their average was
3, a value plausible from the first principles. It is also close to the exponents calculated
by Santini et al. [41] for length-mass allometry in Anura (3.098) and Bufonidae (2.914).
Therefore, we propose using 3 as a standard exponent for applying the SMI in Bufotes viridis.
We do not claim that this value is the ‘true’ allometric exponent for all populations, but
we argue that employing this average is a conservative approach. We chose 60 mm as the
reference length because it is a round number in the middle of the overall size range of the
total sample.

SMI can account for ontogenetic allometry and sexual dimorphism [5]. Sexual size
dimorphism was present in our study populations, with females being, on average, longer
and heavier than males (Figure S1). In our measure of condition, the SMI variation in both
sexes was often remarkably similar across populations (Figure S1). In the two samples with
the strongest deviation of population-specific b, Galabovo and Porz-Wahn, SMI values
differed markedly between sexes when applying these exponents, but these differences
nearly disappeared when using the standard exponent (Figure 3 and Figure S1). We infer
that samples with small ranges of size variation, i.e., those consisting only of either adults
or juveniles, seem to be more prone to yielding deviant estimates of the scaling exponent,
failing to represent ontogenetic allometry correctly, than samples spanning a wide range
of body sizes (Figure 2). Measurements of small individuals may be more affected by
‘variation’, because SVL was measured at a constant precision independent of total size, i.e.,
the measurement error was greater in small than in large individuals, if all were measured
with the same accuracy. This measurement error, however, should not affect the slope of
the regression.

For the interpretation of condition values, information about the dynamics of their
variations should be particularly useful [42,43]. Sex ratios were unequal in most of our sam-
ples, owing to the skewed operational sex ratio at breeding sites. Mean SMI values for the
females deviated from those of males in either direction in several populations (Figure S1).
Whether females were captured and weighed before or after spawning probably explains
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many of these differences. With spawn deposition, females abruptly lose mass (about 30%
in an Italian population [44]); the body mass of males may also decrease during breeding
activity, but not so rapidly. In addition to seasonal fluctuations, the degree of stomach
filling may introduce further variation, with large and heavy prey items temporarily raising
body mass readings.

We caution against equating high condition values rashly with good health or high
fitness. In pioneer species breeding in ephemeral water bodies, opportunities for reproduc-
tion often vary greatly among populations and seasons. High condition values probably
testify to good feeding conditions, but they may also indicate a lack of occasions to invest
stored resources in reproduction [45].

We refrained from attempting to analyze large-scale trends in the body condition
of green toads from our results. The dataset appears too small and unbalanced for such
comparisons, and we do not want to preempt conclusions from work that is still in progress.
We hope, however, that our approach, including R implementation, will be useful in the
entire range of our focal species. In comparisons among different studies, interobserver bias
in measurements will inevitably cause some noise in the variation patterns. Nevertheless,
we envisage that a unified approach to assessing body condition will yield important new
insights into life-history variation in green toads.

It appears straightforward to extend this attempt to standardize the reporting of
condition values to other species. We suggest that calculating the average values from
several independent studies to determine the scaling exponent will reduce errors due to
stochasticity. To account for ontogenetic allometry, samples should include both juveniles
and adults.

5. Conclusions

For the analysis of body condition in a single dataset, we expect the results from
applying the SMI or other approaches, such as OLS residuals or the Fulton index, to be
largely equivalent [46]. For comparisons of results among populations and seasons in the
same population, using the SMI with a standard coefficient appears to be the best approach.
In studies monitoring green toads, which are of great concern for conservationists in many
European countries [47], we propose to calculate the SMI with our ‘green toad coefficient’
(with the formula: mi = m × (60/L)3, where mi is the (scaled) mass index (SMI), m is
the individual mass, and L is the SVL in mm). Of course, researchers may have good
reasons to adopt a different exponent if the data indicate another scaling relationship in
their study populations. In any case, we urge all authors applying the SMI to report the
scaling exponent and reference length they used.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/d15010043/s1, Figure S1: Mass versus lengths of toads across all
sites with sex specific data, suppl.RCode: RCode_example.zip.
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