

Article Phylogeny of Serpulidae (Annelida, Polychaeta) Inferred from Morphology and DNA Sequences, with a New Classification

Elena Kupriyanova ^{1,2,*}, Harry A. ten Hove ³ and Greg W. Rouse ^{4,5}

- ¹ Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, NSW 2010, Australia
- ² Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
- ³ Naturalis Biodiversity Centre, P.O. Box 5917, 2300 RA Leiden, The Netherlands
- ⁴ South Australian Museum, North Terrace, Adelaide, SA 5000, Australia
- ⁵ Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA
- * Correspondence: elena.kupriyanova@australian.museum

Abstract: Serpulidae Rafinesque, 1815 is a speciose group of polychaetes that all inhabit calcareous tubes. The family was traditionally subdivided into Serpulinae, Filograninae, and Spirorbinae. Recent phylogenetic analyses have suggested that both Filograninae and Serpulinae are paraphyletic, though with limited sampling. Here we report the first phylogenetic analysis of Serpulidae based on comprehensive sampling of genera (though excluding most spirorbin genera). We include a much-needed revision of serpulid taxonomy based on a phylogenetic hypothesis derived from both morphological and molecular data. We analysed 18S, 28S, histone H3 ribosomal nuclear DNA and cytochrome b (cytb) mitochondrial sequences, combined with morphological data. The proposed new classification includes the re-formulated Serpulinae (with tribes Serpulini and Ficopomatini), Spirorbinae, and Filograninae, with apomorphies highlighted for major taxa.

Keywords: Annelida; Serpulidae; phylogeny; Bayesian analysis; maximum likelihood

Citation: Kupriyanova, E.; ten Hove, H.A.; Rouse, G.W. Phylogeny of Serpulidae (Annelida, Polychaeta) Inferred from Morphology and DNA Sequences, with a New Classification. *Diversity* **2023**, *15*, 398. https:// doi.org/10.3390/d15030398

Academic Editors: Michael Wink, Luc Legal, Ben-Erik Van Wyk and Michel Baguette

Received: 30 December 2022 Revised: 14 February 2023 Accepted: 14 February 2023 Published: 10 March 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1. Introduction

Serpulidae Rafinesque, 1815 is a clade of polychaetes permanently living in calcareous tubes. Recent reviews have assessed Serpulidae as having 506–576 accepted species [1]. A comprehensive review of Sabellida by Capa et al. [2] lists 69 genera of Serpulidae, which includes 48 genera with 374 extant species of Serpulinae *sensu lato* and 23 genera with 188 extant species of Spirorbinae. Over half of the nominal serpulin species belong to four genera: *Hydroides* (105), *Spirobranchus* (42), *Serpula* (26), and *Spiraserpula* (18). Twenty genera are monotypic, some of them being rare and/or found in the deep sea only (e.g., *Bathyditrupa, Chitinopomoides, Microprotula, Vitreotubus, Zibrovermilia*), known only from type material (*Tanturia*) or, at the extreme, known only from a poorly preserved holotype (*Paumotella*). The recent revisionary studies within Serpulidae include morphology-based studies of *Pseudochitinopoma* by Kupriyanova et al. [3] and *Spirodiscus* by Kupriyanova and Ippolitov [4] as well as integrative phylogenetic studies of *Hydroides* by Sun et al. [5] and *Laminatubus* by Rouse and Kupriyanova [6]. There are also several other relevant sources on the biodiversity and taxonomy of Serpulidae [7–25].

Serpulidae is placed within the large annelid clade Sabellida that was initially named by Dales [26] for just Sabellidae and Serpulidae. Sabellida became commonly used in major taxonomic works and though the composition of the group has varied (e.g., Fauchald [27], Pettibone [28], Rouse et al. [1]), Serpulidae and Sabellidae have always been maintained as part of this taxon though views on the membership and relationships within have otherwise varied. Smith [29] argued that Sabellidae was paraphyletic with Serpulidae, being the sister group to Sabellinae. This arrangement was also found by Rousset et al. [30], though with limited taxon sampling. Subsequently, further sampling using nuclear and mitochondrial DNA data also showed sabellid paraphyly and a sister-group relationship between Serpulidae and Fabriciinae (Kupriyanova and Rouse [31]). As a result, Fabriciinae was raised to the family rank, Fabriciidae. Most recently, Tilic et al. [32] found Serpulidae to be closer to Sabellidae than to Fabriciidae, based on phylogenomic data.

Earlier hypotheses about relationships within Serpulidae are reviewed in Kupriyanova et al. [33]. Briefly, Serpulidae was initially divided into the subfamilies Serpulinae Rafinesque, 1815 [34] and Spirorbinae Chamberlin, 1919 [35] until Rioja [36] established the subfamily Filograninae in 1923 and later Ficopomatinae was established by Pillai [37] in 1960. The most drastic proposed revision of Serpulidae by Uchida [38] proposed the creation of 11 subfamilies and numerous new genera based on small (partly presumed) differences in chaetal structure. The phylogenetic trees of Uchida [38] were not based on formal datasets with repeatable analyses and, as a result, his classification has hardly been used by other authors.

Spirorbinae was elevated to Spirorbidae by Pillai [39] in 1970. However, Fitzhugh [40] and then Smith [29] suggested that Spirorbidae were more closely related to Serpulinae than to Filograninae and concluded that maintaining the family Spirorbidae was not justified. An analysis of relationships among spirorbin genera by Macdonald [41] also showed that Spirorbinae were more closely related to Serpulinae than to Filograninae. All analyses of molecular data have demonstrated that Spirorbinae should be treated as a sub-taxon of Serpulidae (Kupriyanova et al. [33]; Lehrke et al. [42]; Kupriyanova and Rouse [31]; Kupriyanova et al. [43]; Kupriyanova and Nishi [44]), which was adopted by Rzhavsky et al. [45].

Ficopomatinae was proposed [37,46] with the diagnosis: "stout teeth in collar chaetae, wingless opercular peduncle, vesicular opercula and geniculate abdominal chaetae". The subfamily was revised by ten Hove and Weerdenburg [47] in 1978 and, as a result, four brackish-water monotypic genera were placed into *Ficopomatus*. More recently, *Ficopomatus talehsapensis* Pillai, 2008 [48] and *Ficopomatus shenzhensis* Li et al., 2012 [49] were added to the genus, while Styan et al. [50] demonstrated that *Ficopomatus enigmaticus* (Fauvel, 1923) [51] in Australia (supposedly its native range) consists of three genetic groups with overlapping ranges, one of which is morphologically distinct from the other two. *Marifugia cavatica* Absolon and Hrabě, 1930 [52], the only freshwater serpulid, has been shown to be a part of a monophyletic *Ficopomatus-Marifugia* clade [43,48], which is treated as Ficopomatinae by some authors [48,49,53].

Both Filograninae and Serpulinae have been problematic from the phylogenetic point of view. When Filograninae was proposed by Rioja [36], he stated that "presence of pinnules on the opercular peduncle indicates that the species included in this subfamily are very primitive, ..., corroborated by a hardly developed operculum". Rioja included *Filograna* and Salmacina that have fin-and-blade special collar chaetae, as well as Apomatus and Protula with simple collar chaetae. He also tentatively included Josephella marenzelleri Caullery and Mesnil, 1896 [54] in Filograninae. Rioja also included Spirodiscus grimaldii (Fauvel, 1909) [55] in the subfamily because of the pinnulated opercular peduncle, even though this species has a well-developed chitinized operculum. Finally, Rioja [36] also mentioned *Protis* as a possible member of the group, with collar chaetae like those of *Filograna* and Salmacina and without an operculum. In her catalogue, Hartman [56] classified Apomatus, Protula, and Spirodiscus as Serpulinae. Fauchald [27] included Filogranula, Filograna, Salmacina, Salmacinopsis, and Spirodiscus in Filograninae, but listed Apomatus, Protis, and Protula as Serpulinae. Neither Hartman [56] nor Fauchald [27] gave any reasoning behind such arrangements. ten Hove [57] was the first to suggest that Filograninae may be paraphyletic and a morphology-based cladistic morphological analysis by Kupriyanova [58] also recovered Filograninae as a grade.

Later molecular phylogenetic studies showed Filograninae to potentially be polyphyletic (Kupriyanova et al. [33]) or at least paraphyletic (Lehrke et al. [42]). Kupriyanova et al. [33] assessed phylogenetic relationships within Serpulidae using both molecular and morphological characters while Lehrke et al. [42] conducted a similar analysis using 18S ribosomal DNA data and fewer terminals. Both studies found Serpulinae to be paraphyletic. Kupriyanova et al. [33] refrained from revising serpulid classification but suggested that Serpulidae needed further comprehensive phylogenetic analyses. Here the phylogenetic relationships within Serpulidae are revisited. We added available and newly obtained molecular sequence data to create a total evidence phylogeny of serpulids based on combined molecular and morphological datasets.

2. Materials and Methods

2.1. Taxa Used in This Study and Morphological Matrix

This study is based on all genera currently included in Serpulidae according to Capa et al. [2] but excluding most Spirorbinae. At least one representative from each genus was used in the analysis. The selection of taxa was based on the availability of fresh material for combined analyses of morphological and molecular data. The type species of a genus could not always be used to score the characters, as material was not available and/or the original description was inadequate. In total, molecular data were available for 93 ingroup terminals from 35 genera (Table 1). Phylogenetic positions of poorly known genera *Bathyditrupa, Chitinopomoides, Microprotula, Neomicrorbis, Omphalopomopsis, Paumotella, Spirodiscus, Tanturia, Vitreotubus,* and *Zibrovermilia* were inferred from morphological data only. Both previously published and new sequences were used. Whether the currently accepted as valid serpulid genera are monophyletic remains unknown, even questionable (e.g., ten Hove and Kupriyanova [59]: 66, 71, 83, 102 on *Neovermilia, Paraprotis, Protula,* and *Vermiliopsis,* respectively, Kupriyanova and Rouse [31]) and the monophyly of each non-monotypic genus with only a single representative included here needs to be assessed in more restricted analyses.

Table 1. Terminals with vouchers and GenBank accession numbers. FMNH–Field Museum of Natural History, Chicago, IL, USA; SIO–Scripps Institution of Oceanography, San Diego, CA, USA; NHMW–Museum of Natural History of Vienna (=Wien), Austria; USNM–United States National Museum, Washington, DC, USA.

Species	Vouchers	28S	18S	Histone H3	Cytochrome b
Apomatus globifer	ZMA V.Pol. 5250	EU195362	EU195378	OQ397982	OQ427448
Apomatus sp.	FMNH 5201	OQ389662	OQ379428	OQ397983	OQ427449
Apomatus voightae	FMNH 6217	OQ389663	GU441856	-	OQ427450
Bathyditrupa hovei	ZMA V.Pol 5325	-	-	-	-
Bathyvermilia eliasoni	FMNH 6189	-	GU441857	-	-
Chitinopoma serrula	SAM E3524	EU195350	DQ317112	OQ397984	-
Chitinopomoides wilsoni	ZMA V.Pol. 3166	-	-	-	-
Crucigera inconstans	SAM E3525	EU184071	DQ317113	-	EU190464
Crucigera tricornis	SAM E3587	EU184067	EU184056	-	EU190474
Crucigera zygophora	SAM E3503	DQ242577	DQ242543	EF192929	EU190470
Dasynema chrysogyrus	AM W.45087	OQ397664	OQ379429	-	-
Ditrupa arietina	SAM E3527	EU195351	DQ317114	EF192933	-
Ficopomatus enigmaticus	SAM E3356	EU195373	DQ317115	OQ427487	OQ427451
Ficopomatus macrodon	SAM E3618	EU167535	EU167532	OQ412612	KP863778
Ficopomatus miamiensis	SAM E3617	EU167534	EU167531	OQ397989	KP863779
Filograna implexa	SAM E3528	EU195347	DQ317116	-	OQ427452
Filogranella elatensis	SAM E3661	EU195370	EU195385	-	-
Filogranula stellata	SAM E3606	EU195358	EU195374	OQ397985	-
Floriprotis sabiuraensis	SAM E3659	EU195371	EU195386	-	OQ427453
Floriprotis sabiuraensis	SAM E7192	OQ389665	OQ379430	-	OQ427454
Galeolaria caespitosa	SAM E3529	OQ389666	OQ379431	OQ412631	EU184054
Galeolaria hystrix	SAM E3526	EU256550	DQ314839	OQ397988	EU200441
Helicosiphon biscoeensis	SIO-BIC A4000	OQ392408	OQ379432	OQ412613	-
Hyalopomatus mironovi	SAM E3728	OQ651975	GU063862	MT468421	MT468442
Hydroides elegans	SAM E3616	EU195369	EU195384	OQ412614	OQ427455
Hydroides ezoensis	SAM E3584	EU184077	EU184062	-	OQ427456
Hydroides nikae	SAM E3530	EU184072	DQ317117	-	EU190466
Hydroides minax	SAM E3597	EU184074	EU184063	-	EU190475

