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Abstract: Bottle gourd [Lagenaria siceraria (Molina) Standl.] is cultivated for multiple utilities, in-
cluding as a leafy vegetable, for fresh and dried fruits and seeds. It is an under-researched and
-utilized crop, and modern varieties are yet to be developed and deployed in sub-Saharan Africa
(SSA). There is a dire need for pre-breeding and breeding of bottle gourds for commercialization in
SSA. Therefore, this study aimed to determine the combining ability and heterosis among selected
genotypes of bottle gourd for fruit yield and related traits under drought-stressed and non-stressed
conditions to select the best parents and hybrids. Eight preliminarily selected and contrasting parents
with drought tolerance were crossed using a half-diallel mating design. The 8 parents and 28 crosses
were evaluated under non-stressed (NS) and drought-stressed (DS) conditions across two growing
seasons (2020/21 and 2021/22) using a 6 × 6 alpha lattice design with three replicates. Data were
collected on fruit yield and related traits and subjected to analysis of variance, combining ability and
heterosis analyses. Significant (p < 0.05) specific combining ability (SCA) and general combining
ability (GCA) effects were computed for fruit yield per plant (FYPP). The SCA × environment and
GCA × environment interaction effects were highly significant (p < 0.001) for FYPP and SYPP. The
results suggest that genetic effects were affected by the test environment. Parental genotypes BG-58
and GC recorded positive and significant GCA effects for FYPP under the DS condition, whereas GC
recorded positive and significant GCA effects for FYPP under the NS condition. The two genotypes
are ideal breeding parents for population development to select genotypes with high fruit and seed
yields. Crosses BG-27 × BG-79, BG-79 × BG-52, BG-79 × BG-70, BG-80 × BG-70, BG-80 × GC,
and BG-70 × GC recorded high and positive SCA effects for FYPP and SYPP under DS condition.
Crosses BG-81 × BG-52, BG-81 × GC, BG-27 × BG-79, BG-27 × GC, BG-79 × GC, BG-80 × BG-70,
BG-81 × BG-58, BG-27 × BG-80, BG-27 × BG-58, BG-79 × BG-52, BG-52 × BG-58, BG-80 × BG-58,
and BG-58 × BG-70 recorded high and positive SCA effects for FYPP and SYPP under NS condition.
Crosses BG-80× BG-58, BG-27× BG-79, BG-79× BG-52, BG-27× BG-52, and BG-52× BG-80 showed
high and positive mid- and better-parent heterosis under DS condition for FYPP and SYPP. Crosses
BG-27 × GC, BG-79 × GC, BG-27 × BG-58, and BG-27 × BG-79 showed high and positive mid-
and better parent heterosis under NS condition for FYPP and SYPP. The newly selected families are
recommended for multi-environment evaluation forrelease and commercialization in South Africa or
similar agroecologies.
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1. Introduction

Bottle gourd [Lagenaria siceraria (Molina) Standl., 2n = 2x = 22] is a multi-purpose crop
belonging to the Cucurbitaceae family. It is a highly valued food security crop in Africa
and Asia [1–5]. In Africa, the large and tender leaves are cooked and consumed as a leafy
vegetable. The young, tender fruits are harvested and boiled until soft and consumed by
adding sugar, peanuts, salt, or milk, depending on consumer preferences. The matured
seeds extracted from dried fruits are processed to prepare livestock feed. The fruits of
bottle gourd are an excellent source of essential macro- and micro-nutrients, including
minerals (e.g., iron, phosphorus, potassium, calcium, and magnesium), vitamins B, C,
and E, carbohydrates, and dietary fiber [1,3,4,6–11]. The fruits are also a good source of
essential amino acids, including aspartic acid, threonine, serine, glutamic acid, alanine,
valine, phenylalanine, lysine and arginine, and phytochemical compounds, including
phenolics, flavonoids and terpenoids [9,10]. Wild fruits of the crop are bitter due to the
presence of cucurbitacins, which possess pharmaceutical values including anti-cancer and
anti-diabetes [10–12]. The leaves are a good source of essential nutrients such as zinc,
nitrogen, manganese, and copper [8]. The seeds are a source of crude protein, crude lipids,
crude fiber, and carbohydrates [13–15]. The seeds are valued for their antioxidants, sterols,
and vitamins, including ascorbic acid, thiamine, riboflavin, niacin, pantothenic acid, and
vitamin B-6 [13]. In addition, the seeds contain essential amino acids, including glutamic
acid, leucine acid, arginine, lysine, and aspartic acid [16].

Bottle gourd is one of the widely used rootstocks for grafted watermelon. It con-
fers desirable qualities such as better fruit yield and quality and resistance to biotic (e.g.,
fungal and viral diseases) and abiotic (heat and drought) stress factors in grafted watermel-
ons [17–22]. In Africa, bottle gourd is cultivated using genetically unimproved landrace
varieties that are phenotypically and genetically diverse with low yield potential [2,5,23].
In farmers’ fields, different accessions are often planted in companion with the major
crops, mainly maize, sorghum, soybeans, and rice. The landrace accessions display genetic
variation and are selected by growers for their long handles/necks to make containers,
and corrugated fruit with or without fruit necks are mainly for consumption. The round
fruit-shaped gourds are used to make containers called “Kgapa” in the indigenous and
local Sepedi language of South Africa. Planting diverse accessions in close proximity by
farmers allows for cross-pollination, leading to high genetic recombination and genetic
variation. The reported genetic diversity in different regions includes bottle gourd fruit
having long curved-neck shapes, fruits with long straight-neck lengths, circular, oblate,
pyriform, cavate, cylindrical fruit shapes, dark green fruit color and and other traits such
as variation in the number of leaves and plant height [2,5,24–27]. In India, Turkey, India,
China, and the USA, higher genetic variability of the crop has been reported [2,25,28–31].
The high genetic variation in bottle gourd allows for new variety designs with desirable
consumer attributes, including high fruit and seed yields and other valuable traits such as
fruit shape, size, color, and neck to enhance the crop’s market value in Africa.

The phenotypic variability of bottle-gourd genetic resources is documented via agro-
nomic and horticultural traits. These include aboveground plant traits (e.g., plant height,
number of primary and secondary branches), flower traits (e.g., number of male and female
flowers), fruit traits (e.g., fruit shape, fruit weight, fruit yield, fruit texture, fruit color, fruit
with or without neck, fruit neck length, fruit neck bending) and seed traits (e.g., number
of seeds per fruit, seed length, seed width, seed size, hundred seed weight, seed yield,
seed coat color, seed texture) [2,25,27,28,32]. These traits are useful for targeted selection to
develop new varieties targeting the various end-use values of the crop. For example, leaf
traits such as leaf number, size, and plant height are essential to developing varieties suited
for leaf vegetable and livestock fodder. Increasing the proportion of female than male
flowers can aid the development of high-yielding hybrids. Increased fruit number and
weight can improve fruit yield, whereas a high count of seeds per plant and increased seed
weight are essential attributes to breeding high seed-yielding varieties. Some economic
traits in bottle gourd are positively correlated and useful for selecting genotypes with better



Diversity 2023, 15, 925 3 of 21

fruit and seed yields. For instance, fruit weight and fruit number have a direct positive
effect on seed yield per fruit and fruit yield, suggesting their simultaneous selection and im-
provement [33,34]. These associations will allow for the breeding of bottle gourd varieties
incorporating multiple traits.

Genotype selection with a desirable and complementary product profile requires
progeny evaluation based on combining ability and heterosis analyses. Combining ability
analysis has aided the selection of parental genotypes and progenies with high fruit yield
for genetic advancement [33,35–38]. Fruit yield and related traits in bottle gourd were
conditioned by non-additive gene action [31]. Complex gene action, including duplicate
gene interaction, complimentary gene action, or non-allelic interaction, was reported for
fruit yield in bottle gourd [38,39]. Refs. [40,41] reported high GCA compared to SCA
effects for fruit yield, indicating the involvement of additive gene action conditioning their
inheritance. Analysis of heterosis in bottle gourd identified the dominant form of heterosis
for plant height, fruit length, and the number of branches, aiding the identification of
hybrids for use in strategic breeding and variety release [40].

Presently, in Africa, bottle gourd is an under-researched and -utilized crop, and
modern varieties are yet to be developed and deployed. There is a dire need for pre-
breeding and breeding bottle gourds with increased fruit and seed yield to enhance the
market value of the crop. In previous studies, Ref. [42] identified accessions of bottle gourd
with desirable agronomic attributes, including high fruit and seed yields useful for hybrid
breeding. Ref. [43] recently developed F1 hybrids of bottle gourd derived from unimproved
accessions for cultivation in the cooler environments of KwaZulu-Natal Province of South
Africa. These newly developed hybrids performed better regarding fruit yield than the
parental landrace accessions, indicating the possibility of developing cultivars with high
yield potential and other desirable farmer-preferred traits. The next generation of improved
bottle gourd varieties should comprise traits and attributes with multiple uses, including
fodder, seed, and fruit, to serve varied value chains in the food, feed, and processing
industries. Therefore, the objective of this study was to determine the combining ability
and heterosis among selected genotypes of bottle gourd for fruit yield and related traits
under drought-stressed and non-stressed conditions to select the best parents and hybrids
for breeding.

