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Abstract: In an aquatic ecosystem, the supply of nutrients is essential for the biogeochemical cy-
cle, and it affects the taxonomic composition of the microbial communities. Here, by using high-
throughput sequencing (HTS) of the 16S and 18S rRNA gene fragments, we compared free-living
(FL) and particle-associated (PA) bacterial communities and microeukaryotic communities in the
areas with different nutrient intakes in freshwater Lake Baikal during the ice-covered and summer
periods. Samples were taken at the inflow of the Selenga River, which is the main tributary of the
lake, and at several established coastal research stations. The metabolic potential of the bacterial
communities was predicted using PICRUSt. Differences were found in both FL and PA communities
of the river mouth compared to the photic zone of the lake. The composition of FL communities
was significantly different between the sampling sites in the ice-covered period, which is most likely
influenced by different hydrochemical conditions. In contrast, the PA communities were more similar
during the ice-covered period, but they changed considerably from spring to summer and their
diversity increased. The diversity of the microeukaryotic communities also increased in summer,
which may have contributed to the increase in bacterial diversity. In co-occurrence networks analysis,
the number of interconnected bacterial OTUs in FL exceeded those for PA. The FL communities were
dominated by Actinobacteriota, while the major PA OTUs belonged to a mixed cluster, which were
mainly assigned to the phyla Bacteroidota and Verrucomicrobiota. As a result, PA communities were
enriched in pathways responsible for the metabolism of sulfur, fucose, cellulose and urea. Our results
confirm the difference between the FL and PA bacterial communities in Lake Baikal. These results
also highlight the complex pattern of interactions between bacteria and microeukaryotes in a natural
freshwater ecosystem across spatial and temporal scales.

Keywords: free-living; particle-associated; bacteria; microeukaryotes; freshwater; high-throughput
sequencing; ice-covered period; summer

1. Introduction

In aquatic ecosystems, bacteria play an essential role in the cycling of matter; in
particular, they are capable of consuming organic matter synthesized by primary producers
and passing this matter on to the next trophic levels [1,2]. According to their lifestyle,
aquatic bacteria can be divided into particle-associated (PA) and free-living (FL) forms [3–5].
PA communities settle on algal cells and non-living particulate matter (either organic
or inorganic), thus forming aggregates [5], while FL bacteria inhabit the surrounding
water [4]. The composition of FL and PA bacterial communities of different habitats has
been thoroughly investigated using HTS, including lakes [6–8], rivers [9–11], estuaries and
ocean coasts [12–17] and sea [18]. In marine ecosystems, PA communities are dominated
by Bacteroidota, Cyanobacteria and Gammaproteobacteria, while FL communities are mostly
dominated by Alphaproteobacteria [14,19,20]. A study of PA and FL bacterial communities
during a massive bloom of cyanobacteria showed changes in the composition of both
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communities during the development of cyanobacteria [21]. It was shown that both FL and
PA communities undergo seasonal succession [18,22–24], due to the changes in both abiotic
(temperature, water mixing, hydrochemistry, etc.) and biotic (phytoplankton, protozoa,
zooplankton and virioplankton) environmental factors.

The oligotrophic freshwater Lake Baikal mostly contains nutrients in dissolved form,
rather than as suspended particles [25]. Their concentrations depend mostly on the growth
of micro- and macro-organisms, which are in turn affected by seasonal hydrological changes,
such as temperature stratification, mixing and water dynamics [26–29]. Most of the partic-
ulate organic matter is allocthonously delivered by the lake tributaries; the largest one is
the Selenga River, located on the Eastern coast of the middle basin of Lake Baikal. Water
of the Selenga River is distinct from the lake water in hydrological parameters [30] and
chemical composition [31–33], as well as in the composition of phytoplankton [34] and bac-
terioplankton [35]. The Selenga River is characterized by a high concentration of biogenic
elements, such as silicon and phosphorus [32,33], as well as organic matter [31].

For the last decade, microbial communities of Lake Baikal have been actively studied
using 16S rRNA gene metabarcoding. Research studies aimed to explore different habitats:
photic layer [36,37], sediments [38–41], sub-ice [42,43], rivers and estuarial waters [44]. One
of the latest works was focused on the seasonal succession of bacterial and microeukaryotic
pelagic communities of the photic layer [45], and showed the dynamics of the commu-
nity structure from March to September. Correlations between some bacterial taxa and
microalgae species were revealed for communities of the photic layer in spring [46]. In
addition, it was shown that heterotrophic bacteria were positively correlated with diatoms
Aulacoseira baicalensis (Wisłouch) Simonsen and Nitzschia graciliformis Lange-Bertalot &
Simonsen, and negatively correlated with green alga Koliela longiseta (Vischer) Hindák. Our
previous work [47] has shown the difference between the FL and PA bacterial communities
in different ecotopes: on the bottom surface of the ice and in the water column. Additionally,
the influence of the concentration of the organic matter on the composition of FL and PA
communities was revealed. A separate study of the FL and PA bacteria can produce a
deeper insight into the functioning of the community and the ways in which it changes,
since these two sub-communities differ in their metabolic activities [48,49].

In this work, we aimed to study the effect of the Selenga River, the main tributary of
Lake Baikal, on the structure of FL and PA communities in the lake. Further, here we will
discuss how (and whether) FL and PA communities change between seasons, along with
the changing composition of microeukaryotic plankton. We hypothesize that the free-living
component of the bacterial community should be more stable, or change slowly, while
PA communities will be more sensitive to the environmental changes in an oligotrophic
freshwater lake, such as Lake Baikal.

2. Materials and Methods
2.1. Site Description, Sampling and Environmental Parameters

Water samples were taken during the ice cover and summer periods in the southern
and middle basins of Lake Baikal. The sampling was carried out at three stations of 50, 200,
and 1000 m away from the shore near Bolshie Koty settlement (Varnachka area) in April
and July 2018, and at the Selenga Shallow Waters at four stations of 0, 1, 3, and 5 km away
from the Selenga River mouth (Kharauz channel) in March 2019 (Figure 1). Samples were
taken from the 0, 3, 5, 7, 10, and 30 m layers (Varnachka area), and from the 0, 4, 10, 15, 20,
and 30 m layers (Selenga River Shallow) using Niskin bottles (Table S1). The ice thickness
and water temperature were measured during sampling. The chemical composition was
examined according to routine procedures used in freshwater chemistry [50,51]; pH was
measured using a pH-meter Expert-001 (Russia); and the electrical conductivity of water
(Ec) was measured with a conductometer Expert-002 (Russia). Dissolved oxygen concen-
tration was measured by the Winkler method. Nutrients were measured in filtered and
unfiltered samples. To determine the dissolved fraction, the measurements were carried
out in water filtered through 0.45-µm pore-size membrane filters (Advantec, Tokyo, Japan).
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The difference between the content in unfiltered and filtered water was taken as the content
in suspension. The concentration of biogenic elements was determined by a spectropho-
tometer UNICO-2100 (UNICO, Dayton, NJ, USA): nitrites with Griess reagent, nitrates with
sodium salicylate, ammonia nitrogen by the indophenol method and phosphates by the
Deniges-Atkins method, using stannous chloride as the reducing agent. Silicic acid content
was analyzed by a spectrophotometric method based on measuring the color intensity of
the yellow silicomolybdic heteropolyacid. Total phosphorus and nitrogen were measured
after high-temperature persulfate oxidation with spectrophotometer UNICO-2100; total
organic matter (TOM) was analyzed by methods of bichromate oxidation.
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Figure 1. Sampling sites near the village of Bolshiye Koty, Varnachka area (V1, V2 and V3), and in the
area where the Selenga River flows into the lake (Kharauz Channel) (S1, S2, S3 and S4).