Information ZMA VIP-0. 5240 FU194076 FU194076 FU194076 FU194076 Hydroides structurearcia SAM E3601 EU184076 FU184060 OQ397982 EU194073 Joniia findriata AM W2238 OQ359668 OQ3979433 OQ427457 Joniia findriata AM W2238 OQ35967 EU193757 OQ427457 Joniia findriata SAM F331 EU193358 DQ317118 OQ412616 OQ427460 Marfigici anartica SAM F331 EU195352 DQ317119 OQ427460 OQ427460 Merioprotal anortholyton SAM E303 EU195352 DQ317119 OQ427460 OQ427460 Newnitrovitis zurvicus ZMA V701.3905 EU195377 - - - Omphalopomapis indicha SAM E392 EU195363 EU195377 - - Pamprotis durba SAM E3891 EU195374 C - - Pamprotis durba SAM E3858 EU195374 C - - Pamprotis durba SAM E3857 EU193377 -	Species	Vouchers	28S	18S	Histone H3	Cytochrome b
Eighnöles sunctaceracis SAM E3625 EU184076 EU184061	Hydroides pseudouncinata	ZMA V.Pol. 5240	EU184075	DQ140403	-	EU190467
Elyholos EU19406 OQ39902 EU190075 Jania findriata AM W42388 OQ399667 EU194075 - OQ427457 Jania findriata AM W42388 OQ399668 CO379433 - OQ427457 Jania findriata AM W42388 OQ399668 CO379433 - OQ427457 Jania findriata SAM T3531 FU195395 EU19575 - OQ427451 Marfigia caracita SAM T3531 FU195393 EU16733 OQ397990 OQ427461 Mccoprotia ocicalita ZMA VPoL 4046 - - - - Neomicronits azaricus ZMA VPoL 3905 - - - - Amportai foldia ZMA VPoL 3906 - - - - - Amportai foldia ZMA VPoL 3906 -	Hydroides sanctaecrucis	SAM E3625	EU184076	EU184061	-	-
Elybroise luberculata SAM E3296 CO2399667 EU194079 EU19473 Jonia fubrirata AM W288 CO339433 - CO427457 Jesephella marenzelleri SAM E3531 EU195359 EU195375 - CO427458 Jaminatubas advini SAM E3531 EU195332 EU167533 CO379433 CO427469 Martigrigic carsatica SAM E3531 EU195352 DO317118 CO427450 Meargenrilla candhophora SAM E350 EU195363 EU195379 - - Neurocrubits dentrova SAM E350 EU195361 EU195377 - - Paraprotis jangerhansii NHMWAN14552.2054 - - - - Paraprotis jandifano SAM E365 OQ359451 EU195377 - - - Paraprotis jandifano SAM E3585 EU195361 EU195377 - - - - - - - - - - - - - - - - - - -	Hydroides trivesiculosa	SAM E3601	EU184073	EU184060	OQ397992	EU190476
Initia finabriatia AM W-42388 OQ3298688 OQ329433 - OQ427457 Jesephelia marenzelleri SAM E3520 FL195359 FL195375 - OQ427459 Laminatious aloini SAM E3531 FL195355 DQ317118 OQ427461 Marfigie consultations SAM E353 FL195352 DQ317119 - OQ427461 Memorinations acaricus ZMA VPoL 3905 - - - - Neurosmitia globula SAM E3586 FU195361 FU195377 - - Neurosmitia globula SAM E3591 FU195361 FU195377 - - Paraprotis ductina SAM E3581 CQ339434 OQ412629 OQ427462 Paraprotis ductina SAM E3585 FU195361 FU195377 - - Placostegus tridentatus SAM E3586 FU195367 CQ379434 OQ412628 - Ponatostegue actineceras AM W-42378 OQ339670 OQ379434 OQ412628 - Ponatostegue actineceras SAM E3501 FU195362 FU19537	Hydroides tuberculata	SAM E3596	OQ389667	EU184059	-	EU190473
josphela nanenzelleri SAM 123620 EU195375 - OQ427458 Laminatulus adioni SAM 12331 EU195335 EU167533 OQ37118 OQ472469 Metracernilia aunthophora SAM 12331 EU195332 EU167533 EU167533 OQ37990 OQ427460 Microprotula oxicellara ZMA VPoL 4046 - - - - Neoscripting strainedii ZMA VPoL 4046 - - - - Neoscriptis dendrova SAM 13386 EU195363 EU195377 - - - Omphalopomopsis langerhansti NHMVN14552.2054 - - - - Panaprotis putchm SAM E365 OQ397665 OQ379434 OQ412628 - Placostegus straitoritaria SAM E389 FRU195357 - - - Placostegus straitoritaria SAM E389 CQ3397655 OQ379433 OQ412628 - Placostegus straitoritaria SAM E367 CQ389670 OQ379434 OQ412628 - Pontotstegus atellatutas <	Janita fimbriata	AM W.42388	OQ389668	OQ379433	-	OQ427457
Laminatubas alobiti SAM E351 EU19335 DQ317118 OQ427460 Marifigia constrontica SAM E3612 EU16733 EU16733 OQ39790 OQ427461 Mecavernilia aconthophona SAM E353 FU195352 DQ117119 - OQ427461 Mecavernilia aconthophona SAM VPol. 3905 - - - - Neuvernilia globula SAM E356 EU195363 EU195379 - - Paraprotis dendroa SAM E350 EU195361 EU195377 - - - Paraprotis dendroa SAM E3501 EU195361 EU195377 -	Josephella marenzelleri	SAM E3620	EU195359	EU195375	-	OQ427458
Maringia creatica SAM E3612 EU16733 CU3733 CU3733 CU3733 CU3733 CU372461 Meavernita acamthophon SAM E3533 EU195352 DQ317119 - <td>Laminatubus alvini</td> <td>SAM E3531</td> <td>EU195355</td> <td>DQ317118</td> <td>OQ412616</td> <td>OQ427459</td>	Laminatubus alvini	SAM E3531	EU195355	DQ317118	OQ412616	OQ427459
Metinermilia camithophora SAM E353 EU19352 DQ17119 - OQ427401 Microprobia acoriculta ZMA VPol. 4046 - - - - Neonermilia globula SAM E3586 EU195363 EU195379 - - Sprindiscus grinulatii ZMA VPol. 3906 - - - - Omphalopmonosis langerhansii NHMWAN14552054 - - - - Paraprotis dudotoa SAM E3586 CQ339665 OQ379435 OQ412628 - Placostegus ridentatus SAM E3585 EU195361 OQ379437 OQ412628 - Placostegus ridentatus SAM E3587 EU195367 EU195382 - - Pomatostegus scillatus SAM E3607 EU195367 EU193384 OQ412628 - Pontis hydrothermica SAM E3617 EU195367 EU193349 OQ412620 OQ427463 Protis hydrothermica SAM E3667 OQ399470 OQ379439 OQ412626 OQ427464 Protis hydrothermica SAM E3613 <t< td=""><td>Marifugia cavatica</td><td>SAM E3612</td><td>EU167533</td><td>EU167530</td><td>OQ397990</td><td>OQ427460</td></t<>	Marifugia cavatica	SAM E3612	EU167533	EU167530	OQ397990	OQ427460
Microgratula ocicellata ZMA VPOL 4046 · Databatgues actinacus actinas actinacu	Metavermilia acanthophora	SAM E3533	EU195352	DQ317119	-	OQ427461
Neomicrorbis azorizus ZMA VPol. 3905 - - - - Spirodiscus grinulati ZMA VPol. 3906 - - - - Omphalopomopsis langerhansii NHMWAN14552.2054 - - - Paraprotis dundrota SAM E3551 EU195361 EU195377 - - Paraprotis dundrota SAM E3591 OQ379434 OQ411629 OQ427462 Paraprotis dundrota SAM E3585 EU195364 OQ379436 OQ11622 - Placostegus stridentinus SAM E3585 EU195365 OQ379436 OQ14222 - - Pomatostegus stellatus SAM E3577 OQ389670 OQ379437 - - - Protis sp. SAM E3677 OQ389672 OQ379439 OQ412609 OQ427463 Protis spiralis SAM E351 EU195356 DQ317123 E1792934 OQ427466 Protalo bispiralis SAM E3510 DQ242757 DQ2427460 OQ427464 Portal bispiralis SAM E3613 EU195366 EU193537	Microprotula ovicellata	ZMA V.Pol. 4046	-	-	-	-
Neoremilia globula SAM E386 EU195363 EU195379 - - Omphalopomopsis langerhansii XMA VEOL 3906 -	Neomicrorbis azoricus	ZMA V.Pol. 3905	-	-	-	-
Spiradiscus grimulatii ZMA V.Pol. 3906 -	Neovermilia globula	SAM E3586	EU195363	EU195379	-	-
Omphalopomopsis largerhansii NILMWAN14552 2054 - - - - Paraprotis dandrona SAM E3961 FU193377 - - - Paraprotis pulchra SAM E365 OQ389669 OQ379434 OQ412629 OQ427462 Paramotis degradual USNM 19432 - - - - - Placostegus studentarius SAM E3585 EU193364 OQ379435 OQ412622 - Ponatostegus actinaceras AM W42378 OQ389670 OQ379437 - - Pontis hydrothermica SAM E3617 EU193367 EU193382 - - Protis hydrothermica SAM E3617 OQ389671 OQ379439 OQ412609 OQ427461 Protis hydrothermica SAM E361 EU193340 DQ317123 EF192934 OQ427465 Perula tubularia SAM E361 EU193368 EU193383 - OQ427467 Pseudochitinopoma pacinerlatis SAM E3621 EU193360 EU193377 - OQ427467 Pargopolo cienactis S	Spirodiscus grimaldii	ZMA V.Pol. 3906	-	-	-	-
Paraprotis deridrecaSAM E391EU195361EU195377Paraprotis pulchraSAM E3665 $OQ389669$ $OQ379434$ $OQ412629$ $OQ427462$ Paramotella takemoanaUSNM 19432Placostegus sp.SAM E3858 $OQ397665$ $OQ379435$ $OQ412628$ -Placostegus tridentatusSAM E3858EU195364 $OQ379437$ OQ412628-Pomatostegus scillatusSAM E3851EU195366 $OQ379437$ Protis hydrothermicaSAM E3727 $OQ389670$ $OQ379438$ - $OQ427463$ Protis hydrothermicaSAM E3511EU195356 $DQ317122$ Protis hydrothermicaSAM E3657 $OQ389670$ $OQ379439$ $OQ412609$ $OQ427464$ Protula bispiralisSAM E3612EU195349 $DQ317123$ $CQ427465$ $OQ427467$ Pseudochtimopoma occidentatisSAM E3600 $OQ397666$ $OQ379440$ $OQ412627$ $OQ427467$ Pseudochtimopoma occidentatisSAM E3611EU195363 $OQ379441$ $OQ412625$ $OQ427467$ Pseudochtimopoma occidentatisSAM E3628 $OQ389674$ $OQ379442$ $OQ427467$ PseudochtimaSAM E3629 $OQ397667$ $OQ397945$ $OQ427471$ Semizermilia culmbianaSAM E36305 $DQ42757$ $OQ397945$ $OQ427471$ Serpula nocloarbanSAM E36305 $DQ317127$ -EU190469Serpula columbianaSAM E35305 $DQ397667$ $OQ397944$ $OQ397991$ Serpula culmbiana<	Ömphalopomopsis langerhansii	NHMWAN14552.2054	-	-	-	-
Partmotis pulchra SAM E3665 OQ399669 OQ379434 OQ412629 OQ427462 Paumotella takemoana USNM 19432 - <td>Paraprotis dendrova</td> <td>SAM E3591</td> <td>EU195361</td> <td>EU195377</td> <td>-</td> <td>-</td>	Paraprotis dendrova	SAM E3591	EU195361	EU195377	-	-
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Paraprotis pulchra	SAM E3665	OQ389669	OQ379434	OQ412629	OQ427462
$\begin{split} & Placostegus sp. SAM E3589 & OQ397655 & OQ379436 & OQ412628 & - \\ & Placostegus tridentatus & SAM E3585 & EU195364 & OQ379436 & OQ412622 & - \\ & Pomatostegus actinocerns & AM W.42578 & OQ389670 & OQ379437 & - & - \\ & Pomatostegus stellatus & SAM E3607 & EU195367 & EU195382 & - & - \\ & Portis hydrothermica & SAM E3541 & EU195356 & DQ317122 & - & - \\ & Portis hydrothermica & SAM E3541 & EU195356 & DQ379439 & OQ412609 & OQ427464 \\ & Protula tibularia & SAM E3512 & EU195349 & DQ317123 & EF192934 & OQ427465 \\ & Portula tibularia & SAM E3501 & DQ242575 & DQ242542 & OQ412626 & OQ427465 \\ & Pseudochitinopoma accidentalis & SAM E3561 & EU195368 & EU195388 & - & OQ427467 \\ & Pseudochitinopoma pacimentata & SAM E3661 & CQ397666 & OQ379441 & OQ412625 & - \\ & Pyrgopolon ctenactis & SIO-BIC A25451 & OQ389673 & OQ379441 & OQ412625 & - \\ & Pyrgopolon ctenactis & SIO-BIC A25451 & OQ389674 & OQ379441 & OQ412625 & - \\ & Senicermilia nencloggetta & SAM E3621 & EU195366 & EU195376 & OQ397987 & OQ427469 \\ & Salmacina sp. & SAM E3621 & EU195367 & DQ397987 & OQ427469 \\ & Salmacina sp. & SAM E364 & EU195372 & EU195387 & OQ397986 & OQ427472 \\ & Senivermilia ulliptica & SAM E3649 & OQ397667 & OQ389601 & - & & \\ & Eu190468 & Evrpula julcaili & SAM E364 & EU195372 & EU195487 & OQ397986 & OQ427472 \\ & Serpula concharum & ZMA V.Pol. 5245 & EU184066 & DQ140408 & - & EU190469 \\ & Serpula concharum & ZMA V.Pol. 5245 & EU184066 & DQ140408 & - & EU190469 \\ & Serpula concharum & SAM E3593 & EU184079 & DQ317128 & - & & EU190469 \\ & Serpula uschakovi & SAM E3593 & EU184070 & DQ317128 & - & & EU190477 \\ & Serpula vittata & SAM E3594 & EU184079 & DQ317128 & - & & & \\ & Serpula vittata & SAM E3537 & EU184068 & EU195340 & - & & & & \\ & Oq427475 & Spirobranchus akitsushima & ZAA V.Pol. 3201 & EU190478 & & & & & & \\ & Spirobranchus akitsushima & SAM E3538 & EU28647 & OQ379441 & - & & & & & \\ & Oq427475 & Spirobranchus kriausti & AM W.40977 & OQ397668 & MX308673 & OQ412619 & MX308658 \\ & Spirobranchus trinduret & SAM E3548 & EU256546 & DO317121 & & & $	Paumotella takemoana	USNM 19432	-	-	_	_
Placestegues tridentatus SAM E3585 EU195364 OQ379436 OQ412622 - Pomatostegus sellatus SAM E3607 EU195367 EU195382 - - Protis hydrothermica SAM E3541 EU195367 EU195382 - - Protis hydrothermica SAM E3541 EU195366 DQ379438 - OQ427463 Protula bispiralis SAM E3551 OQ389671 OQ379439 OQ412609 OQ427464 Protula tubularia SAM E3561 DQ32757 DQ242542 OQ412620 OQ427464 Pseudochitinopoma occidentalis SAM E3660 OQ397666 OQ379440 OQ412627 OQ427466 Pseudochitinopoma occidentalis SIO-BIC A25451 OQ389673 OQ379441 OQ412627 - Progropion ctenactis SIO-BIC A25451 OQ389673 OQ379442 - OQ427476 Semitormilia annehoggettae SAM E3628 OQ399660 EU195387 OQ397986 OQ427472 Semitormilia tubuatia SAM E3505 DQ242576 DQ317127 - EU190468	<i>Placostegus</i> sp.	SAM E3589	OQ397665	OQ379435	OQ412628	-
Pomatosiegus actinoceras AM W42378 OQ389670 OQ379437 - Pomatosiegus stellatus SAM E3607 EU195356 EU195382 - - Portis hydrothermica SAM E3541 EU195356 DQ317122 - - Protis hydrothermica SAM E357 OQ389671 OQ379438 - OQ427463 Protula hydrothermica SAM E3532 EU195349 DQ317123 EF192934 OQ427466 Pseudochtinopoma parimenta SAM E3600 OQ379469 OQ412627 OQ427467 Pseudochtinopoma parimenta SAM E3613 EU195338 - OQ427467 Pseudochtinopoma parimenta SAM E3621 EU195376 OQ379441 OQ412627 - Rhodopsis pusilla SAM E3621 EU195376 OQ379442 - OQ427470 Semicermilia annehoggettae SAM E3628 OQ389674 OQ379412 - OQ427472 Semicermilia annehoggettae SAM E3626 EU193375 DQ317126 - EU190469 Serpula columbiana SAM E3655 DQ242576	Placostegus tridentatus	SAM E3585	EU195364	OQ379436	OQ412622	-
$\begin{array}{l l l l l l l l l l l l l l l l l l l $	Pomatostegus actinoceras	AM W.42378	OQ389670	OQ379437	-	-
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Pomatostegus stellatus	SAM E3607	EU195367	EU195382	-	-
Protis sp. SAM E3727 $OQ389671$ $OQ379438$ - $OQ422463$ Protula bispiralis SAM E3542 EU195349 $OQ412609$ $OQ422464$ Protula tubularia SAM E3542 EU195349 $OQ412626$ $OQ422465$ Pseudochitinopoma occidentalis SAM E3611 $DQ242575$ $DQ242542$ $OQ412627$ $OQ427466$ Pseudocrimilia occidentalis SAM E3613 EU195368 EU195383 - $OQ427467$ Pseudocrimilia occidentalis SAM E3613 EU195366 CU195376 $OQ397987$ $OQ427467$ Senioremilia aprehosgettae SAM E3621 EU195360 EU195376 $OQ397987$ $OQ427479$ Semitormilia aprehoggettae SAM E3628 $OQ398674$ $OQ3979442$ - $OQ427472$ Semitormilia liptica SAM E3629 $OQ397667$ $OQ3397438$ $OQ397986$ $OQ427472$ Semula columbiana SAM E3536 EU184066 DQ144008 - EU190469 Serpula concharunn ZMA V.Pol. 5245 EU184066 DQ144008 - EU190469 Serpula uschakovi SAM E3537 EU184076 OQ3979791	Protis hydrothermica	SAM E3541	EU195356	DQ317122	-	-
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Protis sp.	SAM E3727	OO389671	OO379438	-	OO427463
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Protula bispiralis	SAM E3657	OQ389672	OQ379439	OQ412609	OQ427464
Pseudochitinopoma occidentalis SAM E3501 DQ242575 DQ242542 OQ412626 OQ427466 Pseudochitinopoma pavimentata SAM E3613 EU195368 EU195376 OQ427467 OQ427467 Pseudocentilia occidentalis SAM E3613 EU195368 EU195376 OQ379411 OQ412625 - Rhodopsis pusilla SAM E3621 EU195360 EU195376 OQ397987 OQ427469 Semicermilia annehoggettae SAM E3621 EU195376 OQ397987 OQ427470 Semicermilia elliptica SAM E3628 OQ397667 OQ317126 - OQ427471 Semicermilia elliptica SAM E3651 DQ242576 DQ317127 - EU190469 Serpula columbiana SAM E3505 DQ242576 DQ317127 - EU190469 Serpula concharum ZMA VPol. 5245 EU184066 DQ140408 - EU190465 Serpula uchosii SAM E3537 EU184067 Q397991 - - Serpula vennicularis SAM E3594 EU184070 DQ317128 - EU190471	Protula tubularia	SAM E3542	EU195349	DQ317123	EF192934	OQ427465
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Pseudochitinopoma occidentalis	SAM E3501	DO242575	DO242542	OO412626	OO427466
Pseudovermilia occidentalisSAM E3613EU195368EU195383-OQ427468Pyrgopolon ctenactisSIO-BIC A25451OQ389673OQ379441OQ412625-Rhodopsis pusillaSAM E3621EU195360EU195376OQ397987OQ427469Salmacina sp.SAM E3499EU25645DQ317126-OQ427470Semicormilia annehoggettaeSAM E3628OQ389674OQ379442-OQ427471Semicormilia ullipticaSAM E3629OQ397667OQ389601Serpula columbianaSAM E3505DQ242576DQ317127-EU190469Serpula concharunZMA V.Pol. 5245EU184069DQ317129-EU190465Serpula uarconensisSIO-BIC A3469OQ389676OQ379443OQ397991-Serpula uarconensisSIO-BIC A3469OQ389676OQ379443OQ397991-Serpula vermicularisSAM E3593EU184078EU184065-EU190477Serpula vermicularisSAM E3594EU184079EU184064-EU190471Spirobranchus aktisushimaZMA V.Pol. 3201EU195366EU195380-OQ427473Spirobranchus corniculatusSAM E3608EU195366EU195380-OQ427472Spirobranchus corniculatusSAM E3538EU26547OQ379446-OQ427473Spirobranchus corniculatusSAM E3588EU256547OQ379446-OQ427474Spirobranchus corniculatusSAM E3538EU26547OQ379446-OQ42747	Pseudochitinopoma pavimentata	SAM E3660	OO397666	OO379440	OO412627	OO427467
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Pseudovermilia occidentalis	SAM E3613	EU195368	EU195383	~ _	OQ427468
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Pyrgopolon ctenactis	SIO-BIC A25451	OQ389673	OQ379441	OQ412625	-
	Rhodopsis pusilla	SAM E3621	EU195360	EU195376	OQ397987	OQ427469
Semivermilia annehoggettaeSAM E3628 $OQ389674$ $OQ379442$ - $OQ427471$ Semivermilia elipticaSAM E3664EU195372EU195387 $OQ397986$ $OQ427472$ Semivermilia lylevailiSAM E3629 $OQ397667$ $OQ389601$ Serpula columbianaSAM E3505 $DQ242776$ $DQ317127$ -EU190469Serpula concharumZMA V.Pol. 5245EU184066 $DQ140408$ -EU190465Serpula iukesiiSAM E3536EU184069 $DQ317129$ -EU190465Serpula narconensisSIO-BIC A3469 $OQ389676$ $OQ379443$ $OQ397991$ -Serpula vachakoviSAM E3537EU184070 $DQ317128$ -EU190477Serpula vachakoviSAM E3593EU184079EU184065-EU190479Serpula vactsoniSAM E3595EU184079EU184064-EU190471Serpula vactsoniSAM E3595EU184068CU379444- $OQ427473$ Spirobranchus akitsushimaZMA V.Pol. 3201EU195365EU195380- $OQ427474$ Spirobranchus corniculatusZMA V.Pol. 5247 $OQ389677$ $OQ379446$ - $OQ427477$ Spirobranchus corniculatusSAM E3508EU195366EU195381- $OQ427477$ Spirobranchus corniculatusSAM E3508EU195367 $OQ379445$ $OQ412624$ $OQ427477$ Spirobranchus kraussiiAM W.49977 $OQ389677$ $OQ379445$ $OQ412619$ MK308658Spirobranchus kraussiiAM E3532EU195353<	Salmacina sp.	SAM E3499	EU256545	DQ317126	-	OQ427470