2. Plant Material and Generation of Hybrids

The study used eight selected bottle gourd landrace accessions as parental genotypes
for hybrid development. The selected bottle gourd accessions are widely grown in the
Limpopo Province of South Africa by small-holder farmers for food (Table 1). The ac-
cessions are phenotypically and genetically divergent based on previous studies [27,32].
Additionally, the accessions exhibit varied responses to drought stress [42,44,45]. The
Limpopo Department of Agriculture and Rural Development maintains the landrace acces-
sions at Toowoomba Agricultural Development Centre (TADC), Bela-Bela, South Africa.

Table 1. List and attributes of selected bottle gourd genotypes used in the cross.

Accession
Designation

Drought
Response Fruit Shape Fruit Neck

Length
Primary Fruit
Color

BG-27 Tolerant Cavate Long Dark green
BG-52 Tolerant Cavate Long Medium green
BG-58 Susceptible Elongated Long Dark green
BG-70 Susceptible Elongated No neck Dark green
BG-79 Tolerant Pyriform Short Light green
BG-80 Susceptible Elongated Short Dark green
BG-81 Susceptible Pyriform No neck Light green
GC Tolerant Pyriform No neck Light green
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The eight parental accessions were grown in a 5 L capacity polyethylene plastic pots
under glasshouse conditions at the University of Limpopo (−25◦36′54′′ S, 28◦0′59.76′′ E,
1312 m above sea level), South Africa. Five seeds per accession were sown in well-drained
polyethylene plastic containing a loamy soil collected from the University of Limpopo,
Syferskuil Experimental farm (−23◦53′9.60′′ S, 29◦44′16.80′′ E, 1312 m above sea level).
Three plants were retained per accession in each pot two weeks after emergence and were
watered daily to maintain soil moisture content approximately at field capacity (i.e., 40%
v/v). Plants were allowed to grow until the development of male and female flowers,
which occurred approximately 38 and 46 days after planting, respectively. The male flowers
were brushed gently onto the female flower to ensure sufficient pollen for cross-pollination.
The crosses were developed using a half-diallel mating design aiming for 28 crosses. The
fully developed fruits from each of the crosses were labeled and sun-dried for up to four
months. The seeds were extracted from the fruits, sun-dried, placed in labeled paper bags,
and then stored in a dry, cool place for later use.

2.1. Study Site and Experimental Design

Field experiments were conducted at the University of Limpopo’s Syferskuil research
farm, Mankweng, South Africa, during the 2020/21 and 2021/22 growing seasons. The
area is characterized by sandy and loamy soils. The average rainfall received during the
2020/21 and 2021/22 growing seasons were 243 and 198 mm, respectively. The maximum
temperature and relative humidity ranged from 26 to 34.8 ◦C and 60% to 88% for both
growing seasons. The 8 parental genotypes and 28 successful crosses were evaluated
under non-stressed (NS) and drought-stressed (DS) conditions using a 6 × 6 α-lattice
design with three replications. In each block, three plants were established for parental
accessions and crosses. The two water conditions and growing seasons provided four
testing environments. Parents and crosses were planted at an intra-and-inter row spacing
of 5 × 5 m apart. Sprinkler irrigation was used to water the plants. In the first two weeks
after planting, the second true leaf stage, plants under both DS and NS conditions were
watered weekly with approximately 27 mm of water. Thereafter, supplemental irrigation of
approximately 27 mm of water was applied per week for plants grown under NS condition,
whereas plants under DS condition were rain-fed. The total amount of water received by
the plants grown under the NS condition was approximately 670 mm, whereas those under
the DS condition received approximately 256 mm during the 2020/21 growing season.
During the 2021/22 growing season, plants under the NS condition received approximately
680 mm of water, whereas those under the DS condition received approximately 269 mm of
water. The plants under DS condition experienced a drought stress intensity of about 0.7
during the first and second seasons, which was calculated using the following formula:

DSI =
Xns− Xds

Xns

where DSI is drought stress intensity; Xns, mean fruit yield averaged across all the geno-
types tested under NS condition; Xds mean fruit yield averaged across all the genotypes
tested under DS condition [46,47].

2.2. Data Collection

Data were collected on a single randomly selected and tagged plant out of the three
plants in each block for parental genotypes and crosses. The following agronomic traits were
measured: total number of male and female flowers per plant, sex ratio calculated as the total
number of male flowers per plant to the total number of female flowers per plant, number of
leaves per plant, plant height measured from the base of the plant to the tip of the main vine
in meters, number of fruits per plant, single fruit weight of dried fruit (kg), fruit circumference
(cm) measured as the horizontal distance around the boundary of the fruit, fruit yield per
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plant (kg), number of seeds per fruit, hundred seed weight (g) and seed yield per plant (kg).
The fruit-related traits were measured on a single fully developed fruit per plant.

2.3. Data Analysis
2.3.1. Analysis of Variance

Analysis of variance was performed using GenStat version 18 [48]. The Least Significant
Difference (LSD) test was computed to compare treatment means at the 5% level of significance.

2.3.2. Estimates of Best Linear Unbiased Predictors

Best Linear Unbiased Predictors (BLUPs) were calculated using META-R (Multi Envi-
ronment Trail Analysis with R for Windows) Version 6.0 [49]. The BLUPs estimates were
computed based on the lattice design procedure using the following linear model:

Yijkl = µ + Loci + Repj(Loci) + Blockk(LociRepj) + Genl + Loci × Genl + εijkl

where,
Yijkl = the trait of interest,
µ = overall mean effect,
Loci = effects of the ith environment,
Repj = effects of the jth replicate,
Blockk (Repi) = effects of the kth incomplete block within the jth replicate,
Loci × Genl = environment × genotype interaction,
Genj = effects of the lth genotype,
εijkl = error associated with the ith replication, jth incomplete block and the kth geno-

type, which is assumed to be normally and independently distributed, with mean zero
and homocedastic variance σ2. Genotypes, environment, and interactions were treated as
random factors effects to calculate BLUPs.

2.4. Estimates of the GCA and SCA Effects

The significant tests for GCA and SCA effects were estimated using PBTools version
1.4 [47]. The GCA and SCA effects and genetic variance components were estimated using
AGD-R (Analysis of Genetic Designs in R) Version 5.0 [50] using a half-diallel mating design,
method II, and model I. The analysis was performed using the following fixed-effect model:

Yijk = µ + gi + gj + sij + eijk

where,
Yijk = value for the ijth cross in the kth replication
µ = the population mean,
gi and gj = GCA effects for the ith and jth parents
sij = the SCA effect of the cross of the ith and jth parents
eijk = error term associated with the cross of the ith and jth parents in the kth replication

2.5. Gene Action and Heritability Estimates

Broad sense heritability (h2B), narrow sense heritability (h2n), additive variance (σ2A),
and dominance variance (σ2D) were calculated according to [49,51] using the following
formula:

h2B =
σ2g

σ2g + σ2ge
nLoc + σ2ε/(nLoc× nRep)

where,
σ2 g = genotypic variance,
σ2ε = error variance,
nRep = number of replicates,
σ2ge = G × E interaction variance,
nLoc = number of environments in the analysis
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h2n =
σ 2 A

σ 2 A + σ 2D + σ 2E
where,

σ2A = additive variance component,
σ2D = dominance variance component,
σ2E = environmental variance

σ2 A = 4σ 2gca

where gca = general combining ability effect

σ2D = 4σ 2sca

where sca = specific combining ability effect

2.6. Heterosis Estimates

Mid-parent heterosis (MPH) and better-parent heterosis (BPH) were computed accord-
ing to the following equations [52]:

MPH = 100×
(

F1−MP
MP

)
and

BPH = 100×
(

F1− BP
BP

)
where,

F1 = mean performance of F1,
MP = mean of the two parents making the cross and
BP = mean of the better parent for that particular cross.

2.7. Correlation Analysis

The BLUPs estimates were used to compute Pearson correlation coefficients to determine
the associations between assessed agronomic traits using SPSS version 25 (SPSS Inc., Chicago, IL,
USA, 2018).

3. Results
3.1. Genotype, Water Condition, and Their Interaction Effects

Analysis of variance showing the main effects of genotype, water conditions, and their
interaction for the studied agronomic traits are shown in Table 2. Significant genotypic
effects (p < 0.001) were recorded for all traits except for SR. The effects of water conditions
were highly significant (p < 0.001) for all the traits. Genotype × environment interaction
effects were significant (p < 0.001) for all assessed traits.

3.2. Performance of Bottle Gourd Parents and Hybrids for Assessed Traits

BLUPs estimates for the assessed traits for parents and their hybrids under DS and
NS conditions across the two growing seasons are presented in Tables 3 and 4, respectively.
An approximately 50% increase in the performance of the different parental genotypes and
hybrids was recorded for NMF, NFF, PH, NFPP, FC, NSPF, and SYPP under the NS condition
compared to the DS condition. Under DS condition, a high FYPP of >0.4 kg was recorded for
crosses BG-52 × BG-58, BG-79 × BG-52, BG-80 × BG-58, and BG-80 × GC, while a low FYPP
of <0.2 kg was recorded for approximately 18% of the crosses. Higher FYPP of >0.4 kg was
recorded for parental genotypes GC, and low FYPP of <0.2 kg was recorded for five parental
genotypes, including BG-27, BG-52, BG-79, BG-80, and BG-81. Under NS condition crosses,
BG-27 × BG-52 recorded a higher FYPP of >9.5 kg, whereas BG-80 × BG-70 recorded the least
FYPP of 0.4 kg. Parents BG-70 and GC recorded high FYPP of 1.6 and 2.8 kg, respectively,
whereas all the other parents recorded a low FYPP of <1 kg.
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Table 2. Analysis of variance showing mean squares and significant tests for the parental genotypes and their crosses evaluated for agronomic/horticultural traits
under non-stressed and drought-stressed conditions across two growing seasons in South Africa.