For identification and quantification of phytoplankton, 500 mL of each sample were
fixed by Lugol solution. Microalgae were counted using the Axiostar Plus optical micro-
scope (Zeiss, Oberkochen, Germany). Total phytoplankton abundance (TPA) and total
phytoplankton biomass (TPB) were calculated as described in previous work [47]. For
identification of microalgae composition, water samples were filtered through 0.8-µm filters
(Whatman Part of GE HealthCare, Chicago, IL, USA), then placed on stubs for scanning
electron microscopy (SEM), and coated with colloidal gold in an SDC 004 vacuum evapora-
tor (BALZERS UNION, Balzers, Liechtenstein). Identification of the microalgal species was
performed using SEM FEI Quanta 200 (FEI, Hillsboro, OR, USA).

2.2. DNA Extraction and High-Throughput Sequencing

We used 5 L of water from each sample for DNA extraction. Free-living and particle-
associated bacterial fractions were separated by filtration [52]. The 5-µm pore-size filter
(“REATREK-Filter”, Obninsk-3, Russia) was firstly used to collect the fraction of particles
with a size above >5 µm, which included the PA bacterial community component. Then,
the filtrate was passed through the 0.22-µm pore-size filter (“REATREK-Filter”, Obninsk-3,
Russia) to collect the fraction, with a size range between 0.22 and 5 µm, which included
the FL bacterial community component. Collected biological material was washed away
from the filters with TE buffer (10 mM Tris–HCl, pH 7.5, 1 mM EDTA) into sterile bottles
and preserved at –80 ◦C until DNA extraction. A piece of filter from each sample was also
preserved for a SEM study (Figure S1).

Total DNA was extracted from the size-fractionated samples with lysozyme (1 mg/mL),
proteinase K, 10% SDS and phenol:chloroform:isoamyl alcohol mixture (25:24:1), as previ-
ously described [53]. DNA extracts from 32 FL and 32 PA samples (Supporting Informa-
tion Table S1) were analyzed by HTS for bacterial diversity (V3–V4 region of 16S rRNA
gene) using the primer pair U341F (CCTACGGGRSGCAGCAG) and U785R (GGACTAC-
CVGGGTATCTAAKCC) [54]; and, for eukaryotic diversity, (V8–V9 region of 18S rRNA
gene) of 32 PA samples were analyzed using the primer pair V8f (ATAACAGGTCTGT-
GATGCCCT) and 1510R (CCTTCYGCAGGTTCACCTA) [55]. Sequencing was done by
the Core Centrum “Genomic Technologies, Proteomics and Cell Biology” of ARRIAM
(Saint-Petersburg, Russia), using the MiSeq Illumina Genome Sequencer system with the
Reagent Kit v3 to obtain 300 bp paired-end reads.
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2.3. HTS Data Analysis and Quality Control (QC)

Analysis of sequencing data was performed with usearch v.10 [56], vsearch v.2.9.1 [57]
and mothur v.1.43.0 [58]. Raw reads were merged, primer sequences were truncated, and
contigs were filtered by expected error threshold 1.0 with usearch (option -fastq_maxee 1.0).
Next, sequences were clustered with vsearch command “–cluster_size” at the 0.97 identity
threshold, and OTUs with less than two reads were discarded. OTU centroids were
subjected to chimera filtering by UCHIME-denovo, followed by UCHIME-reference of
vsearch. Finally, a community composition matrix was generated by remapping of merged
and quality-filtered reads to the chimera-free set of OTUs with an identity threshold of
0.97 (vsearch command “-usearch_global”). OTU sequences were taxonomically classified
using SILVA v.138 (Bremen, Germany) in Mothur v.1.43.0, with the probability cutoff set
to 80 and further filtered by taxonomy to drop chloroplast-specific, mitochondria-specific
and multicellular eukaryotic OTUs, as well as OTUs with Kingdom = “unknown”. To
clarify the taxonomic affiliation of eukaryotic OTUs, an analysis of nucleotide sequences
was carried out using BLASTN software and the GenBank database.

2.4. Statistical Analyses and Data Visualization

Further statistical analyses were performed in R. The rarefaction curves, ACE index
(non-parametric species richness estimators), and Shannon, Simpson, and inverse Simpson
indices were calculated to measure the alpha diversity. OTUs with a total abundance below
0.01% were excluded from the community composition matrix prior to these calculations.

One-way ANOVA and Kruskal-Wallis statistical tests were used to examine the impact
of independent factor variables on the discrete/continuous environmental variables and
alpha-diversity metrics associated with the microeukaryotic community profiles. The
Tukey HSD post-hoc test was used to check the difference between the distribution of a
variable if more than two categories were tested by ANOVA. The pairwise Tukey HSD
test p-value was reported is this case. Two-way ANOVA was used to estimate the main
effect of two factor models, as well as the effect of their interaction. We calculated two-way
ANOVA statistics with R function “Anova” from package “car”, using the “type-III” test
for experiments with unbalanced design. The p-values, which were obtained by testing the
independent factor variable (or two of them) versus a set of dependent variables (fifteen
environmental variables and five alpha-diversity metrics), were adjusted using the false
discovery rate (FDR) procedure. Both raw and adjusted p-values were reported.

Exploratory analyses of community composition were performed using vegan v.2.5-
6 [59], phyloseq [60], pvclust [61], pheatmap [62] and ggh4x [63]. For exploratory analyses,
such as PCoA, RDA, and heatmaps, OTUs having relative abundance above 0.1% were
plotted (unless another relative abundance threshold specified in figure). OTU counts
were transformed with log(x + 1) and subjected to the transformation-based principal coor-
dinate analysis (tb-PCoA). The pairwise distance matrix computed with the Bray-Curtis
dissimilarity index was used for clustering community profiles by UPGMA in heatmaps.
The transformation-based redundancy analysis (tb-RDA) was used to evaluate the im-
pact of environmental factors on species composition. OTUs having relative abundance
above 0.1% were selected to produce a count matrix. OTU counts were transformed with
log(x + 1) and subjected to tb-RDA. PERMANOVA was used to compare the groups of
profiles by independent factor variables. The R-functions vegan:adonis2 and pairwiseAdo-
nis:pairwise.adonis2 called for one-factor or two-factor combinations with the number of
permutations being 9999.