Semivermilia ellipticaSAM E3664EU195372EU195387OQ397986OQ427472Semivermilia lglevalliSAM E3629OQ397667OQ389601Serpula columbianaSAM E3505DQ242576DQ317127-EU190469Serpula concharumZMA VPol. 5245EU184066DQ140408-EU190468Serpula inconcharumSAM E3536EU184069DQ317129-EU190465Serpula narconensisSIO-BIC A3469OQ389676OQ379443OQ397991-Serpula uschakoviSAM E3537EU184070DQ317128-EU190477Serpula vermicularisSAM E3593EU184070DQ317128-EU190479Serpula vermicularisSAM E3595EU184070DQ317128-EU190471Serpula vermicularisSAM E3595EU184068EU184057-EU190472Spiraberanchus akitsushimaZMA VPO1. 3201EU195365EU195380-OQ427474Spirobranchus corniculatusZMA VPO1. 5247OQ389677OQ379444-OQ427475Spirobranchus corniculatusSAM E3609OQ39968OQ379445OQ412624OQ427477Spirobranchus kraussiiAM W40977OQ389678OQ379445OQ412614OQ427477Spirobranchus kraussiiAM W49977OQ397668MK308673OQ412619MK308658Spirobranchus kraussiiAM W49977OQ397668MK308673OQ412618OQ427478Spirobranchus triqueterSAM E3534EU195348DQ317120OQ427478<	Semivermilia annehoggettae	SAM E3628	OQ389674	OQ379442	-	OQ427471
Semivermilia lylevailiSAM E3629 $OQ397667$ $OQ389601$ -Serpula columbianaSAM E3505 $DQ242576$ $DQ317127$ -EU190469Serpula concharumZMA V.Pol. 5245EU184066 $DQ140408$ -EU190468Serpula jukesiiSAM E3536EU184069 $DQ317129$ -EU190465Serpula narconensisSIO-BIC A3469 $OQ389676$ $OQ379443$ $OQ397991$ -Serpula vachakoviSAM E3593EU184078EU184065-EU190477Serpula vitataSAM E3594EU184079EU184064-EU190479Serpula vitataSAM E3595EU184068EU184057-EU190472Spiraserpula iugoconvexaAM W.42093OQ389680OQ379444-OQ427473Spirobranchus akitsushimaZMA V.Pol. 5247OQ389677OQ379446-OQ427475Spirobranchus corniculatusSAM E3608EU195365EU195381-OQ427476Spirobranchus corniculatusSAM E3538EU26547DQ379445OQ412624OQ427477Spirobranchus kraussiiAM W.49977OQ389679OQ379447-OQ427478Spirobranchus kraussiiAM W.49977OQ389679OQ379447-OQ427478Spirobranchus kraussiiAM W.49977OQ389679OQ379447-OQ427478Spirobranchus kraussiiAM W.49977OQ389679OQ379447-OQ427478Spirobranchus kraussiiAM W.49977OQ389679OQ379447-OQ427478Spir	Semivermilia elliptica	SAM E3664	EU195372	EU195387	OQ397986	OQ427472
Serpula columbianaSAM E3505DQ242576DQ317127-EU190469Serpula concharumZMA V.Pol. 5245EU184066DQ140408-EU190468Serpula jukesiiSAM E3536EU184069DQ317129-EU190465Serpula narconensisSIO-BIC A3469OQ389676OQ379443OQ397991-Serpula uschakoviSAM E3593EU184078EU184065-EU190477Serpula vermicularisSAM E3593EU184070DQ317128-EU190479Serpula vittataSAM E3594EU184079EU184064-EU190471Serpula vittataSAM E3595EU184068EU184057-EU190472Spiraserpula iugoconexaAM W42093OQ389680OQ379444-OQ427473Spirobranchus akitsushimaZMA V.Pol. 3201EU195365EU195380-OQ427475Spirobranchus corniculatusSAM E3608EU195366EU195381-OQ427476Spirobranchus cornautusSAM E3609OQ389678OQ379445OQ412624OQ427477Spirobranchus kraussiiAM W49977OQ389679OQ379447-OQ427478Spirobranchus kraussiiSAM E3532EU195353DQ317120OQ412619MK308658Spirobranchus teniatusSAM E3534EU195348Q379447-OQ427478Spirobranchus teniatusSAM E3534EU195353DQ317120OQ412618OQ427480Spirobranchus teniatusSAM E3534EU195353DQ317120OQ427481 <td>Semivermilia lylevaili</td> <td>SAM E3629</td> <td>OQ397667</td> <td>OQ389601</td> <td>-</td> <td>-</td>	Semivermilia lylevaili	SAM E3629	OQ397667	OQ389601	-	-
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Serpula columbiana	SAM E3505	DQ242576	DQ317127	-	EU190469
Serpula jukesiiSAM E3536EU184069DQ317129-EU190465Serpula narconensisSIO-BIC A3469OQ389676OQ379443OQ397991-Serpula vermicularisSAM E3593EU184078EU184065-EU190477Serpula vitataSAM E3597EU184070DQ317128-EU190479Serpula vitataSAM E3595EU184079EU184064-EU190471Serpula vatsoniSAM E3595EU184068EU184057-EU190472Spiraserpula iugoconvexaAM W.42093OQ389680OQ379444-OQ427473Spirobranchus akitsushimaZMA V.Pol. 3201EU195365EU195380-OQ427474Spirobranchus corniculatusSAM E3608EU195366EU195381-OQ427475Spirobranchus corniculatusSAM E3609OQ389678OQ379445OQ412624OQ427477Spirobranchus kraussiiAM W.49977OQ389679OQ379447-OQ427478Spirobranchus limaSAM E3538EU256547DQ317130EF192930OQ427478Spirobranchus triqueterSAM E3534EU195348DQ317121EF192932OQ427480Spirobranchus triqueterSAM E3534EU195348DQ317121EF192932OQ427483Spirobranchus triqueterSAM E3534EU195348DQ317121EF192932OQ427483Spirobranchus triqueterSAM E3534EU195348DQ317121EF192932OQ427483Spirobranchus triqueterSAM E3543EU256549DQ317131- <td< td=""><td>Serpula concharum</td><td>ZMA V.Pol. 5245</td><td>EU184066</td><td>DQ140408</td><td>-</td><td>EU190468</td></td<>	Serpula concharum	ZMA V.Pol. 5245	EU184066	DQ140408	-	EU190468
Serpula narconensis SIO-BIC A3469 OQ389676 OQ379443 OQ397991 - Serpula uschakovi SAM E3593 EU184078 EU184065 - EU190477 Serpula vermicularis SAM E3537 EU184070 DQ317128 - EU190479 Serpula vittata SAM E3594 EU184079 EU184064 - EU190472 Serpula vittata SAM E3595 EU184068 EU184064 - EU190472 Spirobranchus aktisushima ZMA V.2093 OQ389680 OQ379444 - OQ427473 Spirobranchus aktisushima ZMA V.Pol. 3201 EU195365 EU195380 - OQ427474 Spirobranchus corniculatus ZMA V.Pol. 5247 OQ389678 OQ379446 - OQ427475 Spirobranchus corniculatus SAM E3608 EU195366 EU195381 - OQ427477 Spirobranchus kraussii AM W.49977 OQ397668 MK308673 OQ412619 MK308658 Spirobranchus kraussii AM W.49977 OQ397668 MK308673 OQ412619 MK308658	Serpula jukesii	SAM E3536	EU184069	DQ317129	-	EU190465
Serpula uschakoviSAM E3593EU184078EU184065-EU190477Serpula vermicularisSAM E3537EU184070DQ317128-EU190479Serpula vittataSAM E3594EU184079EU184064-EU190471Serpula vatsoniSAM E3595EU184068EU184057-EU190472Spiraserpula iugoconvexaAM W.42093OQ389680OQ379444-OQ427473Spirobranchus akitsushimaZMA V.Pol. 3201EU195365EU195380-OQ427474Spirobranchus corniculatusZMA V.Pol. 5247OQ389677OQ379446-OQ427475Spirobranchus corniculatusSAM E3608EU195366EU195381-OQ427477Spirobranchus cornatusSAM E3609OQ389678OQ379445OQ412624OQ427477Spirobranchus kinussiiAM W.49977OQ397668MK308673OQ412619MK308658Spirobranchus richardsmithiSAM E3532EU195353DQ317130EF192930OQ427478Spirobranchus taeniatusSAM E3532EU195348DQ317120OQ412618OQ427480Spirobranchus triqueterSAM E3534EU195348DQ317121EF192932OQ427481Tanturia zibrowiiZMA V.Pol. 4668Turbocavus secretusUSNN 251863-OQ379448OQ412611OQ427483Vermiliopsis infundibulumZMA V.Pol. 5248OQ389681DQ140411-OQ427484Vermiliopsis labiataSAM E3543EU256549DQ317131- <t< td=""><td>Serpula narconensis</td><td>SIO-BIC A3469</td><td>OQ389676</td><td>OQ379443</td><td>OQ397991</td><td>-</td></t<>	Serpula narconensis	SIO-BIC A3469	OQ389676	OQ379443	OQ397991	-
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Serpula uschakovi	SAM E3593	EU184078	EU184065	-	EU190477
Serpula vittataSAM E3594EU184079EU184064-EU190471Serpula watsoniSAM E3595EU184068EU184057-EU190472Spiraserpula iugoconvexaAM W.42093OQ389680OQ379444-OQ427473Spirobranchus akitsushimaZMA V.Pol. 3201EU195365EU195380-OQ427474Spirobranchus corniculatusZMA V.Pol. 5247OQ389677OQ379446-OQ427475Spirobranchus corniculatusSAM E3608EU195366EU195381-OQ427476Spirobranchus cornatusSAM E3609OQ389678OQ379445OQ412624OQ427477Spirobranchus kraussiiAM W.49977OQ397668MK308673OQ412619MK308658Spirobranchus limaSAM E3538EU256547DQ317130EF192930OQ427478Spirobranchus taeniatusSAM E3512EU195353DQ317120OQ412618OQ427480Spirobranchus triqueterSAM E3534EU195348DQ317121EF192932OQ427481Tanturia zibrowiiZMA V.Pol. 4668Turbocarous secretusUSNM 251863-OQ379448OQ412611OQ427483Vermiliopsis infundibulumZMA V.Pol. 5248OQ389681DQ140411-OQ427484Vermiliopsis labiataSAM E3533EU256549DQ317131-OQ427485	Serpula vermicularis	SAM E3537	EU184070	DQ317128	-	EU190479
Serpula watsoniSAM E3595EU184068EU184057-EU190472Spiraserpula iugoconvexaAM W.42093OQ389680OQ379444-OQ427473Spirobranchus akitsushimaZMA V.Pol. 3201EU195365EU195380-OQ427474Spirobranchus corniculatusZMA V.Pol. 5247OQ389677OQ379446-OQ427475Spirobranchus corniculatusSAM E3608EU195366EU195381-OQ427476Spirobranchus cornatusSAM E3609OQ389678OQ379445OQ412624OQ427477Spirobranchus kraussiiAM W.49977OQ397668MK308673OQ412619MK308658Spirobranchus kraussiiAM W.49977OQ389679OQ379447-OQ427478Spirobranchus richardsmithiSAM E3538EU256547DQ317130EF192930OQ427478Spirobranchus triqueterSAM E3532EU195353DQ317120OQ412618OQ427480Spirobranchus triqueterSAM E3534EU195348DQ317121EF192932OQ427481Tanturia zibrowiiZMA V.Pol. 4668Turbocavus secretusUSNM 251863-OQ379448OQ412611OQ427483Vermiliopsis infundibulumZMA V.Pol. 5248OQ389681DQ140411-OQ427483Vermiliopsis labiataSAM E3543EU256549DQ317131-OQ427485	Serpula vittata	SAM E3594	EU184079	EU184064	-	EU190471
Spiraserpula iugoconvexaAM W.42093OQ389680OQ379444-OQ427473Spirobranchus akitsushimaZMA V.Pol. 3201EU195365EU195380-OQ427474Spirobranchus corniculatusZMA V.Pol. 5247OQ389677OQ379446-OQ427475Spirobranchus corniculatusSAM E3608EU195366EU195381-OQ427476Spirobranchus coronatusSAM E3609OQ389678OQ379445OQ412624OQ427477Spirobranchus coronatusSAM E3609OQ397668MK308673OQ412619MK308658Spirobranchus kraussiiAM W.49977OQ397668MK308673OQ412619MK308658Spirobranchus limaSAM E3538EU256547DQ317130EF192930OQ427478Spirobranchus richardsmithiSAM E3512EU195353DQ317120OQ412618OQ427480Spirobranchus taeniatusSAM E3534EU195348DQ317121EF192932OQ427481Tanturia zibrowiiZMA V.Pol. 4668Turbocavus secretusUSNM 251863Vermiliopsis infundibulumZMA V.Pol. 5248OQ389681DQ140411-OQ427484Vermiliopsis labiataSAM E3543EU256549DQ317131-OQ427485Vermiliopsis nveidialisSAM E3544EU256546DO317132	Serpula watsoni	SAM E3595	EU184068	EU184057	-	EU190472
Spirobranchus akitsushimaZMA V.Pol. 3201EU195365EU195380-OQ427474Spirobranchus corniculatusZMA V.Pol. 5247OQ389677OQ379446-OQ427475Spirobranchus corniculatusSAM E3608EU195366EU195381-OQ427476Spirobranchus cornatusSAM E3609OQ389678OQ379445OQ412624OQ427477Spirobranchus coronatusSAM E3609OQ397668MK308673OQ412619MK308658Spirobranchus kraussiiAM W.49977OQ397668MK308673OQ412619MK308658Spirobranchus limaSAM E3538EU256547DQ317130EF192930OQ427478Spirobranchus richardsmithiSAM E3610OQ389679OQ379447-OQ427479Spirobranchus taeniatusSAM E3532EU195353DQ317120OQ412618OQ427480Spirobranchus triqueterSAM E3534EU195348DQ317121EF192932OQ427481Tanturia zibrowiiZMA V.Pol. 4668Turbocavus secretusUSNM 251863Vermiliopsis infundibulumZMA V.Pol. 5248OQ389681DQ140411-OQ427483Vermiliopsis labiataSAM E3543EU256549DQ317131-OQ427485Vermiliopsis nyugidialisSAM E3544EU256546DO317132	Spiraserpula iugoconvexa	AM W.42093	OQ389680	OQ379444	-	OQ427473
Spirobranchus corniculatusZMA V.Pol. 5247OQ389677OQ379446-OQ427475Spirobranchus corniculatusSAM E3608EU195366EU195381-OQ427476Spirobranchus coronatusSAM E3609OQ389678OQ379445OQ412624OQ427477Spirobranchus kraussiiAM W.49977OQ397668MK308673OQ412619MK308658Spirobranchus limaSAM E3538EU256547DQ317130EF192930OQ427478Spirobranchus richardsmithiSAM E3610OQ389679OQ379447-OQ427479Spirobranchus taeniatusSAM E3532EU195353DQ317120OQ412618OQ427480Spirobranchus triqueterSAM E3534EU195348DQ317121EF192932OQ427481Tanturia zibrowiiZMA V.Pol. 4668Turbocavus secretusUSNM 251863-OQ379448OQ412611OQ427483Vermiliopsis infundibulumZMA V.Pol. 5248OQ389681DQ140411-OQ427484Vermiliopsis labiataSAM E3543EU256549DQ317131-OQ427485	Spirobranchus akitsushima	ZMA V.Pol. 3201	EU195365	EU195380	-	OQ427474
Spirobranchus corniculatusSAM E3608EU195366EU195381-OQ427476Spirobranchus coronatusSAM E3609OQ389678OQ379445OQ412624OQ427477Spirobranchus kraussiiAM W.49977OQ397668MK308673OQ412619MK308658Spirobranchus limaSAM E3538EU256547DQ317130EF192930OQ427478Spirobranchus richardsmithiSAM E3610OQ389679OQ379447-OQ427479Spirobranchus taeniatusSAM E3532EU195353DQ317120OQ412618OQ427480Spirobranchus triqueterSAM E3534EU195348DQ317121EF192932OQ427481Tanturia zibrowiiZMA V.Pol. 4668Turbocavus secretusUSNM 251863-OQ379448OQ412611OQ427483Vermiliopsis infundibulumZMA V.Pol. 5248OQ389681DQ140411-OQ427485Vermiliopsis labiataSAM E3543EU256549DQ317132	Spirobranchus corniculatus	ZMA V.Pol. 5247	OQ389677	OQ379446	-	OQ427475
Spirobranchus coronatus SAM E3609 OQ389678 OQ379445 OQ412624 OQ427477 Spirobranchus kraussii AM W.49977 OQ397668 MK308673 OQ412619 MK308658 Spirobranchus lima SAM E3538 EU256547 DQ317130 EF192930 OQ427478 Spirobranchus richardsmithi SAM E3610 OQ389679 OQ379447 - OQ427479 Spirobranchus taeniatus SAM E3532 EU195353 DQ317120 OQ412618 OQ427480 Spirobranchus triqueter SAM E3534 EU195348 DQ317121 EF192932 OQ427481 Tanturia zibrowii ZMA V.Pol. 4668 - - - - Turbocavus secretus USNM 251863 - OQ379448 OQ412611 OQ427483 Vermiliopsis infundibulum ZMA V.Pol. 5248 OQ389681 DQ140411 - OQ427484 Vermiliopsis labiata SAM E3543 EU256549 DQ317131 - OQ427485	Spirobranchus corniculatus	SAM E3608	EU195366	EU195381	-	OQ427476
Spirobranchus kraussii AM W.49977 OQ397668 MK308673 OQ412619 MK308658 Spirobranchus lima SAM E3538 EU256547 DQ317130 EF192930 OQ427478 Spirobranchus richardsmithi SAM E3538 EU256547 DQ317130 EF192930 OQ427478 Spirobranchus richardsmithi SAM E3610 OQ389679 OQ379447 - OQ427479 Spirobranchus taeniatus SAM E3532 EU195353 DQ317120 OQ412618 OQ427480 Spirobranchus triqueter SAM E3534 EU195348 DQ317121 EF192932 OQ427481 Tanturia zibrowii ZMA V.Pol. 4668 - - - - Turbocavus secretus USNM 251863 - OQ379448 OQ412611 OQ427483 Vermiliopsis infundibulum ZMA V.Pol. 5248 OQ389681 DQ140411 - OQ427484 Vermiliopsis labiata SAM E3543 EU256549 DQ317131 - OQ427485 Vermiliopsis nyuidialis SAM E3544 EU256546 DO317132 - - <td>Spirobranchus coronatus</td> <td>SAM E3609</td> <td>OQ389678</td> <td>OQ379445</td> <td>OQ412624</td> <td>OQ427477</td>	Spirobranchus coronatus	SAM E3609	OQ389678	OQ379445	OQ412624	OQ427477
Spirobranchus lima SAM E3538 EU256547 DQ317130 EF192930 OQ427478 Spirobranchus richardsmithi SAM E3610 OQ389679 OQ379447 - OQ427479 Spirobranchus taeniatus SAM E3532 EU195353 DQ317120 OQ412618 OQ427480 Spirobranchus triqueter SAM E3534 EU195348 DQ317121 EF192932 OQ427481 Tanturia zibrowii ZMA V.Pol. 4668 - - - - Turbocavus secretus USNM 251863 - OQ379448 OQ412611 OQ427483 Vermiliopsis infundibulum ZMA V.Pol. 5248 OQ389681 DQ140411 - OQ427484 Vermiliopsis labiata SAM E3543 EU256549 DQ317131 - OQ427485 Vermiliopsis nyuidialis SAM E3544 EU256546 DO317132 - -	Spirobranchus kraussii	AM W.49977	OQ397668	MK308673	OQ412619	MK308658
Spirobranchus richardsmithi SAM E3610 OQ389679 OQ379447 - OQ427479 Spirobranchus taeniatus SAM E3532 EU195353 DQ317120 OQ412618 OQ427480 Spirobranchus taeniatus SAM E3532 EU195353 DQ317121 EF192932 OQ427481 Tanturia zibrowii ZMA V.Pol. 4668 - - - - Turbocavus secretus USNM 251863 - OQ379448 OQ412611 OQ427483 Vermiliopsis infundibulum ZMA V.Pol. 5248 OQ389681 DQ140411 - OQ427484 Vermiliopsis labiata SAM E3543 EU256549 DQ317131 - OQ427485 Vermiliopsis nyuidialis SAM E3544 EU256546 DO317132 - -	Spirobranchus lima	SAM E3538	EU256547	DQ317130	EF192930	OQ427478
Spirobranchus taeniatus SAM E3532 EU195353 DQ317120 OQ412618 OQ427480 Spirobranchus triqueter SAM E3534 EU195348 DQ317121 EF192932 OQ427481 Tanturia zibrowii ZMA V.Pol. 4668 - - - - Turbocavus secretus USNM 251863 - OQ379448 OQ412611 OQ427483 Vermiliopsis infundibulum ZMA V.Pol. 5248 OQ389681 DQ140411 - OQ427484 Vermiliopsis labiata SAM E3543 EU256549 DQ317131 - OQ427485 Vermiliopsis nyuidialis SAM E3544 EU256546 DO317132 - -	, Spirobranchus richardsmithi	SAM E3610	OQ389679	OQ379447	-	OQ427479
Spirobranchus triqueter SAM E3534 EU195348 DQ317121 EF192932 OQ427481 Tanturia zibrowii ZMA V.Pol. 4668 - <	Spirobranchus taeniatus	SAM E3532	EU195353	DQ317120	OQ412618	OQ427480
Tanturia zibrowii ZMA V.Pol. 4668 - - - - Turbocavus secretus USNM 251863 - OQ379448 OQ412611 OQ427483 Vermiliopsis infundibulum ZMA V.Pol. 5248 OQ389681 DQ140411 - OQ427484 Vermiliopsis labiata SAM E3543 EU256549 DQ317131 - OQ427485 Vermiliopsis providialis SAM E3544 EU256546 DO317132 - -	Spirobranchus triqueter	SAM E3534	EU195348	DQ317121	EF192932	OQ427481
Turbocavus secretus USNM 251863 - OQ379448 OQ412611 OQ427483 Vermiliopsis infundibulum ZMA V.Pol. 5248 OQ389681 DQ140411 - OQ427484 Vermiliopsis labiata SAM E3543 EU256549 DQ317131 - OQ427485 Vermiliopsis providialis SAM E3544 EU256546 DO317132 - -	Tanturia zibrowii	ZMA V.Pol. 4668	-	-	-	-
Vermiliopsis infundibulum ZMA V.Pol. 5248 OQ389681 DQ140411 - OQ427484 Vermiliopsis labiata SAM E3543 EU256549 DQ317131 - OQ427485 Vermiliopsis providialis SAM E3544 EU256546 DO317132 - -	Turbocavus secretus	USNM 251863	-	OQ379448	OQ412611	OQ427483
Vermiliopsis labiata SAM E3543 EU256549 DQ317131 - OQ427485 Vermiliopsis pugidialis SAM E3544 EU256546 DO317132 -	Vermiliopsis infundibulum	ZMA V.Pol. 5248	OQ389681	DQ140411	-	OQ427484
Vermilionsis pugidialis SAM E3544 EU256546 DO317132 -	Vermiliopsis labiata	SAM E3543	EU256549	DQ317131	-	OQ427485
	Vermiliopsis pygidialis	SAM E3544	EU256546	DQ317132	-	-