Source of Variation
Traits

df NMF NFF SR NL PH NFPP FW FC FYPP NSPF HSW SYPP

Incomplete Block (IB) 5 8922.00 ** 432.2 ** 12.94 * 11,562.00 ns 15.68 ns 16.9 ns 0.01 ns 3292.20 ** 0.39 ns 157,280.00 ** 24.83 ns 0.15 ns

IB × Replication (Reps) 10 4309.00 ns 129.90 ns 7.45 ns 4050.00 ns 68.71 ns 5.39 ns 0.00 ns 114.3 ns 0.09 ns 9818.00 ns 16.31 ns 0.01 ns

Reps 2 62.00 ns 55.10 ns 2.92 ns 24,012.00 ns 57.91 ns 30.68 ns 0.00 ns 196.2 ns 0.69 ns 82,067.00 ns 21.45 ns 0.01 ns

Genotype (Gen) 35 2691.80 ** 157.34 ** 7.45 ns 27,966 ** 76.65 ** 23.68 ** 0.03 ** 1409.70 ** 0.69 ** 128,815.00 ** 24.24 ** 5.24 **
Environment (Env) 3 25,075.00 ** 2958.70 ** 31.41 ** 774,455 ** 749.79 ** 683.71 ** 0.04 ** 7604.5 ** 12.46 ** 1,149,414.00 ** 115.08 ** 9.54 **

Gen × Env 105 2219.2 ** 104.68 ** 5.43 ns 16,872 ** 61.67 * 11.08 ** 0.02 ** 1061.6 ** 0.31 ** 75,629.00 ** 15.22 ** 12.12 **
Residual 287 1607 60.49 5.55 19,681 45.46 4.11 0.04 674.6 0.07 62,491 10.77 4.47

Note: df, degrees of freedom; * and ** denote significant differences at 5 and 1% probability levels, respectively; ns, non significant; NMF, number of male flowers per plant, NFF; the
number of female flowers per plant; SR, sex ratio, NL = the number of leaves per plant; PH, plant height (m); NFPP, the number of fruits per plant, FW = fruit weight (kg/fruit); FC, fruit
circumference (cm); FYPP, fruit yield per plant (kg); NSPF, the number of seeds per fruit; HSW, hundred seed weight (g/100 seed); SYPP, seed yield per plant (kg).

Table 3. BLUPs estimates of bottle gourd parents and their hybrids for assessed traits evaluated under drought-stressed conditions across two growing seasons in
South Africa.

Genotype
Traits

NMF NFF SR NL PH NFPP FW FC FYPP NSPF HSW SYPP

Crosses
BG-27 × BG-52 47.64 8.92 6.88 88.68 4.26 2.88 0.07 59.89 0.21 144.78 15.53 0.1
BG-27 × BG-58 64.24 12.28 6.4 96.11 4.01 3.36 0.07 58.16 0.29 320.74 16.63 0.29
BG-27 × BG-70 67.73 14.78 6.14 119.84 4.54 3.52 0.08 48.12 0.35 334.75 16.38 0.24
BG-27 × BG-79 64.24 11.42 6.63 87.88 5.47 4.16 0.07 47.94 0.31 364.69 16.07 0.24
BG-27 × BG-80 88.53 11.7 7.27 59.95 2.33 2.08 0.04 41.25 0.14 359.86 16.31 0.14

BG-27 × GC 44.57 9.11 6.47 71.25 2.02 2.08 0.05 59.29 0.14 194.04 16.88 0.11
BG-52 × BG-58 72.9 10.94 7.05 144.69 7.27 5.92 0.08 58.63 0.52 459.52 16.95 0.52
BG-52 × BG-70 76.94 11.7 6.40 136.3 6.25 4.48 0.08 51.98 0.41 444.38 16.34 0.33
BG-52 × BG-80 67.17 11.8 6.51 85.94 2.46 2.72 0.07 81.99 0.20 268.1 16.49 0.16

BG-52 × GC 66.2 11.22 6.38 113.86 3.63 2.56 0.07 57.8 0.20 406.39 15.43 0.15
BG-58 × BG-70 80.99 12.86 6.54 148.57 6.41 4.96 0.07 85.92 0.39 419.27 16.95 0.4

BG-58 × GC 88.94 15.54 6.38 115.16 4.79 4.16 0.08 47.83 0.38 289.83 16.26 0.23
BG-70 × GC 59.64 9.97 6.72 106.6 2.85 2.08 0.06 35.41 0.14 227.04 16.53 0.12

BG-79 × BG-52 83.64 12.38 6.75 122.74 5.83 4.96 0.08 53.4 0.49 482.38 16.35 0.48
BG-79 × BG-58 63.54 10.65 6.59 86.59 2.99 2.4 0.06 51.67 0.18 208.05 16.86 0.12



Diversity 2023, 15, 925 8 of 21

Table 3. Cont.

Genotype
Traits

NMF NFF SR NL PH NFPP FW FC FYPP NSPF HSW SYPP

BG-79 × BG-70 79.18 15.45 6.48 123.71 2.65 3.04 0.07 40.67 0.24 201.61 16.74 0.14
BG-79 × BG-80 46.66 9.4 6.43 118.55 4.34 3.84 0.06 53.43 0.27 144.94 16.2 0.11

BG-79 × GC 43.73 8.53 7.04 143.56 5.01 4.00 0.08 66.59 0.37 186.31 16.89 0.14
BG-80 × BG-58 61.59 11.8 6.09 143.4 7.26 5.76 0.09 71.71 0.59 224.47 17.02 0.23
BG-80 × BG-70 59.64 10.07 6.82 96.59 3.06 3.52 0.07 50.88 0.27 317.84 16.53 0.21

BG-80 × GC 81.97 14.01 6.34 124.19 6.64 5.28 0.09 65.61 0.49 273.57 16.8 0.29
BG-81 × BG-27 89.64 15.26 6.34 105.96 4.9 3.68 0.07 55.11 0.28 311.73 15.39 0.17
BG-81 × BG-52 86.71 17.47 6.21 143.89 3.24 4.16 0.07 47.71 0.29 483.18 15.35 0.30
BG-81 × BG-58 62.15 11.42 6.36 76.09 3.05 2.72 0.06 49.71 0.28 242.34 15.88 0.13
BG-81 × BG-70 41.08 8.63 6.42 124.36 4.79 3.52 0.08 51.74 0.28 150.8 16.41 0.12
BG-81 × BG-79 71.36 13.24 6.48 55.43 1.99 2.08 0.05 33.41 0.13 351.17 16.55 0.13
BG-81 × BG-80 92.43 15.93 6.72 109.35 4.62 3.36 0.07 52.13 0.25 441.81 16.68 0.25

BG-81 × GC 63.41 10.17 6.78 150.18 5.46 3.84 0.09 51.67 0.42 360.99 15.96 0.24
Parents
BG-27 52.38 10.36 6.58 74.32 2.73 2.4 0.05 43.26 0.14 208.05 15.85 0.12
BG-52 59.36 11.9 6.19 98.21 2.77 1.92 0.04 34.57 0.13 264.23 16.59 0.11
BG-58 66.2 11.61 6.4 122.26 4.79 3.84 0.07 51.42 0.31 269.55 16.18 0.18
BG-70 50.85 9.59 6.6 98.21 3.33 4 0.06 64.24 0.21 197.42 16.04 0.14
BG-79 50.15 9.49 6.57 107.73 2.83 2.88 0.05 49.66 0.17 199.19 16.65 0.14
BG-80 73.73 12.28 6.42 132.75 4.07 3.84 0.06 73.45 0.19 269.87 16.97 0.21
BG-81 73.59 12.86 6.52 87.88 2.66 2.4 0.07 66.92 0.18 228.33 17.29 0.14

GC 94.81 16.79 6.17 187.47 6.97 5.6 0.07 77.87 0.49 432.15 16.81 0.32

Mean 67.71 11.99 6.53 111.34 4.23 3.56 0.07 55.31 0.29 296.76 16.41 0.21
LSD (%) 38 8.49 1.47 59.4 2.89 2.34 0.03 17.99 0.28 210.96 2.36 0.27
CV (%) 52.71 80.87 35.95 47.35 56.63 58.62 34.91 24.65 89.75 63.18 20.26 122.95
p-value >0.05 <0.05 >0.05 <0.05 >0.05 <0.05 <0.001 <0.001 <0.001 <0.001 <0.001 <0.05

NMF, number of male flowers per plant; NFF, the number of female flowers per plant; SR, sex ratio; NL, the number of leaves per plant; PH, plant height (m); NFPP, the number of fruits
per plant; FW, fruit weight (kg/fruit); FC, fruit circumference (cm); FYPP, fruit yield per plant (kg); NSPF, the number of seeds per fruit; HSW, hundred seed weight (g/100 seed); SYPP,
seed yield per plant (kg). CV, coefficient of variation; LSD, least significant difference.
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Table 4. BLUPs estimates of bottle gourd parents and their hybrids for assessed traits evaluated under non-stressed condition across two growing seasons in South Africa.