Explanatory variables were chosen by a “forward selection” approach, followed
by further filtering on the p-value and the impact of the model ability to explain the
total variance. The backward elimination strategy was also employed, and its results
generally agreed with the forward selection approach. The DESeq2 package [64] was
used to evaluate the significance of OTU abundance differences between the groups of
samples. The raw community composition matrix of non-transformed OTU counts, which
was generated by the QC/clustering pipeline described above (usearch-vsearch-taxonomic
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filtering), was used as DESeq2 input with lifestyle (FL/PA levels) as a factor variable to
group communities. The phyloseq object was transformed to a DESeq2 object, followed by
estimation of size factors with geometric means of OTU counts, “local” dispersion estimate,
and computation of Wald test statistics. For testing of OTU differential abundance, the
FDR-adjusted p-value and log-fold change (LFC) thresholds were set to 0.01 and log2
(1.5), respectively.

To analyze OTU co-occurrence, the compositional matrices of 16S- and 18S-rRNA gene
amplicons were filtered to contain OTUs with the sample-wise presence above 25% (i.e., at
least one-fourth of profiles to have non-zero counts) and minimum taxon abundance of
50/100 reads for 16S/18S-rRNA gene datasets, respectively. Next, a set of co-occurrence
graphs was computed with four methods: SpiecEasi [65], MAGMA [66], Zi-LN [67] and
SparcCC [68]. The target edge number for a graph was set to 1200/500 for 16S/18S-rRNA
gene datasets, respectively. Graphs were compared to each other to share a maximum
number of edges between three out of five methods. In both cases, graphs generated by
MAGMA, SpiecEasi and Zi-LN methods shared maximum numbers: 494 for 16S rRNA, and
291 for 18S rRNA gene datasets. These subsets of the shared edges were used to construct
the final 16S/18S rRNA gene co-occurrence graphs, and to overlay the results of differential
abundance analysis. The R-code to perform co-occurrence analysis is available on GitHub:
https://github.com/yuragal/FL-PA-co-occurence-networks (accessed on 10 March 2023).

The functional prediction analysis of the bacterial communities was performed for
the 16S rRNA gene profiles using PICRUSt2 [69]. To investigate the potential functional
differences between predicted KEGG KO, EC and MetaCyc pathway annotations, the
abundance matrices were generated in PICRUSt2 and subjected to statistical analysis with
ALDEx v.1.18.0 [70], with the number of Monte-Carlo simulations set to 500, and grouping
the abundance profiles into FL and PA categories.

3. Results
3.1. Environmental Parameters, Phytoplankton Abundance and Diversity, According to Microscopy

We observed significant differences in the physicochemical parameters of water, de-
pending on the sampling area and season (Figure 2; Table 1). Water temperature was one of
the significant seasonal factors. During the ice period, near the Bolshie Koty settlement, the
largest values of pH and a high oxygen concentration (from 13.55 mg/L to 14.35 mg/L)
were noted. Concentrations of dissolved Si, NH4

+, NO2, TOM and Ec were higher at the
Selenga Shallow compared to Varnachka in both seasons (Figure 2). The highest concen-
tration of the dissolved Si was at the river mouth (6.02 mg/L) (Table S1); this parameter
was only between 0.64 and 1.02 mg/L in the water column of Lake Baikal. Concentrations
of biogenic elements in Baikal water at the Selenga Shallow were mostly lower than in
the river. In July 2018, the spread of mixed cold water was shown. At that time, the
hydrochemical parameters were similar between all stations (Figure S2; Table S1). The low
temperature (3.2–4.7 ◦C) and elevated concentrations of nitrate nitrogen and phosphates
indicated the influx of deep pelagic water into the coastal area. Ammonium and nitrites
were not observed in summer.

TPA was higher in the ice cover period compared to the summer (Figure 2). The
highest TPA was observed at the station V1UI at a depth of 0 m during the under-ice
period, accounting for 1.01 × 106 cells/L (Figure S1, Table S1). According to microscopy,
during the ice period, the dinoflagellate Gymnodinium baicalense N.L. Antipova dominated
at the surface, while the diatom alga Ulnaria acus (Kützing) Aboal became more common in
deeper layers in the Varnachka area (Figure S1). In summer, the dominant taxa were the
green alga Monoraphidium griffithii (Berkeley) Komárková-Legnerová and the chrysophyte
Dinobryon cylindricum O.E. Imhof. Diatoms were also a part of these communities, but in a
smaller proportion than during the ice period. There was a change in the dominant groups
of microalgae in the ice-covered period and in summer. During the ice period, one could see
a difference in the composition of phytoplankton of surface and deep waters, which was not
observed in summer. In contrast, Nitzschia graciliformis and benthic diatom algae dominated

https://github.com/yuragal/FL-PA-co-occurence-networks
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at the Selenga mouth. Further away from the mouth, abundance of dinoflagellates G.
baicalense and Peridinium euryceps Rengefors & Barbara Meyer increased in the communities;
M. griffithii and the cryptophyte Rhodomonas pusilla (Bachmann) Javornický were observed
in deep sampling layers.
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post hoc tests: *** ≤ 0.001; 0.001 ≤ ** ≤ 0.01; 0.01 ≤ * ≤ 0.05.

3.2. Diversity and Composition of Microeukaryotic Communities, According to Metabarcoding Data

Since our size-fractionation strategy naturally selected the microeukaryotic commu-
nities, 18S rRNA gene amplicons were analyzed only for PA samples. Thirty analyzed
samples have produced a total of 250,226 reads; two samples (V2UI-30-PA and S4UI-10-PA)
have been removed from further analyses because of low coverage. The OTU number
varied between 46 and 143 OTUs per community profile (Table S2). Rarefaction curves
suggested that the sequencing effort was sufficient to estimate the community diversity
(Figure S3). The community richness and diversity were higher in summer than in the ice
cover period (Figure 3; Table S2).
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Table 1. One-way ANOVA computed for environmental variables.