Species	Vouchers	285	18S	Histone H3	Cytochrome b
Vermiliopsis striaticeps	SAM E3545	EU256548	DQ317133	EF192931	OQ427486
Vitreotubus digeronimoi	ZMA V.Pol.3907	-	-	-	-
Zibrovermilia zibrowii	AM W.46387	-	-	-	-
Protolaeospira tricostalis	SAM E3487	DQ242606	DQ318587	EF192936	-
Romanchella quadricostalis	SAM E3491	DQ242608	DQ242559	EF192935	-
Spirorbis tridentatus	SAM E3477	DQ242602	DQ242573	OQ412623	-
Manayunkia athalassia	SAM E3518	DQ209245	EF116202	EF192917	-
Schizobranchia insignis	GenBank	AY732225	AY732222	-	-

Table 1. Cont.

The genera not included in the analysis are *Membranopsis*, synonymised with *Protula* by ten Hove and Kupriyanova [59], *Pomatoleios* and *Pomatoceros* synonymized with *Spirobranchus* by Pillai [15], as well as monotypic genera *Kimberleya* and *Pseudoprotula* that have not been formally synonymised yet, but in our opinion most likely should be attributed to *Protula*. Given that the monophyly of Spirorbinae is undisputed, its position within Serpulidae has been determined in previous studies [33,42,58] and phylogenetic relationships among Spirorbinae have been assessed [41,60], only four spirorbins were included in this study.