Genotype
Traits

NMF NFF SR NL PH NFPP FW FC FYPP NSPF HSW SYPP

Crosses
BG-27 × BG-52 119.07 15.60 7.84 201.55 8.70 8.96 1.08 61.54 9.63 574.16 14.38 0.64
BG-27 × BG-58 145.99 25.34 6.77 419.92 10.65 8.80 0.14 51.24 1.26 554.98 15.79 0.67
BG-27 × BG-70 144.85 18.79 7.75 209.55 8.82 7.80 0.09 50.44 0.74 773.20 13.73 0.70
BG-27 × BG-79 170.49 27.90 7.19 322.53 9.74 8.96 0.11 90.07 1.01 469.99 14.40 0.55
BG-27 × BG-80 150.41 18.79 8.19 282.54 9.59 6.97 0.09 48.55 0.77 330.24 15.09 0.30

BG-27 × GC 150.98 23.10 7.20 213.95 9.07 9.13 0.18 61.53 1.64 402.98 12.80 0.41
BG-52 × BG-58 181.88 24.70 7.60 221.55 8.98 7.97 0.13 85.21 1.06 436.98 15.98 0.45
BG-52 × BG-70 164.94 23.26 7.42 291.14 10.09 8.96 0.10 67.91 0.94 391.91 15.91 0.56
BG-52 × BG-80 133.89 17.19 7.88 328.13 8.80 7.13 0.08 53.18 0.60 546.48 16.60 0.62

BG-52 × GC 178.89 24.86 7.74 240.55 9.18 8.80 0.10 73.15 0.86 692.16 13.73 0.72
BG-58 × BG-70 145.85 19.27 7.80 201.55 9.38 8.46 0.08 55.73 0.79 354.95 15.47 0.39

BG-58 × GC 150.12 20.23 7.83 208.15 8.85 5.64 0.07 109.78 0.44 486.20 15.74 0.34
BG-70 × GC 183.17 30.93 6.98 168.16 8.67 7.97 0.14 80.08 1.09 387.56 14.07 0.42

BG-79 × BG-52 155.11 23.58 7.16 206.15 9.20 8.30 0.10 77.29 0.86 372.15 17.22 0.50
BG-79 × BG-58 156.82 21.35 7.56 301.94 18.42 9.30 0.10 78.74 0.98 574.95 13.75 0.67
BG-79 × BG-70 160.09 18.63 8.34 145.96 8.15 7.97 0.10 67.49 0.77 824.99 12.52 0.67
BG-79 × BG-80 140.72 17.35 8.80 328.93 9.49 10.79 0.11 59.93 1.26 370.96 14.19 0.51

BG-79 × GC 162.37 25.98 7.05 186.81 8.69 10.13 0.13 75.89 1.36 334.00 14.89 0.44
BG-80 × BG-58 166.79 24.54 7.28 323.53 9.71 10.96 0.11 87.89 1.22 533.24 12.13 0.61
BG-80 × BG-70 160.52 21.99 7.62 213.35 8.81 8.13 0.10 72.90 0.79 524.34 15.34 0.56

BG-80 × GC 161.94 23.58 7.33 332.53 10.02 8.46 0.12 84.15 0.99 573.96 15.06 0.67
BG-81 × BG-27 176.04 29.50 6.92 368.53 10.22 9.13 0.12 77.01 1.06 668.64 14.15 0.71
BG-81 × BG-52 165.22 25.50 7.58 387.52 11.09 7.97 0.12 81.55 0.95 668.44 12.65 0.54
BG-81 × BG-58 146.70 23.58 7.06 184.56 9.65 9.13 0.11 70.61 1.00 595.31 13.25 0.62
BG-81 × BG-70 147.84 23.26 7.12 374.33 10.40 11.29 0.13 79.49 1.53 272.13 14.09 0.41
BG-81 × BG-79 143.57 22.15 7.53 382.72 10.13 9.79 0.08 52.42 0.94 347.64 15.66 0.46
BG-81 × BG-80 162.09 26.14 7.17 302.34 10.77 10.46 0.11 72.84 1.17 598.47 13.44 0.74

BG-81 × GC 179.32 27.90 7.14 363.13 10.48 10.29 0.15 80.06 1.60 687.61 12.13 0.71
Parents
BG-27 144.00 18.47 8.02 351.93 8.59 6.97 0.09 56.60 0.67 355.94 16.14 0.36
BG-52 133.17 17.19 7.71 290.94 8.88 7.47 0.11 68.41 0.84 400.81 15.42 0.48
BG-58 164.94 23.58 7.42 267.94 9.04 9.30 0.10 76.98 0.96 438.76 14.02 0.51
BG-70 179.89 26.14 7.38 422.92 10.26 12.29 0.12 80.78 1.59 306.13 14.76 0.52
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Table 4. Cont.

Genotype
Traits

NMF NFF SR NL PH NFPP FW FC FYPP NSPF HSW SYPP

BG-79 132.89 21.83 6.93 148.36 8.38 6.47 0.09 60.21 0.61 326.68 14.81 0.32
BG-80 157.24 20.39 7.95 176.56 8.23 7.80 0.12 85.57 0.91 407.92 15.41 0.52
BG-81 158.67 23.10 7.35 185.75 9.04 8.30 0.08 55.38 0.69 580.48 16.51 0.81

GC 184.02 26.78 7.37 441.32 11.22 13.78 0.16 80.20 2.48 364.44 14.02 0.65

Mean 157.24 22.85 7.50 277.70 9.70 8.89 0.11 71.41 1.28 486.94 14.59 0.55
LSD (%) 39.12 7.81 1.79 125.73 7.33 3.28 0.03 28.16 0.57 213.28 3.60 0.25
CV (%) 23.38 30.50 30.02 34.46 98.75 31.90 25.66 34.48 45.03 33.73 24.41 38.79
p-value >0.05 <0.05 >0.05 <0.05 >0.05 <0.05 <0.001 <0.001 <0.001 <0.001 <0.001 <0.05

NMF, number of male flowers per plant; NFF, the number of female flowers per plant; SR, sex ratio; NL, the number of leaves per plant; PH, plant height (m); NFPP, the number of fruits
per plant; FW, fruit weight (kg/fruit); FC, fruit circumference (cm); FYPP, fruit yield per plant (kg); NSPF, the number of seeds per fruit; HSW, hundred seed weight (g/100 seed); SYPP,
seed yield per plant (kg). CV, coefficient of variation; LSD, least significant difference.
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3.3. The GCA and SCA Effects

The ANOVA summary showing mean squares and significant tests for GCA and SCA
effects for the assessed traits across the two growing seasons are presented in Table 5. The
environmental effect was significant for all traits except for HSW. The genotypic effect was
significant for all traits except for SR, PH, FC, and SYPP. The genotypic × environmental
effect was significant for all traits except for SR, FW, FC, and NSPF. The GCA effects were
significant for NFF, NFPP, FW, FC, and FYPP, whereas SCA effects were significant for NMF,
NFF, NL, NFPP, FYPP, HSW, and SYPP. The GCA × environment interaction effects were
significant for NMF, NFF, NL, NFPP, FYPP, HSW, and SYPP, whereas SCA × environment
effects were significant for NMF, NFF, NL, PH, NFPP, FYPP, HSW, and SYPP.

3.3.1. General Combining Effects of Parental Genotypes

General combining effects of the parental genotypes for yield and related traits under
DS and NS conditions across the two growing seasons are presented in Table 6. The parental
lines exhibited varied GCA effects for the different assessed traits. Significant positive and
high positive GCA effects were considered desirable for the different traits. Under the DS
condition, BG-58 and GC were the best-performing parental genotypes that recorded high
positive and significant GCA effects for NL, PH, NFPP, FW, and FYPP. In addition, BG-58
recorded a high positive and significant GCA effect of 0.24 for SYPP. Under the NS condition,
parental genotype GC recorded significant and high positive and GCA effects of 18.3, 3.7, 1.4,
0.02, and 0.5 for NMF, NFF, NFPP, FW, and FYPP, in that order. BG-52 and BG-79 recorded a
high and negative GCA effect of −0.1 for SYPP.

3.3.2. Specific Combining Ability Effects of the Crosses

Specific combining ability effects of the crosses for the assessed traits under DS and
NS conditions across the two growing seasons are presented in Tables 7 and 8, respectively.
The SCA effect varied widely among the 28 hybrids. Under DS condition, positive and
significant SCA effects of 0.4, 0.5, and 0.7 for FYPP were recorded for BG-79 × BG-52,
BG-27 × BG-79, and BG-79 × BG-70, in that order. In addition, positive and significant
SCA effects of 0.6 for SYPP were recorded for BG-80 × BG-70. Under NS condition, BG-
81 × BG-52, BG-27 × BG-79, and BG-79 × GC recorded positive and significant SCA effects
of 0.5, 0.6, and 1 for FYPP, in that order. Positive SCA effects of 0.2, 0.3, and 0.4 for SYPP
were recorded for BG-81 × BG-58, BG-79 × BG-52, and BG-27 × GC, in that order.