IndepVar1 * DepVar
ANOVA Kruskal-Wallis

p padj padj Sign p padj padj Sign

month pH 9.04 × 105 1.45 × 104 *** 6.03 × 108 8.78 × 108 ***
month Temp 5.87 × 1035 4.70 × 1034 *** 3.65 × 1011 1.95 × 1010 ***
month Ec 1.84 × 104 2.68 × 104 *** 2.58 × 109 6.87 × 109 ***
month O2_conc 5.02 × 104 6.69 × 104 *** 5.61 × 108 8.78 × 108 ***
month O2_sat 4.46 × 105 8.93 × 105 *** 2.62 × 108 4.66 × 108 ***
month Si_diss 8.62 × 104 1.06 × 103 ** 5.95 × 1012 4.76 × 1011 ***
month NH4

+_diss 1.75 × 103 1.99 × 103 ** 1.69 × 104 1.69 × 104 ***
month NO2_diss 2.12 × 1016 1.13 × 1015 *** 1.32 × 1010 5.27 × 1010 ***
month NO3_diss 2.86 × 102 2.86 × 102 * 5.03 × 107 6.19 × 107 ***
month PO4_diss 1.95 × 1013 7.78 × 1013 *** 1.76 × 108 4.01 × 108 ***
month Ptot_diss 6.59 × 108 2.11 × 107 *** 4.60 × 106 5.25 × 106 ***
month TOM 5.27 × 105 9.36 × 105 *** 1.78 × 105 1.90 × 105 ***
month TMA 4.07 × 106 9.31 × 106 *** 8.57 × 1010 2.74 × 109 ***
month TMB 6.24 × 103 6.66 × 103 ** 2.60 × 107 3.47 × 107 ***

Column legend: Indep Var1—independent variables used to divide the dataset into subgroups | Dep Var—tested
dependent variable | ANOVA/Kruskal-Wallis p-values | p—p-value | padj—FDR-adjusted p-value | padj sign—the
adjusted p-value significance code: *** ≤ 0.001; 0.001 ≤ ** ≤ 0.01; 0.01 ≤ * ≤ 0.05; *—only rows with ANOVA
padj ≤ 0.1 are shown, i.e., cases where the factor-wise distributions of dependent variable differ significantly.
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The taxonomic composition of microeukaryotes varied with season (Figure 4A). It
was dominated by Dinoflagellata, Ciliophora and Diatomea during the ice cover period
(Figure 4B). Moreover, depth-dependent changes in under-ice community composition
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could be observed (Figure 4B). The surface water communities formed a separate group,
consisting of all 0-m depth profiles, with a couple of 4- and 5-m communities, which were
dominated by Dinoflagellata, except the river mouth communities (Figure 4B). Indeed,
PERMANOVA revealed significant differences for groups of microeukaryotic profiles using
the two-factor “season”/“depth category” model (season: R2 = 0.42, p = 0.0024; condi-
tional depth category: R2 = 0.12, p = 0.0024). Obviously, the similar composition of the
microeukaryotic profiles in summer and clear separation of the sub-ice communities by the
depth of sampling layer resulted in this effect. Heatmap analysis showed that the surface
water communities (both at Selenga and the Varnachka area) were dominated by OTUs,
whose sequences had the best match with sequences of Scrippsiella/Apocalathium (OTU4),
Gymnodinium (OTU22) and OTU231, and OTU1 related to Dinophyceae (Figure 5; Table S3).
Deeper waters (S3UI-10, S3UI-15, S4UI-20, V2UI-10, V3UI-5, V3UI-10 and V3UI-30) were
mostly inhabited by a diverse group, with the best match with sequences of diatoms Ul-
naria (OTU6), Fragilaria (OTU32), Discostella/Thalassiosira (OTU31), Nitzschia (OTU213); and
dinoflagellates Gyrodinium (OTU9), group of OTU related to Ciliophora (Figures 4B and 5).
S4UI-30 was dominated by diatom Aulacoseira islandica (OTU30). The river mouth samples
(S1UI-0, S1UI-4) were exceptions to this trend. The green alga Tetracystis/Chlamydomonas
(OTU12), diatoms Diatoma (OTU17), Nitzschia (OTU8, OTU11) and Discostella/Thalassiosira
(OTU31); Chytridiomycetes (OTU99) and Chrysophyceae (OTU39) prevailed in these samples.
In contrast, no depth-dependent change was observed in summer (Figure 4). All summer
communities were dominated by Chlorophyta, Dinoflagellata, Diatomea, Ciliophora and
Chrysophyceae (Figure 4B). The most abundant OTUs belonged to Gyrodinium (OTU9),
Discostella/Thalassiosira (OTU31), Peridiniphycidae (OTU21), Choreotrichia (OTU20) and Ul-
naria (OTU6). Littoral communities (V1, V2) were dominated by Ulotrix zonata (OTU16).
Microscopy data confirmed the relationship between the microalgae composition and depth
(Figure S2).

3.3. Diversity of FL and PA Bacterial Communities

We have sampled FL and PA bacteria from the photic layer of Lake Baikal at two basins
with different nutrient intakes. The samples were taken from various depths, distances from
the shore, and seasons, thus significantly extending our previous comparative study [47].
For 61 bacterial community samples, a total of 463,700 reads were produced (310653 for
FL and 153,137 for PA). Three samples (V2UI-10-FL, V2UI-10-PA and V3UI-5-PA) were
excluded from further analysis, due to a low coverage. The number of OTUs varied be-
tween 201 and 415 in FL, and between 84 and 272 in PA samples (Table S2). Rarefaction
curves suggested that the sequencing effort was enough to estimate the community di-
versity (Figure S4), although the analysis of PA bacterial communities could benefit from
further sequencing. According to the alpha-diversity indices (ACE, Shannon, Simpson and
InvSimpson), FL communities were more diverse than PA ones (Figure 6A). The merged
FL+PA bacterial profiles differed significantly in richness and diversity between seasons
(Figure 6B). Furthermore, if one is to account the lifestyle factor, the diversity of FL commu-
nities stayed roughly constant, while the diversity of PA communities increased in summer
(Figure 6C).

3.4. Beta-Diversity and Microbial Taxa Differing by Size Fractions and Seasons

PCoA showed that the FL communities clustered separately from PA ones (Figure 7).
Generally, the lifestyle factor variable produced the highest explained variance in PER-
MANOVA test (R2 = 0.38, p = 1 × 104). The season factor (the ice cover versus the open-
water periods) also had a considerable impact on similarity of profiles, explaining ~11% of
variance (p = 1 × 104), and these two independent variables together explained almost half
of the total variation (R2 = 0.43, p = 1 × 104). By using the product of two-factor variables,
“site“ and “season“, as well as the lifestyle variable, one may assess the similarity of sub-ice
and open-water microbial communities. Indeed, the under-ice microbial profiles of Selenga
and Varnachka were different: the effect of the site, season and lifestyle factors explained
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about a half of the total variation between these groups, with the conditional effect being
more than one-third (R2 = 0.38, p = 1 × 104). However, the variation explained between
the under-ice and open-water microbial communities was even higher: the conditional
effect of the site, season and lifestyle was above a half of total variation for the Varnachka
under-ice versus open-water comparison (R2 = 0.58, p = 1 × 104), and 45% when comparing
the Selenga under-ice and Varnachka open-water bacterial profiles (p = 1 × 104).
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Figure 4. Microeukaryotic community composition of PA samples. PCoA of microeukaryotic com-
munities. Glyph shape denotes under-ice (circle) and open-water (square) periods of community
sampling. Glyphs are colored according to the depth at the sampling point. The under-ice samples of
the upper layers circles are colored by the black oval, the under-ice samples of the deep layers are
colored by the black dotted oval, and the summer samples circles are colored by the red oval (A).
Hellinger-transformed relative abundances of the top-13 microeukaryotic phylotypes in PA commu-
nities. The bar stacks are arranged into four facets by two factor variables: “Layers“ and “Period”.
The profiles are horizontally sorted by sampling site, month and sampling layer. Taxa presented
in the color legend are sorted by total abundance in the decreasing order, except the last category,
“Other”. The order of phylotypes in each bar is the same as in the color legend (B).