The morphology of Serpulidae *sensu lato* was reviewed and illustrated by ten Hove and Kupriyanova [59] with special reference to the features that can provide characters for a phylogenetic analysis. The morphology of all species used in the analysis was examined by us and details of the structure of their chaetae and uncini were elucidated with the help of SEM. For complex features where the whole feature (such as the operculum) could be absent, absence–presence was treated as a separate character, whereas different states of the compound character were coded as subsidiary characters. Terminals coded as absent for the more general characters were coded as 'inapplicable' with a "-" [61] for the subsidiary characters, which is treated as ? by PAUP * version 40b10 [62]. Unknown character states were coded with a "?". The characters for the morphological matrix are listed in Appendix A, the description of characters is available in Supplementary File S1, morphological matrix in nexus format as Supplementary File S2, and combined matrix of morphological and molecular data in nexus format as Supplementary File S3.

2.2. DNA Extraction, Amplification, and Sequencing

Specimens for molecular work were preserved in ethanol and stored at -20 °C. Voucher specimens were preserved in 10% formalin and transferred to 70% ethanol after rinsing in water. The vouchers were deposited in South Australian Museum (SAM), Naturalis Biodiversity Centre (including the former Zoological Museum of University of Amsterdam, ZMA), and Australian Museum (AM), unless indicated otherwise (see Table 1).

Molecular work was conducted at the University of Adelaide Evolutionary Biology Unit (EBU), molecular laboratory of Japanese Agency for Marine Science and Technology, Yukosuka, Japan (JAMSTEC), and Australian Center for Wildlife Genomics at the Australian Museum (ACWG AM).

Total DNA was extracted using Qiagen DNeasy Kit or using a Bioline Isolate II genomic DNA kit following the manufacturer's protocols. Stock DNA was diluted 1:10 or 1:100 with deionized water to produce optimal template strength DNA for Polymerase Chain Reactions (PCR).

Partial or near complete 18S rRNA gene (18S) sequences were amplified in two overlapping fragments, one of approximately 1100 bp with the primers TimA (AMCTG-GTTGATCCTGCCA G) and 1100R2 (CGGTATCTGATCGTCTTCGA) [63]; the other of approximately 1300 bp using 18s2F (GTTGCT GCAGTTAAA) and 18s2R (ACCTTGTTAGCT-GTTTTACTTCCTC) [33]. An approximately 900 bp fragment of 28S rRNA gene (28S) was amplified using primers LSUD1F (ACCCGCTGAATTTAAGCATA) and D3ar (ACGAAC-GATTTGCACGTCAG) [64]. In some cases, a shorter D1 fragment (approximately 350 bp) was amplified using primers ACCCSCTGAAYTTAAGCAT and AACTCTCTCMTTCARAGTTC [65].

A part of the mitochondrial Cytochrome b (Cytb) gene (approximately 350 bp) was amplified with the primer pair Cytb424F (GGWTAYGTWYTWCCWTGRGGWCARAT) and cobr825 (AARTAYCAYTCYGGYTTRATRTG) [66]. An approximately 350 bp fragment of Histone H3 (H3) gene was amplified with the primers (1) ATGGCTCGTACCAAGCA-GACVGC and ATATCCTTRGGC ATRATRGTGAC or (2) ATGGCTCGTACCAAGCAGAC and ATRTCCTTGGGCATGATTGTTAC [65].

The PCR products were separated by gel electrophoresis in 1.5% agarose gel and visualized under UV after staining with ethidium bromide or staining with gel red (Biotium TM, San Francisco, CA, USA).

At AM, successful PCR products were sent to Macrogen TM, South Korea for purification and standard Sanger sequencing. The successful PCR products were purified with UltraClean PCR Clean-up DNA purification kit by MoBio Laboratories following the manufacturer's protocol (EBU) or with Gel and PCR Clean-up DNA purification kit (Promega) following the manufacturer's protocol (JAMSTEC). At EBU and JAMSTEC, PCR products were sequenced in both directions using Big Dye Ver. 3 chemistry with the same primers as in PCR.

At EBU, sequenced products were purified using the magnetic method with CleanSeq kit by Agencourt Biosciences Corporation, whereas the Performa[®] DTR Gel Filtration Cartridge kit (EdgeBio) was used at JAMSTEC. Products of the sequencing reactions were read on an automated capillary sequencer ABI 3130 Genetic Analyzer (Applied Biosystems) at the Institute of Medical and Veterinary Sciences (IMVS) in Adelaide or at JAMSTEC molecular laboratory.

Sequences were edited using SeqEd ver. 1.0.3 (Applied Biosystems Inc.) or Geneious. BLAST searches [67] confirmed the correct gene regions had been amplified and the new sequences were submitted to GenBank (Table 1).

2.3. Phylogenetic Analyses

Analyses were performed on three datasets: Molecular data only, Morphology data only, and a combined Morphology and Molecular dataset. Morphology was coded for representatives of all available genera, but molecular data was not available for *Bathyditrupa*, *Chitinopomoides*, *Omphalopomopsis*, *Microprotula*, *Neomicrorbis*, *Paumotella*, *Spirodiscus*, *Vitreotubus*, *Tanturia*, and *Zibrovermilia*. *Manayunkia athalassia* (Fabriciidae) and *Schizobranchia insignis* (Sabellidae) were chosen as the most appropriate outgroups based on previous phylogenomic results [32].

2.3.1. Morphology Only Dataset

The 75-character morphology dataset was analysed using PAUP* v.4.0a166 [62]. Characters were initially treated as unordered. Owing to their being 93 terminals and many 'inapplicable' character scores, the dataset could not be run with simple parameters to explore tree space properly. Therefore, a parsimony ratchet approach [68] was used with PRAP v. 2.0 [69] in association with PAUP*. Ten runs with 200 ratchet iterations were performed and the resulting shortest trees, after filtering for duplicates, were then used for further searching with the command "hsearch start = current swap = TBR steepest = no multrees = yes" to find all the shortest trees. A strict consensus tree was generated from the resulting trees.

2.3.2. Molecular Dataset

The gene partitions were aligned using Muscle (H3, CytB) [70] or MAFFT (18S, 28S) [71] and concatenated using Sequence Matrix [72]) or RAxML-NG [73,74], resulting in an alignment of 4483 base pairs. This data set was partitioned by gene and appropriate models selected by ModelTest-NG [75] under the Bayesian information criterion (BIC) before maximum likelihood (ML) analysis with RaxML-NG. Models used were GTR + I + Γ (18S, 28S, Cytb) or TIM2 + I + Γ (Histone H3). Fifty random addition searches were performed as well as node support assessment via 'thorough' bootstrapping (with 1000 pseudorepli-

cates). Bayesian inference (BI) analysis of the concatenated data, partitioned by gene, was conducted using Mr. Bayes v.3.2.7a [76]. All partitions were run using GTR + I + Γ . Default priors in MrBayes were used and data partitions were unlinked for parameter estimations. Two iterations of four Markov chain Monte Carlo (MCMC) chains were run for 50 million generations, sampling every thousand generations. A majority rule consensus tree was made from the trees remaining after discarding 25% of trees as burn-in, after checking with Tracer 1.7.1 [77].

2.3.3. Molecular + Morphology Dataset

The molecular dataset was treated the same as in the molecular-only analyses above. These partitions were concatenated with the morphology dataset. In RaXML-NG, the morphology partition was run with the MULTIx MK model (with x as 6 for the maximum six-character states), while in MrBayes, the morphology dataset was analysed under the Mkv model. Both these models are derived from Lewis' [78] likelihood model for discrete morphology data. Several morphological characters were traced on the BI tree topology from the molecular + morphology dataset in Mesquite [79] using likelihood ancestral state reconstruction, with the Mk1 probability model.

3. Results

3.1. Morphology Only Dataset

The parsimony ratchet analysis and subsequent heuristic search of the morphology data matrix resulted in 1,192,317 shortest trees of 352 steps. Seventy of the seventy-five characters used were parsimony informative. The consistency index was 0.27 and the retention index 0.78. The strict consensus of these trees resulted in a major polytomy (Figure 1). The only partially resolved larger clades included *Apomatus-Protula, Crucigera-Serpula-Hydroides-Floriprotis, Galeolaria-Pyrgopolon-Spirobranchus, Ditrupa-Ficopomatus-Hyalopomatus-Placostegus-Marifugia*, and *Spirodiscus-Bathyditrupa*. Spirorbin taxa were recovered as a clade with *Helicosiphon* as sister group to *Spirorbis-(Protolaeospira-Romanchella)*. Apart from Spirorbinae, no major clades were recovered and the relationships within Serpulidae were largely unresolved. Genera with multiple terminals such as *Apomatus, Protula, Crucigera, Ficopomatus, Galeolaria, Pomatostegus*, and *Semivermilia* were recovered as clades. Notably other important genera such as *Hydroides, Protis, Serpula, Spirobranchus*, and *Vermiliopsis* were not recovered as monophyletic.

3.2. Molecular Only Dataset

The ML and BI analyses of the molecular-only data set resulted in identical tree topologies (Figure 2). The analyses inferred three well-supported major clades within Serpulidae. One included those taxa typically attributed to the subfamily Serpulinae and was further split into two well-supported sister clades. One included a monophyletic well-supported Hydroides clade along with representatives Serpula, Crucigera, Spiraserpula, and *Floriprotis*. We refer to this as Serpulini. The other major serpulin clade is referred to here as Ficopomatini. Notably, Neovermilia globula was the sister group to all other Ficopomatini, which had a relatively long branch and formed a highly supported clade. Within Ficopomatini, Spirobranchus formed a well-supported clade that was the sister group to Pyrgopolon. Laminatubus alvini was recovered as sister to the Spirobranchus–Pyrgopolon clade and similarly Ditrupa was sister to a Pseudochitinopoma clade, both with high support. Other highly supported groups include monophyletic *Placostegus* and *Galeolaria* clades. Marifugia cavatica was nested within Ficopomatus forming a well-supported clade that was sister to *Galeolaria*, though with low support. The phylogenetic positions of *Hyalopomatus* mironovi and relationships among the Placostegus and Pseudochitinopoma-Ditrupa clades can be regarded as relatively uncertain owing to low support.

	í.			Apomatus globifer
				Apomatus sp.
				Protula bispiralis
			-	Protula tubularia
				Turbocavus secretus
				Microprotula ovicellata
				Bathyvermilia eliasoni
				Cruciaera inconstans
				Crucigera tricornis
				· Crucigera zygophora
				Floriprotis sabiuraensis
	r			Floriprotis sabiuraensis
				Hydroides elegans
				Hydroides minax
				Hydroides nikae
				Hydroides pseudouncinata
				Hydroides sanctaecrucis
				Hydroides trivesiculosa
			_	Aydroides tuberculata Serpula columbiana
				Serpula iukesii
				Serpula concharum
				Serpula narconensis
				Serpula uschakovi
	l d			Serpula vermicularis Spiraserpula jugocopyovo
		L		Serbula vittata
				Serpula watsoni
				Dasynema chrysogyrus
				Ditrupa arietina
				Ficopomatus enigmaticus
				Ficopomatus macrodon
				Filograna implexa
			-	Salmacina sp.
				Filogranella elatensis
				Filogranula stellata
			-	Galeolaria caespitosa
			· · · · · · · · · · · · · · · · · · ·	Pyraopolon ctenactis
				Spirobranchus akitsushima
				Spirobranchus kraussii
			<u> </u>	Spirobranchus coronatus
				Spirobranchus lima
				Spirobranchus taeniatus
				Spirobranchus corniculatus
				Spirobranchus corniculatus
				Spirobranchus richardsmithi
				Helicosiphon biscoeensis
	ſ		-	Protolaeospira tricostalis
				Spirorbis tridentatus
				Neomicrorbis azoricus
				Hyalopomatus mironovi
				Janita fimbriata
				Josephella marenzelleri
				Laminatupus alvini Marifugia cavatica
				Metavermilia acanthophora
				Neovermilia globula
				Paraprotis dendrova
				Paraprotis pulchra
				Placostegus sp.
				Pomatostegus indeniatus
				Pomatostegus stellatus
				Protis hydrothermica
				Protis sp.
				Pseudochitinopoma occidentalis
			L	Pseudochitinopoma pavimentata
				rseudovermilla OCCIDENTAIIS Rhodonsis pusilla
				Semivermilia annehoogetae
				Semivermilia elliptica
				Semivermilia lylevaili
\sim				Vermiliopsis infundibulum
-				Vermiliopsis labiata
				vermiliopsis pygidialis
				Chitinopomoides wilsoni
				Omphalopomopsis sp.
				Paumotella takemoana
				Spirodiscus grimaldii
			L	Bathyditrupa hovei
				viireolubus aigeronimoi Tanturia zibrowii
				Zibrovermilia zibrowii

Figure 1. Strict consensus of 1,192,317 shortest trees resulted from the maximum parsimony analysis of 75-character morphology dataset. Outgroups are excluded.

Figure 2. Maximum likelihood (RaXML) best tree based on the molecular data set. Outgroups are excluded. The BI analysis topology was congruent. ML bootstrap values are shown followed by posterior probabilities for the BI analysis. Nodes with bootstrap values of 100 and posterior probabilities of 1.0 are indicated with *. Nodes with bootstrap values < 50% and posterior probabilities < 0.5 are blank.

The second well-supported major clade included many terminals that had been attributed to Filograninae (Apomatus, Filograna, Filogranula, Josephella, Protis, Protula, Rhodopsis, Salmacina), as well as several traditionally attributed to Serpulinae (Bathyvermilia, Chitinopoma, Dasynema, Metavermilia, Pomatostegus, Pseudovermilia, Semivermilia, Vermiliopsis) and others not explicitly attributed to a subfamily before (Janita, Filogranella, Neover*milia, Turbocavus,* and *Paraprotis*). We apply the name Filograninae to this clade. Together, this assemblage constituted the sister group to a highly supported Spirorbinae clade, which included Spirorbis as the sister group to a Romanchella-Protolaeospira-Helicosiphon clade. Other minor clades with good support were: Pomatostegus, Chitinopoma-Filogranula, Protula, Apomatus, Filograna-Salmacina, Vermiliopsis, Dasynema-Vermiliopsis, and Filogranella-Dasynema-Vermiliopsis. The Filograna-Salmacina clade was nested within Protis, forming a well-supported clade. Semivermilia and Pseudovermilia were not recovered as monophyletic, but instead formed a well-supported mixed clade along with *Rhodopsis*. The two *Paraprotis* terminals did not form a clade and the three *Apomatus* terminals appeared in two places within Filograninae. The positions of Josephella, Bathyvermilia, Janita, and Metavermilia within Filograninae were poorly supported.