3.4. Gene Action and Heritability Estimates

There were differences in the gene action and heritability among the assessed traits
under the DS and NS conditions (Table 9). Under the DS condition, the broad-sense heri-
tability (h2B) was higher than the narrow-sense heritability (h2n) for all traits. Under the DS
condition, h2B varied from 0.76 to 0.94 for all traits except for SR and HSW, which recorded
h2B of 0.13 and 0.23, respectively. A h2n of zero was recorded for all traits except for NL.
Similarly, under the NS condition, the h2B was higher than the h2n for all traits. Overall, the
dominance variance (σ2D) was higher compared to the additive variance (σ2A) for all traits.
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Table 5. Analysis of variance showing mean squares and significant tests for parental genotypes and their hybrids for the assessed traits across two growing seasons
in South Africa.

Source of Variation
Traits

df NMF NFF SR NL PH NFPP FW FC FYPP NSPF HSW SYPP

Environment (Env) 3.00 25,074.90 ** 4125.34 ** 31.79 * 1,009,293.0 ** 785.16 ** 684.26 ** 0.051 ** 10,863.87 ** 13.17 ** 1,269,586.00 ** 125.94 ns 3.23 **
Env(Rep) 6.00 269.09 ns 42.93 ns 2.60 ns 10,572.48 ** 31.45 ns 12.10 ** 0.00 ns 412.96 ns 0.21 ** 25,322.75 ns 38.04 ** 0.07 **

Env (RepBlock) 40.00 2112.83 ** 145.49 ** 6.93 ns 8314.86 ** 48.66 ns 7.05 ** 0.00 ns 876.45 ns 0.19 ** 53,420.55 ns 14.54 * 0.09 **
Genotype (Gen) 35.00 3966.34 * 157.33 * 7.45 ns 27,965.56 * 76.65 ns 23.68 ** 0.03 ** 1409.69 ns 0.69 ** 128,815.50 * 24.53 * 0.15 ns

Gen × Env 105.00 2219.24 ** 104.68 ** 5.43 ns 16,872.5 ** 61.67 * 23.78 ** 0.00 ns 1061.55 ns 0.31 ** 75,628.94 ns 15.21 ** 0.12 **
GCA 7.00 4839.62 ns 229.01 * 7.99 ns 13,288.07 ns 52.32 ns 11.08 ** 0.03 * 2902.99 * 1.02 * 100,802.40 ns 11.54 ns 0.11 ns

SCA 28.00 3748.02 * 139.42 ns 7.32 ns 31,634.94 * 82.73 ns 25.67 * 0.02 * 1036.37 ns 0.61 ** 135,818.70 * 27.78 ** 0.16 ns

GCA × Env 21.00 2513.755 ** 96.00 ** 4.66 ns 16,083.49 ** 39.91 ns 23.18 ** 0.00 ns 936.45 ns 0.31 ** 53,004.61 ns 20.88 ** 0.14 **
SCA × Env 84.00 2145.60 ** 106.84 ** 5.62 ns 17,081.00 ** 67.10 * 11.65 ** 0.00 ns 1092.80 ns 0.31 ** 81,285.03 ns 13.79 * 0.11 **

Residual 100.00 30,125.06 26.92 5.05 464.46 43.97 2.88 0.00 −174.76 0.02 −950.83 8.75 0.01

Note: GCA, general combining ability; SCA, specific combining ability; df, degrees of freedom; * and ** denote significant difference at 5 and 1% probability levels; ns, non-significant;
NMF, number of male flowers per plant; NFF, the number of female flowers per plant; SR, sex ratio; NL, the number of leaves per plant; PH, plant height (m); NFPP, the number of fruits
per plant; FW, fruit weight (kg/fruit); FC, fruit circumference (cm); FYPP, fruit yield per plant (kg); NSPF, the number of seeds per fruit; HSW, hundred seed weight (g/100 seed); SYPP,
seed yield per plant (kg).

Table 6. General combining effects for the assessed traits among the parental genotypes evaluated under drought-stressed and non-stressed conditions across two
growing seasons in South Africa.

Parents
Traits

NMF NFF SR NL PH NFPP FW FC FYPP NSPF HSW SYPP

Drought-stressed
BG-81 15.44 ns 6.39 ** −0.72 ns −10.09 ns −1.04 ** −1.01 ** 0.00 ns −1.41 ns −0.11 ns 35.55 ns −1.80 ** −0.11 ns

BG-27 −14.51 ns −0.11 ns −0.49 ns −15.54 ** −0.83 ns −0.76 ns −0.01 ** −2.36 ns −0.10 ns −60.72 ns −1.01 ns −0.06 ns

BG-79 −13.96 ns −3.16 ns 0.18 ns −17.14 ** −0.70 ns −0.46 ns −0.01 ** −6.13 ** −0.07 ns −29.17 ns 0.67 ns −0.04 ns

BG-52 8.14 ns 1.09 ns 0.09 ns −5.49 ns −0.27 ns −0.36 ns 0.00 ns 0.31 ns −0.02 ns 71.03 ns 0.11 ns 0.11 ns

BG-80 −1.71 ns −1.16 ns 0.37 ns −6.39 ns −0.22 ns −0.12 ns 0.00 ns 4.32 ns −0.04 ns −62.27 ns 0.97 ns −0.08 ns

BG-58 16.39 ns 1.54 ns −0.12 ns 23.76 ** 1.93 ** 1.19 ** 0.01 ** 4.16 ns 0.16 ** 17.43 ns 1.44 ns 0.24 **
BG-70 −13.76 ns −3.13 ns 0.42 ns −1.69 ns −0.34 ns 0.44 ns 0.00 ns −2.75 ns −0.02 ns −52.05 ns −0.27 ns −0.01 ns

GC 3.99 ns −1.26 ns 0.27 ns 32.56 ** 1.46 ** 1.19 ** 0.02 ** 3.85 ns 0.19 ** 80.18 ns −0.10 ns 0.04 ns

Non-stressed
BG-81 7.24 ns 3.49 ** −0.65 ** 56.38 ** 2.26 ** 1.03 ns 0.00 ns −3.53 ns 0.14 ns 171.58 ** −0.76 ns 0.27 ns

BG-27 −5.91 ns −0.31 ns −0.15 ns 5.63 ns −0.07 ns −0.98 ns 0.00 ns −0.31 ns −0.14 ns 30.73 ns 1.28 ns 0.02 ns

BG-79 −7.26 ns −0.96 ns 0.20 ns −13.78 ns −0.84 ns 0.08 ns −0.01 ** −1.55 ns −0.07 ns −91.13 ** 0.06 ns −0.11 **
BG-52 −24.46 ** −3.41 ** −0.02 ns −35.58 ** −1.15 ** −1.78 ** −0.02 ** 1.20 ns −0.37 ** −26.23 ns 1.97 ** −0.07 **
BG-80 6.09 ns −1.46 ns 0.62 ** −26.83 ns −0.94 ns −0.53 ns 0.01 ** 1.43 ns −0.02 ns −44.48 ns 0.33 ns −0.03 ns

BG-58 3.29 ns 0.09 ns −0.04 ns −14.23 ns −0.22 ns −0.18 ns 0.00 ns 2.07 ns −0.06 ns 19.53 ns −0.94 ns −0.02 ns

BG-70 2.69 ns −1.11 ns 0.44 ns 3.28 ns 0.13 ns 0.98 ns 0.00 ns −0.29 ns 0.06 ns −26.08 ns −0.56 ns −0.05 ns

GC 18.34 ** 3.69 ** −0.39 ns 25.13 ns 0.83 ns 1.38 ** 0.02 ** 0.97 ns 0.47 ** −33.93 ns −1.39 ns 0.01 ns

Notes: ** denote significant at 1% probability level of t-values based on a two-tailed test, respectively; ns, non-significant; NMF, number of male flowers per plant; NFF, the number of
female flowers per plant; SR, sex ratio; NL, the number of leaves per plant; PH, plant height (m); NFPP, the number of fruits per plant; FW, fruit weight (kg/fruit); FC, fruit circumference
(cm); FYPP, fruit yield per plant (kg); NSPF, the number of seeds per fruit; HSW, hundred seed weight (g/100 seed); SYPP, seed yield per plant (kg).
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Table 7. Specific combining effects for the studied agronomic traits among the crosses evaluated under drought-stressed conditions across two growing seasons in
South Africa.