The FL communities were dominated by Actinobacteriota, Bacteroidota, Cyanobacteria
and Gammaproteobacteria (Figure 8A), while PA were mostly composed of Verrucomicrobiota,
Cyanobacteria and Bacteroidota (Figure 8B). The largest number of OTUs in the FL commu-
nities, irrespective of season, belonged to the CL500-29 marine group (Figure 9). Among
other FL bacteria constantly presented throughout all time points were SAR11_clade
III, Polynucleobacter, Limnohabitans and others. In FL/PA differential abundance analy-
sis, the majority of significantly different OTUs were more abundant in FL, with only a
few being predominantly in PA (Table S5). The most abundant OTUs shared by all PA
samples were Luteolibacter and Cyanobium PCC-6307 (Figure 9). OTUs of Planctomycetota
(OTU133_Pirelulla, OTU74_Rubinisphaeraceae and OTU214_Phycisphaeraceae) also had an
increased abundance in summer PA communities’ profiles. The season had a stronger
effect on the composition of PA communities; it could be seen that, in summer, a sepa-
rate subcluster was formed from OTUs that were not encountered during the ice cover
period. The FL profiles from different seasons were more similar to each other, suggesting
a less season-dependent community composition (Figure 7), as revealed by tb-PCoA total
variation (Figure S5), and a slightly less conditional effect for the site and season factors
(FL: R2 = 0.28, p = 1 × 104; PA: R2 = 0.30, p = 1 × 104). However, when comparing FL
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and PA communities separately, the under-ice FL communities were more different be-
tween the Varnachka and Selenga sites than the same PA communities (Figure S5). This
was evidenced by a twice-smaller variation, which was explained by the second tb-PCoA
axis for a subset of PA versus FL bacterial profiles (Figure S5). The heatmap showed
that there are two groups of OTUs in the under-ice FL communities of the Selenga, the
first group—Methylomonadaceae (OTU32), Acinetobacter (OTU58), Methylobacter (OTU90);
and the second one—Kapabacteriales (OTU50), Fluviicola (OTU62), Ferruginibacter (OTU87),
Cyanobium (OTU135, OTU372). OTUs of these groups were not found, or were found
in minimal abundance, in the Varnachka communities, and contributed to the difference
between Selenga and Varnachka in the ice cover period.
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Figure 6. Alpha richness and diversity indices in bacterial communities. Comparison of FL and
PA communities (A); communities of different seasons (B); FL and PA communities in different
seasons (C). Significance code of Tukey’s post hoc tests: *** ≤ 0.001; 0.001 ≤ ** ≤ 0.01; 0.01 ≤ * ≤ 0.05.

Bacterial OTUs of Crenothrix, Methylomonadaceae and archaeal OTUs of Nitrosarchaeum
and Nitrosopumilaceae were more abundant in summer FL samples, but represented by
only a few reads in under-ice samples (Figure 9). It is also interesting that Flavobacterium
were more abundant in FL during the ice cover period, while in summer they were most
abundant in the PA communities, but it is important to note that there were different OTUs
(Table S4). OTU11, OTU20, OTU101, OTU174 and OTU372 all belonged to the genus-level
group Cyanobium_PCC-6307, but OTU11 was more abundant in PA, and others were more
abundant in FL. During summer, the diversity of significantly different proteobacterial
OTUs increased both in FL and in PA (Table S4). Verrucomicrobiota OTUs, predominantly
from genus Luteolibacter, were mostly present in PA communities; their diversity also
increased in summer (Figure 9, Table S4).

Depth had no observable effect on either the composition of FL communities, or on
summer PA bacteria (Figure S5). There was a small correspondence between depth and
community composition in under-ice PA samples, where the uppermost samples (0 and
5 m) were grouped together, away from deeper ones, but it was not statistically significant.
At that time, the upper layers contained a large amount of Alphaproteobacteria, dominated
by OTU52_Candidatus_Finniella (Figure 9, Table S4).

The PCoA plot showed that bacterial communities of the Selenga mouth were remark-
ably different from other profiles (Figure 7). While FL communities of the mouth were
dominated by Bacteroidota (mostly Flavobacterium OTUs, see Table S4), other communities
were dominated by Actinobacteriota. PA communities differed as well, with a significant
amount of Gammaproteobacteria in the mouth of the Selenga. There were Thiothrix (OTU115,
OTU148), Polaromonas (OTU94), Sphaerotilus (OTU271) and Zoogloea (OTU403) (Table S4)
among the significantly different taxa. We also noted a high abundance of Firmicutes (10%),
and the most common OTU was Trichococcus (OTU80). The major shared OTUs between
FL and PA communities were Rhodoferax (OTU21, OTU66), Polaromonas (OTU109) and
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Trichococcus (OTU80). A few OTUs were only found in the Selenga PA community: Thiothrix
(OTU115, OTU148) and Arcicella (OTU75).
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3.5. Co-Occurrence Networks

Bacterial co-occurrence networks were constructed for 494 OTUs (Figure 10). The
resulting graphs showed that bacteria were clustering in accordance with their taxonomy. In
other words, highly interconnected large subgraphs were likely to consist of taxonomically
related bacteria (Figure 10 left). There was also a good mapping between interconnected
subgraphs and FL/PA differential abundance contrast. The FL subgraphs were larger,
including more OTUs than the PA subgraphs (Figure 10 right). Taxonomically, they mostly
consisted of Actinobacteriota. The PA communities also had a mixed-taxonomy subgraph
that included mostly members of the phyla Bacteroidota and Verrucomicrobiota. Further,
there were FL-specific subgraphs of Bacteroidota OTUs. Further yet, some Actinobacteriota
OTUs were more common in the PA communities. Abundant OTUs related to Cyanobium,
and a group of OTUs related to Phycisphaeraceae (phylum Planctomycetota), belonged to the
PA samples, as well.
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Figure 8. Relative abundances of the top-12 bacterial phylotypes in FL (A) and PA communities (B).
Phylotypes are shown at the phylum level, except for Proteobacteria, which are shown at the class
level. The bar stacks are arranged into four facets by two factor variables: “Lifestyle“ and “Period”.
The profiles are horizontally sorted by sampling site, month and sampling depth. Taxa presented
in the color legend are sorted by total abundance in the decreasing order, except the last category
“Other”. The order of phylotypes in each bar is the same as in the color legend.