3.3. Molecular + Morphology Dataset

The BI and ML analyses of the combined morphological and molecular data set resulted in slightly different topologies, with the BI result shown here and congruent nodes for the ML analysis are indicated (Figure 3). Overall support values were markedly lower than seen in the molecular-only analyses but allowing for the additional taxa, the relationships were nearly identical to those shown in Figure 2. Most terminals for which DNA sequence data were not available (Bathyditrupa, Chitinopomoides, Microprotula, Neomicrorbis, Omphalopomopsis, Paumotella, Spirodiscus, Tanturia, Vitreotubus, and Zibrovermilia) were recovered within Filograninae and in this clade some differences between the ML and BI analyses were observed. Notably, while the BI placed *Omphalopomopsis* as sister to all other Filograninae terminals except for *Pomatostegus* (Figure 3), in the ML result (not shown) Omphalopomopsis was recovered as sister to the Filograninae + Spirorbinae clade. Furthermore, in the ML analysis *Chitinopomoides* was recovered outside the clade containing *Rhodopsis*, Semivermilia-Pseudovermilia, and (Bathyditrupa-Spirodiscus) Zibrovermilia clade, while in the BI analysis Chitinopomoides formed sister to the (Semivermilia-Pseudovermilia)-Rhodopsis clade, but support for both placements was low. The deep-sea (abyssal) terminals Spirodiscus and Bathyditrupa formed a highly supported clade and were recovered with low support as sister to bathyal Zibrovermilia. Paumotella was recovered as sister taxon to Dasynema with this clade being the sister group to Vermiliopsis. Tanturia was found in a poorly supported clade with Josephella. Microprotula and Turbocavus formed a clade and were the sister group to Protula. A questionable spirorbin Neomicrorbis was recovered within Spirorbinae as the sister taxon to *Helicosiphon* with low support. Within Serpulinae, the topology was the same as in the molecular-only analyses with the difference being the placement of *Vitreotubus* (morphology only data) recovered in a clade with Laminatubus with a reasonable support.

Figure 3. Bayesian majority rule consensus phylogram of the combined molecular and morphological data set. The ML analysis of the same dataset had some incongruities. Bootstrap values of 100 and posterior probabilities 1.0 are indicated with *. Nodes with bootstrap values < 50% and posterior probabilities < 0.5 are blank. Nodes that were not found in the ML analysis are indicated by -.

3.4. Transformations

Monophyly of Serpulidae was unequivocally supported by synapomorphies such as the presence of a calcareous tube (char 8), the presence of the operculum (char 22, Figure 4), though with subsequent reversals (see below), and the presence of the thoracic membranes (char 53, Figure 5A).

Figure 4. Ancestral state reconstruction, using Mesquite under a likelihood model, of the character 22 from the morphology matrix, Operculum, traced on the Bayesian majority rule consensus phylogram of the combined molecular and morphological data set. The plesiomorphic state for Serpulidae can be inferred as operculum present with four subsequent losses and one reappearance.

Serpulinae was not supported by any morphological apomorphies. Filograninae-Spirorbinae was supported by the presence of *Apomatus* chaetae (char 56, Figure 5A). Filograninae was supported by the presence of abdominal flat geniculate chaetae (char 75). Body asymmetry due to tube coiling (char 16) appeared in Spirorbinae and in *Spiraserpula*. Spirorbinae was also characterised by incomplete chaetal inversion (char 2), distinguished from a more synapomorphy for Sabellida which is characterised by complete chaetal inversion. Serpulini was supported by several apomorphies such as *Serpula*-type operculum (char 32), bayonet collar chaetae (char 52), the presence of pseudoperculum (char 23), and abdominal flat trumpet shaped chaetae (char 70, Figure 5B). Within Serpulini, the presence of opercular verticil (a crown of chitinous spines, char 33) was an apomorphy for *Hydroides*. The presence of abdominal true trumpet chaetae (char 71, Figure 5C) was an apomorphy for Ficopomatini, while *Ficopomatus* was supported by distinct collar chaetae with stout teeth (char 50, *Ficopomatus*-type chaetae). Other apomorphies with ficopomatin groups were collar tonguelets (char 48) found in *Placostegus* and *Spirobranchus-Pyrgopolon* and peduncular wings (char 41) of *Spirobranchus*.

Transformations for the 75 morphological characters can be traced on the BI topology of the combined morphological and molecular data set (Supplemental File S3). Here some of them are highlighted. Figure 4 shows the transformation for the binary character based on the operculum. Under a likelihood transformation, the plesiomorphic state for Serpulidae can be inferred as operculum present with four subsequent losses and one reappearance.

Figure 5 shows the transformation of four chaetal characters. Figure 5A shows the transformation for the distinctive *Apomatus* chaetae and that their presence is an apomorphy for the Filograninae plus Spirorbinae clade with four losses. Figure 5B shows the transformation for abdominal flat trumpet-shaped chaetae and that their presence is an apomorphy for the Serpulini. Figure 5C shows the transformation for abdominal true

trumpet-shaped chaetae and that their presence is an apomorphy for the Ficopomatini. Figure 5D shows the transformation for the flat geniculate chaetae and that their presence is an apomorphy for the Filograninae plus Spirorbinae clade with two losses.

Figure 5. Ancestral state reconstruction, using Mesquite under a likelihood model, of four of the chaetal character from the morphology matrix traced on the Bayesian majority rule consensus phylogram of the combined molecular and morphological data set. (A)—Character 56 *Apomatus* chaetae, (B)—Character 70 (abdominal chaetae flat trumpet-shaped), (C)—Character 71 (abdominal chaetae true trumpet-shaped, (D)—Character 72 (abdominal chaetae flat geniculate).

4. Discussion

This study presents the first analysis of phylogenetic relationships within Serpulidae *sensu lato* based on comprehensive taxonomic sampling of the genera and combined molecular and morphological data. The results of this study are generally consistent with those of earlier molecular studies [33,42–44] based on a more restricted taxonomic sampling and DNA sequence data.

The molecular and combined data analyses of Kupriyanova et al. [33] in 2006 provided the first well-supported phylogenetic tree topologies conflicting those obtained from earlier morphology-only analyses where Spirorbinae was recovered as the sister group to Serpulinae [58]. As in this study, in [33] Spirorbinae was recovered as the sister group to a clade composed of both 'filogranin' and 'serpulin' taxa, thus demonstrating that the traditionally formulated subfamilies Serpulinae and Filograninae were not monophyletic. The authors [33] called for a major revision of serpulid taxonomy but refrained from doing so suggesting that further taxon sampling and molecular sequencing were required. The results based on comprehensive sampling here further confirm non-monophyly of both traditional serpulid subfamilies Filograninae and Serpulinae and allow us to propose a new classification within Serpulidae.

The traditional taxonomy of serpulids relied largely on the absence (=many Filograninae) or presence (=all Serpulinae) of an operculum. When present, the structural details were used to delineate genera, such as being simple and membranous or reinforced with chitinous and/or structures such as endplates or spines of varying complexity. The operculum-bearing radiole could be unmodified and pinnulate, or modified into a smooth thickened peduncle (reviewed in [59]). No morphological synapomorphies have previously been proposed to support the traditional Filograninae. Moreover, in 1984 ten Hove [57] had noted that Filograninae was erected on the basis of apparently plesiomorphic (or possibly paedomorphic) features of pinnules on the opercular peduncle.

While all species characterized by unmodified pinnulated operculum-bearing radioles (or thickened pinnulated peduncle in *Spirodiscus* and *Bathyditrupa*) belong to Filograninae, many taxa in the filogranin clade have smooth peduncles and some even have complex chitinized opercula, notable examples being *Pomatostegus, Metavermilia*, or *Vermiliopsis*. While some filogranins are non-operculate (e.g., *Protula, Turbocavus, Filogranella, Salmacina*, some *Protis* spp.), some serpulins, such as *Floriprotis sabiuraensis, Spirobranchus nigranucha*, and some *Hyalopomatus* and *Spiraserpula* spp. also lack opercula, secondarily according to Figure 4. Furthermore, whereas opercular calcification is a common feature of serpulins in *Galeolaria* and especially in the *Pyrgopolon-Spirobranchus* clade, some *Bathyvermilia* spp. and *Vermiliopsis labiata* have calcified opercular endplates. The observed incongruence of molecular and morphological results in [33] led to the suggestion that the morphological characters traditionally used in serpulid taxonomy, especially opercular structures, may be misleading.

The results of this study strongly support the subdivision of Serpulidae into two major clades, and thus, we suggest that these groups should retain ranks of two previously erected subfamilies, Serpulinae and Filograninae, as well as maintaining the subfamily Spirorbinae, with the type genus *Spirorbis*. However, here we propose the formulation of the subfamilies based on chaetal rather than opercular characters. The suggested characters are the presence/absence of thoracic *Apomatus* chaetae and the structure of abdominal chaetae.

The presence of thoracic *Apomatus* chaetae (sometimes also termed sickle-shaped chaetae) (Figure 6G,H) was recovered as a synapomorphy for the first time and supported Filograninae plus Spirorbinae (Figure 5A). Another synapomorphy supporting subfamilies was the structure of the abdominal chaetae (Figure 5B–D, Figure 6E,F, Figures 7F and 8E). In Filograninae, these chaetae are always some variant of flat geniculate type (sickle-shaped, flat triangular, flat narrow geniculate, retro-geniculate *sensu* ten Hove and Kupriyanova [59], Figure 6E,F). The notable exceptions are capillary abdominal chaetae of *Bathyditrupa* (although the closely related *Spirodiscus* shows typical for filogranin chaetae) and acicular chaetae of *Paumotella*. This newly formulated subfamily contains very morphologically variable taxa (Figure 6A–D) ranging from non-operculate taxa (e.g., *Salmacina, Protula, Filogranella, Turbocavus*) to taxa

with simple membranous opercula lacking any re-enforcements (*Apomatus, Filograna, Paraprotis*) and those with distinct chitinous opercular re-enforcements (e.g., Vermiliopsis, Dasynema, *Semivermilia, Pseudovermilia,* and especially *Pomatostegus*).

Figure 6. Representatives of Filograninae and their chaetal characters. (A)—*Pomatostegus actinoceras* (photo A. Semenov); (B)—*Filogranella* sp. (photo E. Nishi); (C)—*Metavermilia acanthophora* (photo G. Rouse); (D)—*Salmacina* sp. (photo G. Rouse); (E)—SEM of abdominal flat geniculate chaetae in *Chitinopoma*, (F)—SEM of abdominal flat geniculate chaetae of *Metavermilia*; (G)—SEM of thoracic *Apomatus* chaetae of *Filogranula* ((E–H) photos S. Lindsay).

Figure 7. Representatives of Serpulini and their chaetal characters. (A)—*Crucigera zygophora* (photo K. Sanamyan); (B)—*Floriprotis sabiuraensis* (photo K. Nomura); (C)—*Hydroides lirs* (photo A. Semenov); (D)—*Serpula columbiana* (photo A. Semenov); (E)—SEM of collar chaetae of *Hydroides*; (F)—SEM of flat trumpet chaetae of *Hydroides* ((E,F) photos S. Lindsay).

Figure 8. Representatives of Ficopomatini and their chaetal characters. (**A**)—*Spirobranchus tetraceros* (photo W. Zhang); (**B**)—*Galeolaria hystrix*; (**C**)—*Hyalopomatus* sp.; (**D**)—*Neovermilia globula* ((**B**–**D**) photo G. Rouse); (**E**)—SEM of true trumpet-shaped abdominal chaeta of *Spirobranchus*; (**F**)—*Ficopomatus* cf. *uschakovi*, (**G**)—*F. enigmaticus*; (**H**)—collar chaetae of *Ficopomatus* sp. ((**E**,**F**) photos E. Wong).

In Serpulinae, for which we recovered no apomorphy, thoracic *Apomatus* chaetae are invariably absent and two very distinct types of abdominal chaetae, flat trumpet-shaped and true trumpet-shaped, are found (Figure 5B,C and Figure 7F). The original "trumpet-shaped chaetae" received this name because, when examined under a compound microscope, they looked widened into what in profile resembles a chalice or trumpet edged with apparently two rows of thin elongated teeth. However, examination with SEM showed [59] that these chaetae are not hollow as the name might suggest, but rather flat, with a single row of marginal acute teeth. This is in contrast with true trumpet-shaped

abdominal chaetae, which when examined with SEM proved to be distally hollow, with two parallel rows of sharp denticles, extending into a long lateral spine [59]. These had been incorrectly lumped together with the completely different flat geniculate abdominal chaetae of filogranins. We suggest that the flat trumpet-shaped and true trumpet-shaped chaetae are synapomorphies supporting two main groups within Serpulinae, the tribes Serpulini and Ficopomatini, respectively.

Serpulini, including Crucigera, Floriprotis, Hydroides, and Spiraserpula, with type genus Ser*pula*, is well supported by morphological apomorphies (Figure 7A–D, Supplemental File S3). In addition to the flat trumpet-shaped chaetae, Serpulini synapomorphies include the presence of funnel-shaped (Figure 7A,C,D) Serpula-type opercula (additionally topped with a chitinous verticil of chitinous spines in *Hydroides* (Figure 7C) and provided with basal opercular bosses (Figure 7A) in *Crucigera*), pseudoperculum on a shortened peduncle, and distinct bayonet-shaped special collar chaetae (Figure 7E). Based on morphology alone, the genera Serpula, Crucigera, and Hydroides formed the earliest monophyletic group recognized within the family [57]. Hydroides was recently revised, its monophyly confirmed by DNA data and the phylogenetic relationships within the genus have been accessed (Sun et al. [5]), but it was not recovered as a monophyletic group on morphology alone in this study. On the contrary, Crucigera and Serpula were not recovered as monophyletic in this study, a result already demonstrated previously [80], so the clade including terminals of *Crucigera*, Serpula, and Spiraserpula was a not unexpected outcome of this study. Interestingly, the fact that the usually non-operculate coral-associated *Floriprotis* (Figure 7B) also belongs to this group has not been explicitly proposed before, even though the taxon shows the chaetal pattern identical to that found in Serpula and Hydroides. Whether Spiraserpula is monophyletic needs to be tested in further analyses.

Ficopomatini, as proposed here, includes serpulins with true trumpet-shaped chaetae (Figure 8E), but no other synapomorphy supported the clade. Originally, Ficopomatinae was proposed by Pillai [37] for four monotypic brackish water serpulid genera (*Neopomatus, Ficopomatus*, *Mercierella*, and *Sphaeropomatus*), which were later synonymised with *Ficopomatus* [47]. The freshwater monotypic genus *Marifugia* was subsequently added to Ficopomatinae by Pillai, the author of the original subfamily [48]. Here we maintain *Ficopomatus* (supported by distinct collar chaetae (Figure 8H) with stout teeth, an apomorphy for the clade) and Marifugia (collar chaetae absent, no clear apomorphies proposed), even though in our analysis Marifugia was recovered as nested within *Ficopomatus*. Furthermore, we lower the previously erected subfamilial name Ficopomatinae to the tribe Ficopomatini and broaden the composition of the new tribe to include all genera from *Neovermilia* (positioned as sister to all other members of the tribe) to *Galeolaria* (Figures 2, 3 and 8) with the type genus *Ficopomatus*. This new tribe contains morphologically variable taxa with distinct significant opercular calcification (Galeolaria, Spirobranchus, and especially Pyrgopolon), with chitinous opercular endplates (Placostegus, Pseudochitinopoma, Ditrupa, Neovermilia, Laminatubus) and even with soft vesicular opercula without any re-enforcement (Hyalopomatus).