Cross
Traits

NMF NFF SR NL PH NFPP FW FC FYPP NSPF HSW SYPP

BG-81 × BG-27 −6.50 ns −6.40 ns 0.80 ns −38.09 ** −1.45 ns −0.71 ns −0.01 ns 5.44 ns −0.08 ns −242.12 ** 4.12 ** 0.00 ns

BG-81 × BG-79 49.95 ** 7.60 ns −0.71 ns 35.86 ns 3.63 ** 2.54 ** 0.01 ns 4.82 ns 0.22 ns −21.85 ns −5.28 ** 0.02 ns

BG-81 × BG-52 37.90 ns 8.65 ns −0.17 ns −45.54 ** −2.57 ns −1.26 ns −0.02 ** −8.69 ns −0.15 ns 386.60 ** 3.02 ns 0.03 ns

BG-81 × BG-80 21.30 ns 15.90 ** −1.12 ns −19.69 ns −2.54 ns −1.36 ns −0.02 ** −10.42 ns −0.18 ns 77.40 ns −3.33 ns −0.19 ns

BG-81 × BG-58 38.65 ns 15.15 ** −1.16 ns 21.71 ns 1.31 ns 0.49 ns 0.00 ns 2.85 ns 0.01 ns 317.20 ** −0.79 ns 0.19 ns

BG-81 × BG-70 −28.45 ns −6.05 ns 0.12 ns −14.44 ns −2.07 ns −1.41 ns −0.03 ** −8.77 ns −0.27 ns −207.50 ns −0.81 ns −0.22 ns

BG-81 × GC −74.30 ** −15.70 ** 0.04 ns 27.01 ns 2.28 ns 0.84 ns 0.01 ns 7.57 ns 0.09 ns −253.32 ** 0.26 ns −0.10 ns

BG-27 × BG-79 −32.05 ns −12.75 ns 1.41 ns 71.26 ** 2.87 ns 1.59 ns 0.06 ns 1.75 ns 0.45 ** 185.75 ns −1.32 ns 0.27 ns

BG-27 × BG-52 −20.10 ns −5.40 ns 0.74 ns −22.19 ns −1.72 ns −1.21 ns −0.01 ns 0.26 ns −0.11 ns −128.58 ns 0.09 ns −0.12 ns

BG-27 × BG-80 42.35 ns 6.15 ns −0.63 ns 60.91 ** 6.12 ns 3.49 ** 0.02 ** 1.68 ns 0.25 ns 185.37 ns −2.23 ns 0.18 ns

BG-27 × BG-58 −66.25 ** −14.10 ** 0.92 ns −16.24 ns −0.04 ns −0.61 ns 0.00 ns 0.73 ns −0.11 ns −306.83 ** 1.41 ns −0.29 ns

BG-27 × BG-70 38.60 ns −1.85 ns 2.79 ** −50.84 ** −3.14 ns −1.76 ns −0.04 ns −25.26 ** −0.20 ns 173.47 ns 0.52 ns −0.04 ns

BG-27 × GC −12.00 ns 0.95 ns 0.02 ns 16.51 ns −0.43 ns 0.34 ns 0.01 ns 9.45 ns 0.05 ns 304.77 ** −0.19 ns 0.36 ns

BG-79 × BG-52 44.65 ns 21.80 ** −3.41 ** 66.96 ** 2.41 ns 1.59 ns 0.04 ns −4.85 ns 0.42 ** 194.25 ns 1.65 ns 0.24 ns

BG-79 × BG-80 −57.10 ** −9.75 ns −0.47 ns −68.79 ** −5.10 ** −3.16 ** −0.03 ns 12.91 ns −0.40 ** −271.98 ** 3.94 ** −0.22 ns

BG-79 × BG-58 −25.20 ns −3.30 ns −0.44 ns −29.99 ns −2.62 ** −1.81 ns −0.02 ** −13.40 ** −0.20 ns −160.18 ns −1.93 ns −0.16 ns

BG-79 × BG-70 65.70 ** 6.45 ns 1.09 ns 108.36 ns 6.57 ns 4.59 ** 0.06 ns 22.57 ** 0.69 ** 627.62 ns 0.48 ns 0.96 ns

BG-79 × GC −60.95 ** −9.30 ns −0.32 ns 27.26 ns 1.84 ns 1.44 ns 0.03 ** 2.85 ns 0.15 ns −191.58 ns −1.59 ns −0.11 ns

BG-52 × BG-80 −7.05 ns −2.00 ns 0.26 ns −66.39 ** −4.35 ** −3.46 ** −0.02 ** 7.72 ns −0.40 ** −189.28 ns 3.97 ** −0.33 ns

BG-52 × BG-58 38.10 ns 5.85 ns −0.12 ns −39.44 ns −3.47 ** −1.71 ns −0.04 ns −12.07 ns −0.25 ns −167.80 ns 0.76 ns −0.19 ns

BG-52 × BG-70 −65.65 ** −9.20 ns 0.77 ns 14.81 ns 1.11 ns 0.54 ns 0.02 ** 12.75 ns 0.11 ns −330.53 ** −0.55 ns −0.22 ns

BG-52 × GC −33.90 ns −0.30 ns −2.50 ** −58.29 ** −3.53 ** −2.01 ns −0.05 ns −28.64 ns −0.30 ** −350.58 ** 1.32 ns −0.44 **
BG-80 × BG-58 −30.05 ns −7.05 ns 0.83 ns −24.89 ns −3.37 ** −2.16 ** 0.00 ns 23.12 ** −0.24 ns −220.78 ** −0.07 ns −0.25 ns

BG-80 × BG-70 20.85 ns −1.75 ns 1.51 ns 61.96 ** 5.32 ** 3.44 ** 0.02 ** 6.00 ns 0.37 ** 272.52 ** 3.08 ns 0.63 **
BG-80 × GC 62.00 ** 3.60 ns 1.40 ns 60.41 ** 5.51 ** 3.69 ** 0.04 ns 8.19 ns 0.53 ** 266.50 ** −1.44 ns 0.34 ns

BG-58 × BG-70 −5.75 ns −2.45 ns 0.37 ns −53.34 ** −4.38 ** −3.56 ** −0.01 ns 7.09 ns −0.45 ns −15.23 ns −2.78 ns −0.33 ns

BG-58 × GC 10.80 ns −0.30 ns 0.07 ns 5.01 ns −0.77 ns −0.81 ns −0.01 ns 1.84 ns −0.13 ns −50.48 ns 1.00 ns −0.02 ns

BG-70 × GC −26.30 ns −4.50 ns −2.73 ns 39.86 ns 4.29 ** 3.29 ** 0.02 ** 10.63 ns 0.44 ** −89.18 ns −0.05 ns −0.02 ns

Note: ** denote significant differences at 1% probability level of t-values based on a two-tailed test, respectively; ns, non-significant; NMF, number of male flowers per plant; NFF, the
number of female flowers per plant; SR, sex ratio; NL, the number of leaves per plant; PH, plant height (m); NFPP, the number of fruits per plant; FW, fruit weight (kg/fruit); FC, fruit
circumference (cm); FYPP, fruit yield per plant (kg); NSPF, the number of seeds per fruit; HSW, hundred seed weight (g/100 seed); SYPP, seed yield per plant (kg).
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Table 8. Specific combining effects for the studied agronomic traits among the crosses evaluated under non-stressed condition across two growing seasons in
South Africa.

Cross
Traits

NMF NFF SR NL PH NFPP FW FC FYPP NSPF HSW SYPP

BG-81 × BG-27 −8.32 ns −3.66 ns 0.45 ns −149.11 ** −5.04 ** −0.91 ns −0.04 ** −3.56 ns −0.47 ** −64.07 ns 5.27 ** 0.36 ns

BG-81 × BG-79 51.33 ** 6.14 ns 0.22 ns 30.14 ns 1.16 ns −3.41 ** 0.01 ns 0.86 ns −0.37 ns 201.28 ** 0.82 ns −0.01 ns

BG-81 × BG-52 1.18 ns 5.79 ns −1.47 ** 96.04 ** 2.98 ** 4.04 ** 0.01 ns −0.83 ns 0.52 ** −375.87 ns 1.09 ns −0.38 **
BG-81 × BG-80 29.38 ns 10.24 ** −1.21 ns 102.84 ** 3.34 ** −2.11 ns 0.01 ns −0.43 ns −0.21 ns 332.73 ** −4.86 ** −0.07 ns

BG-81 × BG-58 −15.17 ns −5.21 ns 1.01 ns 76.09 ns 2.31 ns 2.64 ns 0.00 ns −3.02 ns 0.35 ns 10.98 ns −0.58 ns 0.22 **
BG-81 × BG-70 −43.37 ** −8.26 ** 0.65 ns −115.51 ** −3.02 ** −2.71 ns −0.02 ns 1.05 ns −0.42 ns 107.98 ns −3.62 ns −0.22 **

BG-81 × GC −0.27 ns 1.44 ns −0.52 ns 61.49 ns 1.84 ns 1.64 ns 0.03 ** 10.48 ns 0.51 ** −402.42 ns 1.32 ns −0.41 ns

BG-27 × BG-79 −6.42 ns −2.86 ns 0.43 ns 47.14 ns 1.46 ns 1.74 ns 0.03 ** −0.98 ns 0.57 ** 253.43 ** −4.72 ** 0.14 ns

BG-27 × BG-52 28.98 ns −0.06 ns 0.96 ns −49.11 ns −1.87 ns 2.09 ns −0.02 ns −0.58 ns 0.14 ns −263.37 ** 1.27 ns −0.16 **
BG-27 × BG-80 33.33 ns 10.09 ** −1.26 ns 57.29 ns 2.31 ns 2.04 ns 0.01 ns 23.44 ** 0.27 ns −116.52 ** −1.69 ns 0.01 **
BG-27 × BG-58 −92.97 ns −11.46 ** −0.18 ns 10.09 ns 0.90 ns −0.61 ns −0.03 ** 2.63 ns −0.18 ns 197.08 ** −0.45 ns 0.19 **
BG-27 × BG-70 17.48 ns 0.09 ns 0.79 ns 4.84 ns −0.82 ns 0.64 ns 0.04 ns −8.60 ns 0.42 ns −300.17 ** −0.06 ns −0.33 **