Comparison of these graphs between seasons showed that FL component OTUs were
similar in the open water and in the ice cover season (March and April) (Figure 11A),
regardless of the sampling site. However, the FL-specific Bacteroidota OTU subgraphs
described above were only present in the under-ice communities. During summer, there
was an increased abundance of Archaea (Nitrosarchaeum, Nitrosopumilaceae) and SAR11
Clade III proteobacteria; new dense subgraphs appeared in PA communities, including
major OTUs of Flavobacteria, Arcicella and Luteolibacter (Figure 11B).
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Figure 9. Hierarchical clustering of log2(x + 1)-transformed bacterial OTU counts. Rows—OTUs;
columns—samples. Clustering was performed on a matrix of Bray-Curtis dissimilarity distances. The
color-coded annotation of samples is drawn in the upper part of the heatmap.
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Figure 10. Co-occurrence networks of FL and PA communities. Graph layout colored by taxonomic
assignment of OTUs (vertices) at the phylum level (in the left panel), and overall lifestyle differential
abundance (DA) Log2FC (in the right panel). The size of vertex in DA-graphs is proportional to
mean OTU abundance.

A microeukaryotic co-occurrence network was constructed for 291 OTUs (Figure 12). This
network had a higher degree of connectivity, potentially suggesting more complex interactions
between organisms. It consisted of a large group of OTUs present in both seasons and two
somewhat isolated subgraphs. One of them consisted of dinoflagellate OTUs (Gymnodinium
sp. and Apocalathium aciculiferum), which were more abundant in under-ice communities, and
the other one contained microeukaryotes such as diatoms (Fragilaria, Encyonema, Nitzschia and
Gomphonema), green algae (Ulotrix zonata, Draparnaldia and Chlamydomonas), chrysophytes
(Chrysosphaerella, Ochromonas and Spumella), Peronosporomycetes and Chytridiomycota, which
dominated in summer.

3.6. Environmental Factors Affecting FL and PA Bacterial Communities

Redundancy analysis showed that, for the FL bacterial profiles, temperature was the
only significant variable (p = 0.001); for the PA bacterial communities, the model included
temperature and dissolved PO4

3− concentration (p = 0.001) (Figure 13). These factors
were directly linked to seasonality: summer brought both the temperature increment
and the increased phosphate availability (as dissolved and particulate organic matter
started to mineralize). The backward elimination strategy yielded similar results, with the
temperature as the only significant variable for FL (R2 = 0.30, p = 0.002), and temperature
(R2 = 0.33, p = 0.002), PO4

3− concentration (R2 = 0.39, p = 0.002) and TMA (R2 = 0.41,
p = 0.026) for FL communities.
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3.7. Predicting the Metabolic Functions that Might Underlie Changes between the FL and PA
Heterotrophic Community Structure

We have compared the predicted genes and metabolic pathways in FL/PA contrast
to detect potential functional differences. This resulted in 351 EC-identifiers, 1219 KO-
identifiers and 70 MetaCyc pathways that were different between these two lifestyle groups,
and had the absolute value of effect size above 1. As shown in Table S5, many pathways
and predicted genes were enriched in the FL communities compared to the PA one. Among
the predicted genes related to the FL communities, the genes responsible for the synthesis
of fatty acids were noted, which may be associated with adaptation to low temperature
conditions. Protective genes responsible for the production of toxins and antitoxins have
also been found. The genes for the transport of the antibiotic microcin C have been noted
in the PA community. In addition, genes responsible for cellulase and urease synthesis and
degradation of biopolymers, as well as sulfur metabolism and fucose degradation, were
more abundant in the PA community component.

4. Discussion

Seasonally changing environmental factors (temperature, pH, mixing) affect the com-
position of bacterial communities in aquatic ecosystems [71,72]. In addition, various organic,
mineral particles and phytoplankton development are nutrient-rich hotspots for bacteria,
and they also influence their composition [2]. In order to find out whether there were any
changes in the FL and PA communities of Lake Baikal, and what influenced them, we took
samples in different seasons from Baikalian waters near the Bolshie Koty settlement, and
near the mouth of the Selenga River, the major source of dissolved minerals in Lake Baikal.

4.1. Influence of the River Water Inflow on the Composition of FL and PA Communities

River mouth water was different from other samples in terms of mineralization,
with high concentrations of silica and nitrogen, which is typical for the Selenga water
in winter [32,73,74]. Accordingly, microeukaryotic communities of the river mouth were
distinct from those of the lake, both in microscopy and 18S rRNA gene sequencing data.
They were dominated by diatoms Nitzschia, Diatoma and green algae, which are typical for
this area [32].
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Bacterial community profiles of the Selenga mouth were also different from those in
Lake Baikal. Our data showed that, starting from 1 km from the mouth and beyond, the
taxonomic composition was approximately constant throughout the entire water column
(Figure 8). These results are similar to the data obtained by in situ hybridization, indicating
that the structure of the bacterial community of the Selenga Shallow water changes as
river waters mix with lake waters [35]. A similar result was found in recent work on a
high-mountain alpine lake, where it was assumed that the composition of the microbial
community was significantly influenced by microbes coming from terrestrial and aquatic
habitats upstream [75]. However, studies of 18S and 16S rDNA have shown that the
community of the estuary is very similar to the communities of the river, but differs
significantly from the lake. Also, this is similar to the result for the McKenzie River
(Canada), where the river community was different from both estuary and open sea [20].
Moreover, the differences between mouth FL and PA communities were observed in our
work. Recently, it has been shown that organotrophic bacteria such as Flavobacterium
and Gammaproteobacteria have predominated in the Selenga mouth, and they have been
replaced by psychrophilic and oligotrophic bacteria in the Baikal water [35]. We have shown
that these taxa were dominant in the river mouth; however, Flavobacterium dominated in
FL communities, and Gammaproteobacteria in PA. Taxonomically, bacteria dominating PA
communities of the Selenga mouth (Thiothrix, Zoogloea and Sphaerotilus) are widespread in
sulfide springs, activated sludge and wastewater treatment facilities [76–79], suggesting an
active role in the destruction of organic matter including nitrogen, phosphorus and sulfur
compounds. In addition, analysis of predicted metabolic pathways in PA communities has
shown the presence of sulfatase genes, which play an important role in the sulfur cycle [80].
Genera Polaromonas and Rhodoferax shared between FL and PA communities of the Selenga
mouth are psychrophiles, capable of breaking down a range of organic compounds [81–83].
In addition, Polaromonas was predominant in PA communities; a Polaromonas-like bacterium
was previously found in a consortium with a phototrophic partner, suggesting a strong
capacity for symbiotic interactions within this genus [84]. Our results are more similar
to those of Garneau et al. (2009) [85], who have shown differences between FL and PA
communities from the Mackenzie River estuary.