The phylogenetic position of poorly known and/or deep-sea taxa *Bathyditrupa*, *Chitinopo-moides*, *Microprotula*, *Neomicrorbis*, *Spirodiscus*, *Omphalopomopsis*, *Paumotella*, *Tanturia* (all filogranins), as well as *Vitreotubus* and *Zibrovermilia* (Ficopomatini) inferred from morphological data only in this study needs to be confirmed with DNA sequence data when the molecular grade material becomes available. Furthermore, to obtain a robust phylogeny with optimal support, further analyses of serpulid phylogenetic relationships should be based on transcriptome data as performed for Sabellidae [32] or mitogenomes.

5. Conclusions

Morphological characters traditionally used in serpulid taxonomy, especially opercular and peduncular structures, appear to be poor indicators of phylogenetic relationships within the family. Based on results of comprehensive phylogenetic analyses of combined molecular and morphological data, we propose a new classification of Serpulidae that includes re-formulated subfamilies Serpulinae (with tribes Serpulini and Ficopomatini),

19 of 24

Spirorbinae, and Filograninae supported by chaetal characters (presence of thoracic *Apomatus* chaetae and the structure of abdominal chaetae).

Supplementary Materials: The following supporting information can be downloaded at: https: //www.mdpi.com/article/10.3390/d15030398/s1, File S1: Description of morphological characters. File S2: Matrix of morphological characters used in this study in nexus format. File S3: Combined molecular and morphology dataset and BI tree used for Figure 3 and show transformations of morphological characters (Figures 4 and 5). References [81–85] are cited in the supplementary materials (File S1).

Author Contributions: Conceptualization, E.K., G.W.R. and H.A.t.H.; methodology, G.W.R., H.A.t.H. and E.K.; validation, G.W.R., H.A.t.H. and E.K.; formal analysis, G.W.R.; investigation, G.W.R., H.A.t.H. and E.K.; resources, G.W.R. and E.K; data curation, E.K. and G.W.R. and; writing—original draft preparation, E.K. and G.W.R.; writing—review and editing, E.K., G.W.R. and H.A.t.H.; visualization, G.W.R.; supervision, G.W.R.; project administration, G.W.R.; funding acquisition, G.W.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Australian Research Council (ARC), grant DP0558736 to G.W.R, as well as Japan Society for the Promotion of Science (JSPS) grant S42300038 and Australian Biological Resource Study (ABRS) grant RG18-21 to E.K. Antarctic serpulids were collected on expeditions funded by the National Science Foundation (ANT-1043749) to G.W.R and others.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article or supplementary material.

Acknowledgments: We thank staff of Evolutionary Biology Unit (EBU) at University of Adelaide, Australia, molecular biology laboratory of Japanese Agency for Marine Science and Technology (JAMSTEC) in Yukosuka, Japan and Wildlife Genomics Lab at the Australian Museum in Sydney. Yoshihiro Fujiwara (JAMSTEC) helped with EK's access to the molecular laboratory of JAMSTEC. We thank Lauren Helgen (formerly at University of Adelaide), Masaru Kawato (JAMSTEC), Ingo Burghardt (AM), Guillemine Daffe (visiting AM from University of Bordeaux, France) and Avery Hiley (SIO) for their help in the respective molecular labs. Thanks are due to Elly Beglinger and Sue Lindsay for their help with SEM in Zoological Museum of Amsterdam, Netherlands and the Australian Museum, respectively. The late Alexander Rzhavsky (Institute of Ecology and Evolution, Moscow, Russia) helped to code spirorbins. Ejiroh Nishi (Yokohama National University, Japan) hosted EK during her stay in Japan. Hiromi Uchida (Kushimoto Marine Park Center, Japan) kindly helped with examination of the type material of *Microprotula ovicellata* and with collecting *Floriprotis sabiuraensis* from the type locality. Nancy Prentiss (University of Maine, Farmington, ME, USA) kindly provided specimens of *Turbocavus* and Tara Macdonald (Biologica Environmental Services Ltd., Perth, ON, Canada) provided spirorbins for this study.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Matrix of combined A/P and multistate morphological characters. Unknown is coded with "?"

- 1. Body symmetry: symmetrical—0, asymmetrical—1.
- 2. Chaetal inversion: complete—0, incomplete—1.
- 3. Radiolar lobes: fused—0, separate—1.
- 4. Inter-radiolar membrane: absent—0, present—1.
- 5. Radiolar eyespots: absent—0, present—1.
- 6. Arrangements of radioles: in semi-circles—0, pectinately—1, in spiral—2.
- 7. Radiolar stylodes: present—0, absent—1.
- 8. Tube material: mucous—0, calcareous—1.
- 9. Tube keels: absent—0, present—1.
- 10. Tube (semi)circular in cross-section: no—0, yes—1.
- 11. Tube triangular in cross-section: no—0, yes—1.

- 12. Tube trapezoid in cross-section: no—0, yes—1.
- 13. Tube quadrangular in cross-section: no-0, yes-1.
- 14. Granular overlay: absent—0, present—1.
- 15. Tube wall transparency: completely opaque—0, with outer hyaline and inner opaque layer—1, completely hyaline—2.
- 16. Tube coiling: straight or irregular—1, spirally coiled—2.
- 17. Colonies due to asexual budding: absent—0, present—1.
- 18. Adult tube attachment: attached—0, unattached—1.
- 19. Internal tube structures: absent—0, present—1.
- 20. Tabulae: absent—0, present—1.
- 21. Colour of opaque tubes: white opaque—0, coloured—2.
- 22. Operculum: absent—0, present—1.
- 23. Pseudoperculum: absent—0, present—1.
- 24. Pseudoperculum: borne on pinnulated radiole—0, borne on smooth short radiole—1.
- 25. Opercular reinforcement: absent—0, present—1.
- 26. Chitinous reinforcement: absent—0, present—1.
- 27. Calcareous reinforcement: absent—0, present—1.
- 28. Thickened cuticle: absent—0, present—1.
- 29. Chitinous opercular reinforcement: without spines—0, with spines—1.
- 30. Chitinous endplate: flat opercular plate or concave—0, elongated opercular cap—1, multi-tiered structure—2.
- 31. Basal processes below operculum: absent—0, present—1.
- 32. Serpula-type operculum: absent—0, present—1.
- 33. Verticil on *Serpula*-type operculum: absent—0; present—1
- 34. Type of calcareous opercular reinforcement: operculum infested with calcareous flakes—1, calcareous deposits forming distal plate—2, entirely calcified operculum—3.
- 35. Calcareous opercular spines: absent—0, non-movable—1, movable—2.
- 36. Calcareous opercular talon: absent—0, short, embedded in opercular ampulla—1, long, continues into opercular peduncle—2.
- 37. Opercular constriction: operculum gradually merges into peduncle without constriction—0, operculum separated from the peduncle by a constriction—1.
- 38. Ontogeny of operculum: indirect—0, direct—1.
- 39. The operculum-bearing radiole is not different from all other radioles—0, operculumbearing radiole is modified into a thickened peduncle—1.
- 40. Peduncle smooth, without pinnules—0, peduncle with pinnules—1.
- 41. Distal peduncular wings: absent—0, present—1.
- 42. Proximal peduncular wings: absent—0, present—1.
- 43. Insertion of the opercular peduncle: as second dorsal radiole—0, as the first radiole—1, at the base of radiolar crown, median insertion covering several opercular radioles—2.
- 44. Peduncle cross-section: circular—0, triangular—1, flattened—2.
- 45. Peduncle width: as wide as normal radioles—0, wider than normal radioles—1, much wider than normal radioles—2.
- 46. Peduncle surface texture: smooth—0, wrinkled—1.
- 47. Collar: unlobed—0, trilobed—1.
- 48. Collar tonguelets: absent—0, present—1.
- 49. Chaetae on the collar segment (collar chaetae): absent—0, present—1.
- 50. Special collar chaetae: absent—0, with basal modification—1, with distal modification—2.
- 51. Special fin-and-blade collar chaetae: absent—0, present—1
- 52. Special bayonet collar chaetae: absent—0, present—1.
- 53. Special *Spirobranchus* collar chaetae: absent—0, present—1.
- 54. Thoracic membranes: absent—0, present—1.
- 55. Thoracic membranes end: short, second segment—0, mid-thorax—1, end of thorax—2, form apron—3.
- 56. Thoracic *Apomatus* chaetae: absent—0, present—1.

- 57. Thoracic uncini rasp-shaped: absent—0, present—1.
- 58. Thoracic uncini saw-to-rasp: absent—0, present—1.
- 59. Thoracic uncini saw-shaped: absent—0, present—1.
- 60. Anterior tooth of thoracic uncini pointed: absent—0, present—1.
- 61. Anterior tooth of thoracic uncini blunt elongated, with rows of teeth implanted over almost entire length of peg (*Protula* type): absent—0, present—1.
- 62. Anterior tooth of thoracic uncini blunt rounded: absent—0, present—1.
- 63. Anterior tooth of thoracic uncini blunt flattened, often gouged underneath: absent—0, present—1.
- 64. Number of teeth in thoracic uncini in profile: < 8-0; 8-19-1; > 20-2.
- 65. Number of uncinigerous thoracic segments: seven—0, six—1, five—2, four—3, three—4.
- 66. Variable number of thoracic uncinigerous chaetigers: no—0, yes—1.
- 67. Ventral arrangement of thoracic uncini: parallel, not forming triangular depression—0, converging posteriorly forming triangular depression—1, fused—2.
- 68. Achaetous region in the beginning of abdomen: absent—0, present—1.
- 69. Abdominal chaetae capillary: no-0, yes-1.
- 70. Abdominal chaetae flat trumpet-shaped: no-0, yes-1.
- 71. Abdominal chaetae true trumpet shaped: no-0, yes-1.
- 72. Abdominal chaetae flat geniculate: no-0, yes-1.
- 73. Abdominal chaetae acicular: no-0, yes-1.
- 74. Posterior glandular pad: absent—0, present—1.
- 75. Long capillary chaetae in posterior abdominal segments: absent—0, present—1.

References

- 1. Rouse, G.W.; Pleijel, F.; Tilic, E. Annelida; Oxford University Press: London, UK; New York, NY, USA, 2022; pp. 1–418. [CrossRef]
- Capa, M.; Kupriyanova, E.K.; Nogueira, J.M.; Bick, A.; Tovar-Hernández, M.A. Fanworms: Yesterday, today and tomorrow. Diversity 2021, 13, 130. [CrossRef]
- 3. Kupriyanova, E.K.; ten Hove, H.A.; Nishi, E. A taxonomic revision of the genus *Pseudochitinopoma* Zibrowius, 1969 (Serpulidae, Annelida) with descriptions of two new species. *Zootaxa* 2012, 3507, 57–78. [CrossRef]
- Kupriyanova, E.K.; Ippolitov, A.P. Deep-sea serpulids (Annelida: Polychaeta) in tetragonal tubes: On a tube convergence path from Mesozoic to Recent. Zootaxa 2015, 4044, 151–200. [CrossRef] [PubMed]
- Sun, Y.; Wong, E.; Ahyong, S.T.; Williamson, J.E.; Hutchings, P.A.; Kupriyanova, E.K. Barcoding and multi-locus phylogeography of the globally distributed calcareous tubeworm genus *Hydroides* Gunnerus, 1768 (Annelida, Polychaeta, Serpulidae). *Mol. Phylogenet. Evol.* 2018, 127, 732–745. [CrossRef]
- 6. Rouse, G.W.; Kupriyanova, E.K. *Laminatubus* (Serpulidae, Annelida) from eastern Pacific hydrothermal vents and methane seeps, with description of two new species. *Zootaxa* **2021**, 4915, 1–27.
- Kupriyanova, E.K.; Rzhavsky, A.V.; ten Hove, H.A. Family Serpulidae Rafinesque, 1815. In Handbook of Zoology. A Natural History of the Phyla of the Animal Kingdom; Schmidt–Rhaesa, A., Ed.; De Gruyter Publishers: Berlin, Germany, 2020; pp. 213–275.
- WoRMS. Serpulidae Rafinesque, 1815. 2022. Available online: https://www.marinespecies.org/aphia.php?p=taxdetails&id=988 (accessed on 23 December 2022).
- 9. Pamungkas, J.; Glasby, C.J.; Read, G.B.; Wilson, S.P.; Costello, M.J. Progress and perspectives in the discovery of polychaete worms (Annelida) of the world. *Helgol. Mar. Res.* 2019, 73, 4. [CrossRef]
- 10. Bastida-Zavala, J.R. Serpulids (Annelida: Polychaeta) from the Eastern Pacific, including a brief mention of Hawaiian serpulids. *Zootaxa* **2008**, 1722, 1–61.
- 11. Bastida-Zavala, R. *Serpula* and *Spiraserpula* (Polychaeta, Serpulidae) from the Tropical Western Atlantic and Gulf of Guinea. *ZooKeys* **2012**, *198*, 1–23. [CrossRef]
- 12. Çinar, M.E. Alien polychaete species (Annelida: Polychaeta) on the Southern coast of Turkey (Levantine Sea, Eastern Mediterranean), with 13 new records for the Mediterranean Sea. *J. Nat. Hist.* **2009**, *43*, 2283–2328. [CrossRef]
- 13. Nogueira, J.M.D.M.; Abbud, A. Three new serpulids (Polychaeta: Serpulidae) from the Brazilian Exclusive Economic Zone. *Zoosymposia* **2009**, *2*, 201–227.
- 14. Tovar-Hernández, M.A.; Méndez, N.; Villalobos-Guerrero, T.F. Fouling polychaete worms from the Southern Gulf of California: Sabellidae and Serpulidae. *Syst. Biodivers.* **2009**, *7*, 319–336. [CrossRef]
- 15. Pillai, T.G. A revision of the genera *Galeolaria* and *Pyrgopolon* (Polychaeta: Serpulidae), with discussions on opercular insertion as a character in their taxonomy and relationships, and their zoogeography. *Zootaxa* **2009**, 2060, 47–58. [CrossRef]
- 16. Sanfilippo, R. New species of *Hyalopomatus* Marenzeller, 1878 (Annelida, Polychaeta, Serpulidae) from Recent Mediterranean deep-water coral mounds and comments on some congeners. *Zoosystema* **2009**, *31*, 147–161. [CrossRef]