BG-27 × GC −24.72 ns −0.96 ns −0.98 ns 116.24 ** 4.13 ** 0.29 ns 0.06 ns −4.52 ns 0.55 ** 254.83 ** 2.99 ns 0.38 **
BG-79 × BG-52 −31.62 ns −5.76 ns 0.27 ns −96.26 ** −3.29 ** −2.36 ns −0.03 ** −11.59 ns −0.45 ns 442.93 ns −1.87 ns 0.33 **
BG-79 × BG-80 −10.77 ns 1.94 ns −0.77 ns −24.11 ns −0.65 ns −0.76 ns −0.03 ** −1.07 ns −0.51 ** −152.72 ns −2.28 ns −0.25 ns

BG-79 × BG-58 −29.32 ns −4.76 ns −0.12 ns −96.81 ** −4.23 ** −5.01 ** −0.04 ns −13.04 ** −0.75 ** −0.67 ns 0.57 ns −0.09 ns

BG-79 × BG-70 33.88 ns 5.19 ns −0.56 ns −54.01 ns 1.04 ns 1.84 ns 0.01 ns 8.58 ns 0.24 ns −148.07 ns 3.47 ns −0.03 ns

BG-79 × GC 23.33 ns 0.24 ns 0.57 ns 138.74 ** 4.10 ** 4.09 ** 0.05 ns 4.43 ns 1.00 ** −90.82 ns −0.87 ns 0.00 ns

BG-52 × BG-80 13.63 ns −0.31 ns 0.50 ns 53.14 ns 2.64 ns 2.74 ns 0.01 ns −9.57 ns 0.31 ns 272.18 ** −3.74 ns 0.43 ns

BG-52 × BG-58 −54.77 ** −11.11 ** 2.14 ** −87.36 ns −3.63 ** −2.91 ns −0.01 ns −4.07 ns −0.45 ns 595.78 ns −4.64 ** 0.33 **
BG-52 × BG-70 8.08 ns −0.41 ns 0.31 ns −10.21 ns −0.98 ns −1.81 ns 0.01 ns 4.10 ns −0.39 ns −135.37 ns 5.24 ** −0.17 ns

BG-52 × GC −38.92 ** −7.36 ns 0.57 ns −47.21 ns −3.52 ** −0.81 ns 0.01 ns 6.62 ns 0.04 ns −218.97 ** −1.60 ns −0.22 **
BG-80 × BG-58 5.53 ns −0.31 ns 0.29 ns −33.46 ns −1.50 ns −0.56 ns −0.03 ** −4.70 ns −0.22 ns 218.78 ** 3.00 ns 0.32 **
BG-80 × BG-70 58.83 ** 5.64 ns 0.65 ns 67.44 ns 1.37 ns 1.59 ns 0.05 ns 10.47 ns 0.61 ** −239.72 ** 5.93 ** −0.10 ns

BG-80 × GC 20.43 ns 2.34 ns −0.08 ns 15.94 ns 1.53 ns 1.44 ns 0.00 ns −21.73 ** 0.17 ns −220.62 ** −0.41 ns −0.14 ns

BG-58 × BG-70 22.78 ns 3.04 ns −0.04 ns −14.41 ns 0.38 ns 0.04 ns −0.03 ** −8.07 ns −0.49 ns 297.73 ** −3.49 ns 0.28 **
BG-58 × GC −10.52 ns 0.24 ns −0.47 ns −49.71 ns −2.64 ** −2.31 ns 0.00 ns 5.37 ns −0.33 ns −197.97 ** 1.15 ns −0.28 **
BG-70 × GC 24.28 ns 5.69 ns −0.68 ns −9.31 ns 2.86 ** 2.34 ns −0.01 ns 10.23 ns 0.20 ns 154.03 ns −6.76 ** 0.04 ns

Note: ** denote significant differences at 1% probability level of t-values based on a two-tailed test; respectively, ns non-significant; NMF, number of male flowers per plant; NFF, the
number of female flowers per plant; SR, sex ratio; NL, the number of leaves per plant; PH, plant height (m); NFPP, the number of fruits per plant; FW, fruit weight (kg/fruit); FC, fruit
circumference (cm); FYPP, fruit yield per plant (kg); NSPF, the number of seeds per fruit; HSW, hundred seed weight (g/100 seed); SYPP, seed yield per plant (kg).
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3.5. Heterosis under Drought-Stressed and Non-Stress Conditions

Heterosis estimates for the studied traits amongst the F1 bottle gourd evaluated under DS
and NS conditions across the two growing seasons are presented in Supplemental Table S1.
High positive heterosis was considered desirable for the assessed traits. Under DS condition,
high and positive mid-parent heterosis (MPH) of 298%, 101%, 91%, 58% and 86% for FYPP
was recorded for crosses BG-80 × BG-58, BG-27 × BG-79, BG-79 × BG-52, BG-27 × BG-52
and BG-52 × BG-80, whereas better-parent heterosis (BPH) of 184%, 70%, 59%, 51% and
32% for FYPP was recorded for the same crosses, respectively. High and positive MPH of
244% and 265% and BPH of 236% and 174% for SYPP were recorded for crosses BG-70× GC
and BG-79 × BG-52, in that order. Under the NS condition, high and positive MPH of 58%
and 52%, and BPH of 50% and 31% for FYPP were recorded for crosses BG-27 × GC and
BG-79 × GC, in that order. At the same time, BPH of 52% and 59% for SYPP were recorded
for crosses BG-27 × BG-58 and BG-27 × BG-79. In addition, MPH of 29% and 34% for SYPP
were recorded for crosses BG-27 × BG-58 and BG-27 × BG-79, respectively.

Table 9. Gene action and heritability estimates for the assessed traits under drought-stressed and
non-stressed conditions across two growing seasons in South Africa.

Traits σ2A σ2D h2B h2n

Drought-stressed

NMF 0.00 1825.33 0.85 0.00
NFF 0.00 75.25 0.76 0.00
SR 0.08 0.84 0.13 0.01
NL 758.15 3548.41 0.86 0.15
PH 0.00 14.06 0.91 0.00

NFPP 0.04 7.65 0.88 0.00
FW 0.00 0.00 0.87 0.01
FC 12.35 755.56 0.94 0.02

FYPP 0.00 0.09 0.89 0.00
NSPF 0.00 69,636.26 0.89 0.00
HSW 0.00 1.42 0.23 0.00
SYPP 0.00 0.09 0.85 0.00

Non-stressed

NMF 248.28 1292.97 0.82 0.0.13
NFF 10.84 64.27 0.86 0.12
SR 0.50 1.53 0.23 0.06
NL 0.00 42,735.77 0.95 0.00
PH 0.00 7.81 0.08 0.00

NFPP 0.35 15.35 0.89 0.02
FW 0.00 0.03 0.93 0.00
FC 83.30 988.20 0.88 0.06

FYPP 0.06 0.60 0.93 0.08
NSPF 0.00 118,919.20 0.95 0.00
HSW 0.00 15.45 0.82 0.00
SYPP 0.00 0.10 0.90 0.00

Note, σ2A, additive variance; σ2D, dominance variance; h2B, broad-sense heritability; h2n, narrow-sense heritabil-
ity; NMF, number of male flowers per plant; NFF, the number of female flowers per plant; SR, sex ratio; NL, the
number of leaves per plant; PH, plant height (m); NFPP, the number of fruits per plant; FW, fruit weight (kg/fruit);
FC, fruit circumference (cm); FYPP, fruit yield per plant (kg); NSPF, the number of seeds per fruit; HSW, hundred
seed weight (g/100 seed); SYPP, seed yield per plant (kg).

3.6. Associations of the Agronomic Traits under Drought and Non-Stressed Conditions

Pearson’s correlation coefficients showing the associations between the assessed traits
under DS and NS conditions across the two growing seasons are presented in Table 10. A
highly significant and moderate positive correlation was recorded between several traits.
Under DS condition, significant and positive correlations were recorded between FW with
FYPP (r = 0.8) and SYPP (r = 0.7). Additionally, a significant and positive correlation was
recorded between FYPP and SYPP (r = 0.8). Whereas under NS condition, high and positive
correlations were recorded between NFPP with FW (r = 0.8) and SYPP (r = 0.8). NFPP
exhibited a significantly low correlation with FYPP (r = 0.3). FW positively correlated
with FYPP (r = 0.6) and SYPP (r = 0.9). A moderate and positive correlation was recorded
between FYPP and SYPP (r = 0.5).
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Table 10. Pearson correlation coefficients showing associations between assessed traits among the parental genotypes and their crosses under drought-stressed
(upper diagonal) and non-stressed (lower diagonal) conditions across two growing seasons in South Africa.