4.2. Seasonal Changes in the Structure of FL and PA Microbial Communities

Seasonal studies of FL/PA microbial communities are uncommon in the studies of
marine and freshwater ecosystems [18,22–24,86]. Seasonal dynamics of the freshwater
bacterioplankton of Lake Baikal have been analyzed [45], but this work was focused on the
bacterial community as a whole, and did not take FL/PA segregation into account. To get
a more detailed understanding of bacterial community changes in Lake Baikal, we have
analyzed these two components separately. Samples were taken both in summer and in
the ice cover period to study the seasonal changes. Hydrochemically, under-ice water in
studied areas was similar to what is commonly observed in this period [87].

FL bacterial communities were relatively stable for the entire period of study, with
a major contribution of an actinobacterial CL500-29 marine group. Actinobacteriota can
comprise up to 50% of the bacterial community in upper layers of freshwater bodies [88,89].
The majority of known freshwater actinobacteria have been found in free-living bacterio-
plankton [19]. During the ice cover period, a large amount of Bacteroidota (mostly genus
Flavobacterium) can be observed. It is a typical member of winter bacterioplankton [42,90,91].

In summer, Lake Baikal typically has direct temperature stratification [26] and uneven
distribution of phytoplankton, with high values in the uppermost layers (0–5 m), quickly
decreasing with depth [92]. Our data of hydrochemical parameters of summer water were
similar between all depths and stations, possibly as a result of a storm or upwelling event.
Influence of admixture can be seen both in the even vertical distribution of phytoplankton
(Figure 1B, Table S1) and in the structure of the FL bacterial communities. The significant
amount of Crenarchaeota in photic layer waters (1–20%) may suggest an influx of water from
deeper layers, as this phylum is known to be dominant in upper sediment layers [40] and
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other bottom habitats in Lake Baikal [93,94]. In addition, a remarkable part of the FL com-
munities consisted of methane-oxidizing Methylomonadaceae and genus Crenothrix [95,96],
which implies either a nearby methane seep or allochtonous bacteria from deeper layers.
There are several known methane seeps, and methanotrophic bacteria may be detected in
minor quantities at different depths in Lake Baikal [97].

The PA bacterial communities exhibited seasonal changes. In both seasons, the pre-
dominant phylum was Verrucomicrobiota, mostly represented by OTUs of genus Luteolibacter.
Members of this phylum develop actively during phytoplankton blooms in various sea-
sons [98–102]. These bacteria are active polysaccharide degraders [103], recently shown
to specialize in breaking down fucose, rhamnose and other sulfated polysaccharides [104]
that are produced by diatom algae during their bloom in the North Sea [105]. Besides
diatoms, L-fucose is produced as a component of extracellular polysaccharides by a range
of bacteria, fungi and microalgae [106]. According to our results, a significant number of
fucose-degrading genes were detected in Verrucomicrobiota-dominated PA communities.

During the ice cover period, the near-surface PA communities contained a large
amount of Flavobacterium. Microeukaryotic communities were dominated by dinoflagellate
Gymnodinium baicalense at these time points. Flavobacterium is known to have an algicidal
effect through either direct or indirect attack of target algal cells, including Dinophyceae [107].
During summer, Flavobacterium was dominant at all depths; curiously, OTUs responsible
for this dominance were either rare or completely absent in ice cover period PA and all FL
communities, suggesting a narrow specialization.

Besides Flavobacteria, near-surface water in PA communities during the ice cover
period hosted numerous Alphaproteobacteria—Candidatus_Finniella. This taxon contains
obligate intracellular parasites of a broad range of eukaryotes, including Metazoa and
protists [108]. When comparing our sequence with the GenBank database, a homology
of 98.76% was revealed. So, considering that this taxon was found only in PA communi-
ties where representatives of Cercozoa developed, these might be their endosymbionts.
During summer, the amount of Alphaproteobacteria in the PA communities was negligible.
Phylum Cyanobacteria was abundant in the PA communities in both seasons, and in the FL
communities near the Selenga mouth. Such a distribution is likely caused by the fact that
cyanobacteria tend to have large cells (above 5 µm), and often form colonies, which causes
them to be enriched in the PA. However, some small-celled cyanobacteria may be found
in FL communities as well [23]. In marine and lacustrine “snow” (detritus that falls to the
lake bottom), cyanobacteria are mostly responsible for nitrogen fixation [109,110].

One of the phyla most commonly found in association with other eukaryotic organisms
is Planctomycetota. It has been shown that Planctomycetota are often a part of bacterial com-
munities associated with algae [111–116]. With respect to our results, OTUs belonging to
Planctomycetota (OTU133_Pirelulla, OTU74_Rubinisphaeraceae and OTU214_Phycisphaeraceae)
were among the most significant ones in PA community profiles. In addition, it was shown
that Planctomycetota were subjected to seasonal variability [117]. They had a high abundance
in summer compared to winter, which was influenced by the development of microalgae.
The bloom of diatoms and cyanobacteria has a positive effect on the abundance of Plancto-
mycetota, as they serve as a nutrient source for them. Planctomycetota has been shown to
contain a high number of sulfatase genes [118], which are involved in the degradation of
the sulphated polymers produced by the algae. Similarly, we observed the enrichment of
sulfatase genes in PA communities.

The under-ice FL bacterial community profiles of Varnachka and Selenga are less
similar to each other than the corresponding PA profiles (Figure S5). This difference of
the FL profiles can be likely explained by the distinct hydrochemical parameters of the
sampling sites (Figure 2). On the other hand, the higher similarity of the under-ice PA
bacterial communities (as compared with the FL counterpart) can be explained by similar
structure of the microeukaryotic communities of the Selenga and Varnachka sites in the ice
cover period (Figures 3 and 5). A distinctive feature of the under-ice FL Selenga bacterial
community profiles is the presence of methanotrophic phylotypes Methylomonadaceae and
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Methylobacter. The reason for this is the release of methane from bottom sediments into the
water column in the area of the Selenga Shallow water [119,120]. In addition, influence of
river flow on methane concentrations was observed for long distances [119]. Interestingly,
phylotype, which was abundant in the under-ice FL bacterial communities of the Selenga
sampling site, is Kapabacteriales. Genome of bacteria belonging to Kapabacteriales was
recently shown to contain a cluster of genes for assimilation and metabolism of sulfur,
as well as transporters of cobalt, copper, Fe2+, Fe-Mn, phosphate, phosphonates and
ammonium [121].