- 17. Bailey-Brock, J.H.; Magalhães, W.F. A new species and record of Serpulidae (Annelida: Polychaeta) from Cross Seamount in the Hawaiian Chain. *Zootaxa* **2012**, *3192*, 49–58. [CrossRef]
- 18. Bailey-Brock, J.H.; Magalhães, W.F.; Brock, R.E. Coral reef inhabiting tubeworms (Polychaeta: Serpulidae) from Enewetak, Kwajalein, Rongelap and Utirik Atolls, Marshall Islands. *J. Mar. Biol. Assoc. UK* **2012**, *92*, 967–988. [CrossRef]
- Prentiss, N.K.; Vasileiadou, K.; Faulwetter, S.; Arvanitidis, C.; ten Hove, H.A. A new genus and species of Serpulidae (Annelida, Polychaeta, Sabellida) from the Caribbean Sea. *Zootaxa* 2014, 3900, 204–222. [CrossRef]
- 20. Pernet, B.; Barton, M.; Fitzhugh, K.; Harris, L.; Lizárraga, D.; Ohl, R.; Whitcraft, C. Establishment of the reef-forming tubeworm *Ficopomatus enigmaticus* (Fauvel, 1923) (Annelida: Serpulidae) in Southern California. *Bioinvasions Rec.* 2016, *5*, 13–19. [CrossRef]
- Bastida-Zavala, J.R.; Buelna, A.S.R.; De León-González, J.A.; Camacho-Cruz, K.A.; Carmona, I. New records of sabellids and serpulids (Polychaeta: Sabellidae, Serpulidae) from the Tropical Eastern Pacific. *Zootaxa* 2016, 4184, 401–457. [CrossRef]
- Bastida-Zavala, J.R.; McCann, L.D.; Keppel, E.; Ruiz, G.M. The fouling serpulids (Polychaeta: Serpulidae) from United States coastal waters: An overview. *Eur. J. Taxon.* 2017, 344, 1–76. [CrossRef]
- 23. Yee, A.; Mackie, J.; Pernet, B. The distribution and unexpected genetic diversity of the non-indigenous annelid *Ficopomatus enigmaticus* in California. *Aquat. Invasions* **2019**, *14*, 250–266. [CrossRef]
- Oliva, M.; De Marchi, L.; Sanches, M.V.; Pires, A.; Cuccaro, A.; Baratti, M.; Chiellini, F.; Morelli, A.; Freitas, R.; Pretti, C. Atlantic and Mediterranean populations of the widespread serpulid *Ficopomatus enigmaticus*: Developmental responses to carbon nanotubes. *Mar. Pollut. Bull.* 2020, 156, 111265. [CrossRef] [PubMed]
- Grosse, M.; Pérez, R.; Juan-Amengual, M.; Pons, J.; Capa, M. The elephant in the room: First record of invasive gregarious species of serpulids (calcareous tube annelids) in Majorca (Western Mediterranean). *Sci. Mar.* 2021, *81*, 15–28. [CrossRef]
- 26. Dales, R.P. The nature of the pigments in the crown of sabellid and serpulid polychaetes. J. Mar. Biol. Assoc. UK 1962, 42, 259–274. [CrossRef]
- Fauchald, K. The polychaete worms. Definitions and keys to the orders, families and genera. *Nat. Hist. Mus. LA City. Sci. Ser.* 1977, 28, 1–188.
- Pettibone, M.H. Annelida. In Synopsis and Classification of Living Organisms; Parker, S.P., Ed.; McGraw-Hill Book Co.: New York, NY, USA, 1982; Volume 2, pp. 1–43.
- 29. Smith, R.S. Relationships within the order Sabellida (Polychaeta). Ophelia Suppl. 1991, 5, 249–260.
- 30. Rousset, V.; Rouse, G.W.; Siddall, M.E.; Tillier, A.; Pleijel, F. The phylogenetic position of Siboglinidae (Annelida), inferred from 18S rRNA, 28S rRNA, and morphological data. *Cladistics* **2004**, *20*, 518–533. [CrossRef]
- Kupriyanova, E.K.; Rouse, G.W. Yet another example of paraphyly in Annelida: Molecular evidence that Sabellidae contains Serpulidae. *Mol. Phylogenet. Evol.* 2008, 46, 1174–1181. [CrossRef]
- 32. Tilic, E.; Sayyari, E.; Stiller, J.; Mirarab, S.; Rouse, G.W. More is needed—Thousands of loci are required to elucidate the relationships of the 'Flowers of the Sea' (Sabellida, Annelida). *Mol. Phylogenet. Evol.* **2020**, *151*, 106892. [CrossRef]
- Kupriyanova, E.K.; McDonald, T.A.; Rouse, G.W. Phylogenetic relationships within Serpulidae (Annelida: Polychaeta) inferred from molecular and morphological data. Zool. Scr. 2006, 35, 421–439. [CrossRef]
- 34. Rafinesque, S.C. L'analyse de la Nature, Palermo, Italy, 1815; 224 p.
- 35. Chamberlin, R.V. The Annelida Polychaeta. "Albatross" Expedition. Mem. Mus. Comp. Zool. Harv. Coll. 1919, 48, 1–518.
- 36. Rioja, E. Estudio sistemático de las especies Ibéricas del Suborden Sabelliformia. *Trab. Mus. Nac. Cien. Nat. Ser. Zool.* **1923**, 48, 1–144.
- Pillai, T.G. Some marine and brackish-water serpulid polychaetes from Ceylon, including new genera and species. *Ceylon J. Sci. Biol. Sci.* 1960, *3*, 1–40.
- Uchida, H. Serpulid tube worms (Polychaeta, Sedentaria) from Japan with the systematic review of the group. Bull. Mar. Park Res. Stat. 1978, 2, 1–98.
- 39. Pillai, T.G. Studies on a collection of spirorbids from Ceylon, together with a critical review and revision of spirorbid systematics and an account of their phylogeny and zoogeography. *Ceylon J. Sci. Biol. Sci.* **1970**, *8*, 100–172.
- Fitzhugh, K. A systematic revision of the Sabellidae-Caobangiidae-Sabellongidae complex (Annelida: Polychaeta). Bull. Am. Mus. Nat. Hist. 1989, 192, 1–104.
- Macdonald, T.A. Phylogenetic relations among spirorbid subgenera and the evolution of opercular brooding. *Hydrobiologia* 2003, 496, 125–143. [CrossRef]
- Lehrke, J.; ten Hove, H.A.; Macdonald, T.A.; Bartolomaeus, T.; Bleidorn, C. Phylogenetic relationships of Serpulidae (Annelida: Polychaeta) based on 18S rDNA sequence data, and implications for opercular evolution. *Org. Divers. Evol.* 2007, 7, 195–206. [CrossRef]
- Kupriyanova, E.K.; ten Hove, H.A.; Sket, B.; Zakšek, V.; Trontelj, P.; Rouse, G.W. Evolution of a unique freshwater cave-dwelling serpulid polychaete *Marifugia cavatica* Absolon and Hrabě, 1930. *Syst. Biodivers* 2009, 7, 389–401. [CrossRef]
- Kupriyanova, E.K.; Nishi, E. Serpulidae (Annelida, Polychaeta) from Patton-Murray Seamount, Gulf of Alaska, North Pacific Ocean. Zootaxa 2010, 2665, 51–68. [CrossRef]
- Rzhavsky, A.V.; Kupriyanova, E.K.; Sikorski, A.V. Two new species of serpulid polychaetes from the Barents Sea. *Fauna Norv.* 2013, 32, 27–38. [CrossRef]
- 46. Pillai, T.G. Studies on a collection of marine and brackish-water polychaete annelids of the family Serpulidae from Ceylon. *Ceylon J. Sci. Biol. Sci.* **1971**, *9*, 88–130.

- 47. ten Hove, H.A.; Weerdenburg, J.C.A. A generic revision of the brackish-water serpulid *Ficopomatus* Southern 1921 (Polychaeta: Serpulinae), including *Mercierella* Fauvel 1923, *Sphaeropomatus* Treadwell 1934, *Mercierellopsis* Rioja 1945 and *Neopomatus* Pillai 1960. *Biol. Bull.* **1978**, 154, 96–120. [CrossRef] [PubMed]
- 48. Pillai, T.G. *Ficopomatus talehsapensis*, a new brackish-water species (Polychaeta: Serpulidae: Ficopomatinae) from Thailand, with discussions on the relationships of taxa constituting the subfamily, opercular insertion as a taxonomic character and their taxonomy, a key to its taxa, and their zoogeography. *Zootaxa* **2008**, *1967*, 36–52.
- 49. Li, S.-C.; Wang, A.-T.; Deng, L. A new euryhaline species of the genus *Ficopomatus* Southern 1921 (Polychaeta: Serpulidae) from China. *Zool. Stud.* **2012**, *51*, 1165–1174.
- 50. Styan, C.A.; McCluskey, C.F.; Sun, Y.; Kupriyanova, E.K. Cryptic sympatric species across the Australian range of the global estuarine invader *Ficopomatus enigmaticus* (Serpulidae, Annelida). *Aquat. Invasions* **2017**, *12*, 53–65. [CrossRef]
- 51. Fauvel, P. Un nouveau serpulien d'eau saumâtre Mercierella n. g. enigmatica n. sp. Bull. Soc. Zool. France 1923, 47, 424–430.
- 52. Absolon, K.; Hrabě, S. Über einen neuen Süsswasser–Polychaeten aus den Höhlengewässern der Herzegowina. Zool. Anz. 1930, 88, 249–264.
- Arteaga-Flórez, C.; Fernández-Rodríguez, V.; Londoño-Mesa, M.H. First record of the polychaete *Ficopomatus uschakovi* (Pillai, 1960) (Annelida, Serpulidae) in the Colombian Caribbean, South America. *Zookeys* 2014, 371, 1–11. [CrossRef]
- Caullery, M.; Mesnil, F. Note sur deux serpuliens nouveaux (Oriopsis metchnikowi n. g., n.sp. et Josephella marenzelleri n.g., n.sp.). Zool. Anz. 1896, 10, 482–486.
- 55. Fauvel, P. Deuxième note préliminaire sur les Polychètes provenant des campagnes de l'Hirondelle et de la Princesse-Alice, ou déposées dans la Musée Océanographique de Monaco. *Bull. Inst. Océanogr.* **1909**, *142*, 1–76.
- 56. Hartman, O. *Catalogue of the Polychaetous Annelids of the World;* University of Southern California Press: Los Angeles, CA, USA, 1959; Volume 23, pp. 1–628.
- 57. ten Hove, H.A. Towards a phylogeny in serpulids (Annelida; Polychaeta). In *Proceedings of the First International Polychaete Conference*; Hutchings, P.A., Ed.; Linnean Society of New South Wales: Sydney, Australia, 1984; pp. 181–196.
- 58. Kupriyanova, E.K. Life history evolution in Serpulimorph polychaetes: A phylogenetic analysis. *Hydrobiologia* **2003**, *496*, 105–114. [CrossRef]
- 59. ten Hove, H.A.; Kupriyanova, E.K. Taxonomy of Serpulidae (Annelida, Polychaeta): The state of affairs. Zootaxa 2009, 2036, 1–126. [CrossRef]
- 60. Rzhavsky, A.V.; Kupriyanova, E.K. Evolution of spirorbin brooding: A phylogenetic analysis and a test of an oxygen limitation hypothesis. *Invertebr. Zool.* **2019**, *16*, 409–430. [CrossRef]
- 61. Pleijel, F. On character coding for phylogeny reconstruction. *Cladistics* 1995, 11, 309–315. [CrossRef]
- 62. Swofford, D.L. PAUP*. Phylogenetic Analysis Using Parsimony (and Other Methods); Version 4; Sinauer Associates: Sunderland, MA, USA, 2002.
- 63. Nóren, M.; Jordelius, U. Phylogeny of Prolecithophora (Platyhelminthes) inferred from 18S rDNA sequences. *Cladistics* **1999**, 15, 103–112. [CrossRef] [PubMed]
- 64. Osborn, K.J.; Rouse, G.W.; Goffredi, S.K.; Robison, B.H. Description and relationships of *Chaetopterus pugaporcinus*, an unusual pelagic polychaete (Annelida, Chaetopteridae). *Biol. Bull.* **2007**, *212*, 40–54. [CrossRef] [PubMed]
- Brown, A.C.; Rouse, G.W.; Hutchings, P.; Colgan, D. Assessing the usefulness of histone H3, U2 snRNA and 28S rDNA in analyses of polychaete relationships. *Austr. J. Zool.* 1999, 47, 499–516. [CrossRef]
- 66. Burnette, A.B.; Struck, T.H.; Halanych, K.M. Holopelagic *Poeobius meseres* ("Poeobiidae," Annelida) is derived from benthic flabelligerid worms. *Biol. Bull.* 2005, 208, 213–220. [CrossRef]
- 67. Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [CrossRef]
- 68. Nixon, K.C. The Parsimony Ratchet, a new method for rapid parsimony analysis. Cladistics 1999, 15, 407–414. [CrossRef]
- Müller, K. PRAP—Computation of Bremer support for large data sets. *Mol. Phylogenet. Evol.* 2004, 31, 780–782. [CrossRef] [PubMed]
- 70. Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Res.* 2004, 32, 1792–1797. [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. *Mol. Biol. Evol.* 2013, 30, 772–780. [CrossRef] [PubMed]
- 72. Vaidya, G.; Lohman, D.J.; Meier, R. Sequence Matrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. *Cladistics* **2011**, *27*, 171–180. [CrossRef]
- 73. Edler, D.; Klein, J.; Antonelli, A.; Silvestro, D. RaxmlGUI 2.0: A graphical interface and toolkit for phylogenetic analyses using RAxML. *Methods Ecol. Evol.* **2021**, *12*, 373–377. [CrossRef]
- 74. Kozlov, A.M.; Diego, D.; Flouri, T.; Morel, B.; Stamatakis, A. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. *Bioinformatics* **2019**, *35*, 4453–4455. [CrossRef]
- 75. Darriba, D.; Posada, D.; Kozlov, A.M.; Stamatakis, A.; Morel, B.; Flouri, T. ModelTest-NG: A new and scalable tool for the selection of DNA and protein evolutionary models. *Mol. Biol. Evol.* **2020**, *37*, 291–294. [CrossRef]

- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. *Syst. Biol.* 2012, 61, 539–542. [CrossRef]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [CrossRef]
- 78. Lewis, P.O. A likelihood approach to estimating phylogeny from discrete morphological character data. *Syst. Biol.* **2001**, 50, 913–925. [CrossRef]
- 79. Maddison, W.P.; Maddison, D.R. Mesquite: A Modular System for Evolutionary Analysis. Version 3.70. Available online: http://mesquiteproject.org (accessed on 12 December 2022).
- Kupriyanova, E.K.; Bastida-Zavala, R.; Halt, M.N.; Lee, M.; Rouse, G.W. Phylogeny of the *Serpula-Crucigera-Hydroides* clade (Serpulidae; Annelida) using molecular and morphological data: Implications for operculum evolution. *Invertebr. Syst.* 2008, 22, 425–437. [CrossRef]
- Bastida-Zavala, J.R.; ten Hove, H.A. Revision of *Hydroides* Gunnerus, 1768 (Polychaeta: Serpulidae) from the Eastern Pacific Region and Hawaii. *Beaufortia* 2003, 53, 67–110.
- Bok, M.J.; Capa, M.; Nilsson, D.-E. Here, there and everywhere: The radiolar eyes of fan worms (Annelida, Sabellidae). *Integr. Comp. Biol.* 2016, *56*, 784–795. [CrossRef]
- Vinn, O.; Kirsimiäe, K.; ten Hove, H.A. Tube ultrastructure of *Pomatoceros americanus* (Polychaeta, Annelida): Implications for the tube formation of serpulids. *Est. J. Earth Sci.* 2009, 58, 148–152. [CrossRef]
- Ippolitov, A.P.; Vinn, O.; Kupriyanova, E.K.; Jäger, M. Written in stone: History of serpulid polychaetes through time. *Mem. Mus. Vict.* 2014, 71, 123–160. [CrossRef]
- 85. Simon, C.; van Niekerk, H.; Burghardt, I.; ten Hove, H.A.; Kupriyanova, E.K. Not out of Africa: *Spirobranchus kraussii* (Baird, 1865) is not a global fouling and invasive serpulid of Indo-Pacific origin. *Aquat. Invasions* **2019**, *14*, 221–249. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.