Traits NMF NFF SR NL PH NFPP FW FC FYPP NSPF HSW SYPP

NMF 0.866 ** 0.00 ns 0.277 ** 0.365 ** 0.378 ** 0.00 ns 0.20 ns −0.06 ns 0.611 ** −0.03 ns −0.11 ns

NFF 0.525 ** 0.12 ns 0.333 ** 0.350 ** 0.401 ** −0.06 ns 0.11 ns −0.17 ns 0.577 ** 0.05 ns −0.20 ns

SR 0.04 ns 0.21 ns 0.04 ns 0.11 ns 0.06 ns −0.14 ns −0.03 ns −0.248 * 0.00 ns 0.19 ns −0.17 ns

NL 0.431 ** 0.08 ns −0.15 ns 0.772 ** 0.712 ** −0.18 ns 0.453 ** −0.285 * 0.405 ** 0.12 ns −0.251 **
PH −0.500 ** 0.333 ** 0.286 * −0.398 ** 0.861 ** −0.24 ns 0.462 ** −0.339 ** 0.533 ** 0.03 ns −0.22 ns

NFPP −0.24 ns 0.511 ** 0.307 * −0.12 ns 0.866 ** −0.23 ns 0.401 ** −0.361 ** 0.453 ** 0.05 ns −0.266 *
FW −0.474 ** 0.334 ** 0.382 ** −0.438 ** 0.946 ** 0.783 ** −0.17 ns 0.839 ** −0.04 ns −0.02 ns 0.683 **
FC 0.690 ** 0.403 ** −0.08 ns 0.598 ** −0.335 ** −0.02 ns −0.356 ** −0.282 ** 0.20 ns −0.06 ns −0.23 ns

FYPP −0.13 ns 0.22 ns 0.22 ns −0.22 ns 0.443 ** 0.293 * 0.631 ** −0.12 ns −0.12 ns 0.08 ns 0.830 **
NSPF 0.17 ns −0.04 ns 0.07 ns 0.02 ns −0.21 −0.254 * −0.17 ns 0.06 ns −0.13 ns −0.18 ns −0.12 ns

HSW −0.02 ns 0.320 ** 0.07 ns −0.14 ns 0.375 ** 0.357 ** 0.327 ** −0.23 ns 0.02 ns −0.14 ns 0.19 ns

SYPP −0.545 ** 0.295 * 0.313 ** −0.476 ** 0.981 ** 0.827 ** 0.969 ** −0.400 ** 0.463 ** −0.19 ns 0.19 ns

Notes: * and ** denote significant at 5 and 1% probability level of t-values based on a two-tailed test, respectively; ns, non-significant; NMF, number of male flowers per plant; NFF, the
number of female flowers per plant; SR, sex ratio; NL, the number of leaves per plant; PH, plant height (m); NFPP, the number of fruits per plant; FW, fruit weight (kg/fruit); FC, fruit
circumference(cm); FYPP, fruit yield per plant (kg); NSPF, the number of seeds per fruit; HSW, hundred seed weight (g/100 seed); SYPP, seed yield per plant (kg).
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4. Discussion

Bottle gourd has niche market opportunities in SSA, requiring the breeding of new,
well-adapted, and high-yielding varieties that possess good agronomic and horticultural
traits and acceptable market standards. The present study determined the combining ability
and heterosis of fruit yield and related traits among South African bottle gourd accessions
under drought-stressed and non-stressed conditions for breeding and variety release.

Analysis of variance revealed significant genotypic effects (Table 2), suggesting sub-
stantial differences among the parental genotypes and their progenies for economic traits,
including fruit and seed yields (Tables 4 and 5). Bottle gourd is a morphologically diverse
crop with variations reported for agronomic traits, including male and flowering capacity,
fruit yield and related traits, and seed yield and related traits [2,25,27,28,32,42,53]. Drought
stress reduced flowering and fruit capacity (Tables 4 and 5). Fruit and seed yield were
reduced by 71 and 62% across the tested genotypes, respectively. These indicated that bottle
gourd can grow under drought-stressed environments and produce reasonable yields. The
increasing drought episodes in SSA require concerted efforts to develop drought-resilient
bottle gourd varieties. The variation observed in the present study will allow for select-
ing of desirable genotypes for new variety design and commercialization. For example,
crosses BG-52 × BG-58, BG-79 × BG-52, BG-80 × BG-58, BG-80 × GC, BG-81 × BG-80,
and BG-81 × GC were high fruit yielders and are recommendable for further selection.
Additionally, crosses BG-52 × BG-58, BG-79 × BG-52, BG-27 × BG-52, BG-27 × BG-58,
BG-27 × BG-70 and BG-52 × BG-80 were the best performers for seed yield. These are ideal
families for gene introgression, genetic advancement, and variety release. The significant
genotype-by-environment interaction effects for the studied traits suggested environmental
influence on the performance of genotypes requiring multi-environment testing to iden-
tify and recommend genotypes with specific and wide adaptation in targeted production
environments.

The significant SCA effect indicated non-additive gene action for fruit and seed yield
and some related agronomic traits (Tables 7 and 8). The non-additive gene action is non-
fixable and challenging to transform, suggesting that such crosses should be used in direct
production to increase the fruit and seed yield of bottle gourd in South Africa. There were
significant GCA × environment effects for fruit and seed yields (Table 6). This indicated
that the effects are dependent on the environment for their expression. A significant
SCA × environment interaction effect existed for fruit and seed yields, suggesting that
the environment played a significant role in expressing the effects. Therefore, multi-
environment testing of the parents and hybrids is crucial to categorize each genotype’s
performance and identify genotypes with adaptation to certain environments to optimize
the fruit and seed yield.

In the present study, crosses such as BG-27 × BG-79 and BG-79 × BG-70 with high
and significant SCA for fruit yield per plant were derivatives of parental genotypes BG-27,
BG-70, and BG-79. Interestingly, these parents had low and non-significant GCA effects
on fruit yield per plant. Previous studies in bottle gourd revealed crosses with significant
SCA effects for fruit yield and yield-related traits that are derived from both or at least a
parent that is a good combiner for the trait [38,39,41,54]. The recorded high SCA effects
in the current study may be due to dominant × dominant non-allelic gene interaction
producing over-dominance, thus challenging to modify using breeding programs [55,56].
In addition to dominance and epistasis, the SCA variation includes aberrations due to
genotype× environment interactions [57]. In the current study, crosses such as BG-81× BG-
80 had a high positive and significant SCA effect for the number of female flowers. This
cross manifested from good× poor general combiner parents for the trait may be attributed
to favorable additive gene effects of the good general combiner parent (BG-81) and non-
additive effects of the poor general combiner (BG-80) [56]. Parental genotypes such as BG-58
and GC (Table 6) with high GCA effects for fruit and seed yield serve as valuable germplasm
for future breeding. Crosses such as BG-81 × BG-52, BG-81 × GC, BG-27 × BG-79, BG-
27 × GC, BG-79 × GC, BG-80 × BG-70, BG-81 × BG-58, BG-27 × BG-80, BG-27 × BG-58,
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BG-79 × BG-52, BG-52 × BG-58, BG-80 × BG-58, and BG-58 × BG-70 (Tables 7 and 8)
with the high positive SCA effect for fruit and seed yield are potential genetic resources
for further selection and multi-environment testing for release and commercialization in
South Africa.

Heritability analysis is useful to provide information about the potential transmissibil-
ity of traits from parents to offspring [58,59]. The larger broad-sense heritability compared
to narrow-sense heritability for all traits (Table 9) indicates that additive gene action is
conditioning these traits in bottle gourd, showing that genetic gains are achievable using
selection.

The exploitation of heterosis via intensive evaluation of hybrids identifies diverse
genetic donors and allows for the identification of heterotic crosses [37,38]. High and
positive mid- and better-parent heterosis observed in the cross BG-80× BG-58, BG-27× BG-
79, BG-79 × BG-52, BG-27 × BG-52, and BG-52 × BG-80 for fruit yield per plant and cross,
BG-70 × GC and BG-79 × BG-52 for seed yield per fruit. Hence, these crosses are essential
for strategic breeding and variety release in South Africa.

Trait correlation analyses aid in the simultaneous selection of multiple traits. The
positive correlations between the number of female flowers per plant with the number of
fruits per plant and the number of fruits per plant with the number of seeds per fruit, fruit
yield per plant, and seed yield per fruit suggested simultaneous improvement in these
traits is possible. Additionally, these suggested the linkages of desirable genes controlling
the expression of the studied traits [60,61]. Therefore, these traits are recommended for
further selection in the newly developed bottle gourd hybrids to deliver varieties that meet
market needs and standards and multiple crop characteristics required by sub-Saharan
African growers.

5. Conclusions

The current study assessed the combining ability and heterosis for fruit yield and
related traits. Crosses were made using genetically distant parents of South African bottle
gourd accessions under non-stressed and drought-stressed conditions to select drought-
tolerant parents and new hybrids for production under water-stressed environments in
South Africa or similar agroecologies globally. Drought stress reduced flowering and
fruit capacity, fruit and seed yields in the presently assessed bottle gourd populations.
Nevertheless, the studied genotypes produced reasonable yield levels under drought-
stressed conditions, indicating the possibility of breeding for enhanced drought tolerance
in bottle gourds. Parental genotypes BG-58 and GC were identified as valuable germplasm
for future breeding targeting high fruit and seed yields in water-limited environments. The
newly bred F1 hybrids BG-81 × BG-52, BG-81 × GC, BG-27 × BG-79, BG-27 × GC, BG-
79 × GC, BG-80 × BG-70, BG-81 × BG-58, BG-27 × BG-80, BG-27 × BG-58, BG-79 × BG-52,
BG-52 × BG-58, BG-80 × BG-58, and BG-58 × BG-70 with high fruit and seed yields were
drought-tolerance and are recommended for release and commercialization in South Africa
following multi-environment testing.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/d15080925/s1, Table S1: Estimates of mid parent and better
parent heterosis for the studied agronomic traits under drought stress and non-stress conditions
across two growing seasons in South Africa.
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