4.3. Relation of FL and PA Bacterial Communities to the Development of Microeukaryotes

The seasonal dynamics of bacterial and microeukaryotic communities in Lake Baikal
have been previously described by Mikhailov et al. (2021) [45]. They have revealed
the coherent dynamics of bacterial OTUs from the same phylum and, sometimes, from
different phyla. Our data are consistent with those obtained earlier, as can be seen from
the co-occurrence networks of a group of taxonomically related bacteria, but there are
also groups of bacteria that are combined into various groups with different taxonomic
affiliations. In addition, this variable group belongs to the PA component, which develops
during the summer period, with an increasing period of microeukaryotic diversity. It has
been shown that the concentration of organic matter significantly affects the PA of the
community [47,85]; the higher its concentration, the greater the diversity in PA communities.
In our study, despite the fact that organics were higher during the ice cover period, an
increase of diversity occurred in the summer. Previously, Ortega-Retuerta et al. (2013) [20]
suggested that the quality of the particles, rather than their quantity, would play a major
role in the structuring of bacterial communities. They meant the organic or mineral nature
of the particles, and, in our case, the qualitative (diversity) of microeukaryotes, which led
to an increase in the diversity of PA communities.

The study of bacterial and microeukaryotic communities during a spring phytoplank-
ton bloom have shown both positive and negative correlations between some bacterial
and microeukaryotic OTUs [37]. Moreover, a correlation analysis for the biomass of phy-
toplankton species and relative abundance of 16S rRNA reads has shown that bacterial
OTUs belonging to Rhodoferax, Methylophilaceae, Phycisphaeraceae and Flavobacteria formed
a cluster that was positively correlated with the biomass of diatoms, dinoflagellates and
chrysophyceae [46]. In our work, Rhodoferax, Phycisphaeraceae and Flavobacteria were among
the dominant communities in the composition of PA, which also indicated their close
relationship with microalgae.

Seasonal changes were also observed in diversity indices. As shown before, the
PA communities are typically more diverse than the FL [13–15,20,122]. However, these
results were mostly produced in eutrophic water bodies with a large amount of particulate
organics. In our case, alpha-diversity was higher in FL communities, similar to a community
of ultraoligotrophic sea, where the free-living community was more diverse [18]. In that
work, the authors suggest that trophic status determines whether the FL or PA community
is more diverse. Phytoplankton development is directly linked to primary production,
and our results are in line with this statement: summer samples contain a more diverse
microeukaryotic community (including phytoplankton), leading to a more diverse PA
bacterial communities. Similar results were found in German Lake Tiefwaren, where PA
bacteria were more diverse in summer in response to phytoplankton development [23].
Previously, PA bacterial communities were shown to have high fermentative activity,
dissolving polysaccharides in phytoplankton cell walls [5,123–126]. Microbial communities
degrading polysaccharides in the water column include Gammaproteobacteria, capable of
quickly adapting to changing substrates [127], and Bacteroidota, a common satellite taxon
for blooming phytoplankton [90,128,129]. For instance, dominant bacteria in marine and
lake snow belong to the phylum Bacteroidota, genera Cytophaga and Flavobacterium, which
are mostly involved in the degradation of organic matter [130,131]. In accordance with this
expectation, the predicted metabolic pathways in PA communities were shown to include
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the cascade of complex polysaccharide breakdowns. Curiously, the FL communities hosted
a wider diversity of metabolic activities. This result may be explained by the fact that
free-living bacteria cannot afford narrow substrate specificity in oligotrophic freshwater
Lake Baikal.

5. Conclusions

Our results showed that the influence of the Selenga River (the main Baikal tribu-
tary) on the composition of FL and PA bacterial communities and microeukaryotes was
noted in the mouth area, as well as for FL communities of the ice cover period. Farther
from the mouth, the more bacterial and microeukaryotic compositions were similar to
the background Baikal communities of the photic layer. This confirms how huge the wa-
ter mass of the lake is. The composition of the communities was mostly affected by the
bacterial lifestyle—FL or PA. FL bacterial communities were more similar to each other
than PA communities. However, if we compare the under-ice period, then the FL differ
more strongly. FL communities also react to different hydrochemical conditions of the
Selenga Shallow water and Varnachka, while PA communities are more similar under the
ice, since there was a similar composition of microeukaryotes during this period. The
increasing diversity of the PA communities during summer was likely linked to the increas-
ing diversity of microeukaryotes, although verification of this hypothesis would require
further comparative investigation of microbial communities with different compositions of
microeukaryotes. It is necessary to analyze communities by fractions to monitor the state of
the lake ecosystem. If the PA fraction is the most dynamic and has a sensitive effect on the
dynamics of eukaryotes, then the FL communities are the foundation of the lake ecosystem.
A sharp change in the FL structure may be a consequence of global changes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/d15040572/s1, Figure S1. SEM microphotography. Sample of
FL fraction deposited on a 0.22-µm pore-size filter (A, B); sample of PA bacteria (C); PA bacteria
on the cell of: diatom Aulacoseira islandica (D); diatom Nitzschia graciliformis (E); diatom Ulnaria (F);
diatom Stephanodiscus (G); dinoflagellate Peridinium baicalense (H) and chrysophyta Chrysosphaerella.
Figure S2. Nutrient concentrations, total abundance and species composition of microalgae using
light microscopy of samples. UI—under ice samples; OW—open water samples; the last number
in the sample name indicates the sampling depth; tot—concentration of total biogenic elements;
dis—concentration of dissolved biogenic elements. Figure S3. Microeukaryotic diversity in April,
March and July communities, as characterized by rarefaction curves of OTUs defined at genetic
distance levels of 0.03. Figure S4. Bacterial diversity in FL and PA communities, as characterized
by rarefaction curves of OTUs defined at genetic distance levels of 0.03. Figure S5. The tb-PCoA
ordination of the FL and PA bacterial profiles. Points (profiles) are grouped by independent factor
variables “site” and “season” (blue ovals). The profiles of the Selenga mouth were excluded from
this analysis. Figure S6. PCoA of FL and PA communities. Glyph shape denotes the community
lifestyle: FL—circle, PA—square. Glyphs are colored according to depth of sampling. Table S1.
Physical, chemical and biological characteristics of samples. Table S2. Non-parametric alpha-diversity
metrics calculated for the bacterial (FL and PA) and microeukaryotic samples. Table S3. Sequence
similarity of microeukaryotic OTUs, with the known sequences of 18S rRNA gene from GenBank
database. Table S4. Abundance of OTUs having significant differences between FL and PA bacterial
communities at different time points (April, March and July), and at the Selenga mouth stations.
Group and contrasts—a set of samples to be statistically tested for differential abundance; is_major—
whether the OTU total relative abundance exceeds 0.1%; is_shared—whether OTU is differentially
abundant between FL and PA across all three months; is_major_shared—both conditions are met;
group1_mean/group2_mean—mean normalized count of OTU for reference (first/second) contrast
(same factor variable in pairwise comparison); log2FoldChange −log2(reference abundance/target
abundance); padj—FDR-adjusted p-value for abs(LFC) ≥ log2(1.5); slv_* and fw_*—OTU taxonomic
assignment for Silva and Freshwater taxonomies. Table S5. Metabolic functions of FL and PA
communities based on KEGG KO gene, EC and MetaCyc pathway annotations.
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