Crossing Old Concepts: The Ecological Advantages of New Vineyard Types
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Statistical Analyses
3. Results
3.1. Monitoring Data
3.2. Species Richness and Diversity Differ between Different Vineyard Types
3.3. Insect Communities Differ between Vineyard Types
3.4. Indicator Species of Cross-Slope Vineyards with Greened Embankments
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wagner, D.L. Insect Declines in the Anthropocene. Annu. Rev. Entomol. 2020, 65, 457–480. [Google Scholar] [CrossRef]
- Samways, M.J. Insect Conservation: A Global Synthesis; CABI Publishing: Wallingford, UK, 2020; ISBN 978-1-78924-167-9. [Google Scholar]
- Habel, J.C.; Samways, M.J.; Schmitt, T. Mitigating the precipitous decline of terrestrial European insects: Requirements for a new strategy. Biodivers. Conserv. 2019, 28, 1343–1360. [Google Scholar] [CrossRef]
- European Union. Agriculture, Forestry and Fishery Statistics: 2018 Edition; Publications Office of the European Union: Luxembourg, 2018; ISBN 978-92-79-94758-2. [Google Scholar]
- Dudley, N.; Alexander, S. Agriculture and biodiversity: A review. Biodiversity 2017, 18, 45–49. [Google Scholar] [CrossRef]
- Hallmann, C.A.; Sorg, M.; Jongejans, E.; Siepel, H.; Hofland, N.; Schwan, H. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 2012, 12, e0185809. [Google Scholar] [CrossRef] [PubMed]
- Ollerton, J.; Winfree, R.; Tarrant, S. How many flowering plants are pollinated by animals? Oikos 2011, 120, 321–326. [Google Scholar] [CrossRef]
- Vanbergen, A.J.; The Insect Pollinators Initiative. Threats to an ecosystem service: Pressures on pollinators. Front. Ecol. Environ. 2013, 11, 251–259. [Google Scholar] [CrossRef] [PubMed]
- European Comission. The European Green Deal. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0002.02/DOC_1&format=PDF (accessed on 12 December 2023).
- Biesmeijer, J.C.; Roberts, S.P.M.; Reemer, M.; Ohlemüller, R.; Edwards, M.; Peeters, T.; Schaffers, A.P.; Potts, S.G.; Kleukers, R.; Thomas, C.D.; et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 2006, 313, 351–354. [Google Scholar] [CrossRef]
- Košulič, O.; Michalko, R.; Hula, V. Recent artificial vineyard terraces as a refuge for rare and endangered spiders in a modern agricultural landscape. Ecol. Eng. 2014, 68, 133–142. [Google Scholar] [CrossRef]
- Paiola, A.; Assandri, G.; Brambilla, M.; Zottini, M.; Pedrini, P.; Nascimbene, J. Exploring the potential of vineyards for biodiversity conservation and delivery of biodiversity-mediated ecosystem services: A global-scale systematic review. Sci. Total Environ. 2020, 706, 135839. [Google Scholar] [CrossRef]
- Oussama, M.; Kamel, E.; Le Philippe, G.; Elisabeth, M.; Jacques, F.; Habiba, A.; Jean-Paul, B. Assessing plant protection practices using pressure indicator and toxicity risk indicators: Analysis of therelationship between these indicators for improved risk management, application in viticulture. Environ. Sci. Pollut. Res. Int. 2015, 22, 8058–8074. [Google Scholar] [CrossRef]
- Pertot, I.; Caffi, T.; Rossi, V.; Mugnai, L.; Hoffmann, C.; Grando, M.S.; Gary, C.; Lafond, D.; Duso, C.; Thiery, D.; et al. A critical review of plant protection tools for reducing pesticide use on grapevine and new perspectives for the implementation of IPM in viticulture. Crop Prot. 2017, 97, 70–84. [Google Scholar] [CrossRef]
- Viret, O.; Spring, J.-L.; Zufferey, V.; Gindro, K.; Linder, C.; Gaume, A.; Murisier, F. Past and future of sustainable viticulture in Switzerland. BIO Web Conf. 2019, 15, 1013. [Google Scholar] [CrossRef]
- Porten, M.; Treis, F.J. Querterrassierung: Die Rettung der Steillagen? Das Deutsche Weinmagazin 2006, 11, 22–29. [Google Scholar]
- Caraveli, H. A comparative analysis on intensification and extensification in mediterranean agriculture: Dilemmas for LFAs policy. J. Rural Stud. 2000, 16, 231–242. [Google Scholar] [CrossRef]
- IBES. Summary for Policymakers of the Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on Pollinators, Pollination and Food Production; Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services: Bonn, Germany, 2016; ISBN 978-92-807-3568-0. [Google Scholar]
- Dylewski, Ł.; Maćkowiak, Ł.; Banaszak-Cibicka, W. Are all urban green spaces a favourable habitat for pollinator communities? Bees, butterflies and hoverflies in different urban green areas. Ecol. Entomol. 2019, 44, 678–689. [Google Scholar] [CrossRef]
- Holland, J.M.; Smith, B.M.; Storkey, J.; Lutman, P.J.; Aebischer, N.J. Managing habitats on English farmland for insect pollinator conservation. Biol. Conserv. 2015, 182, 215–222. [Google Scholar] [CrossRef]
- Krahner, A.; Schmidt, J.; Maixner, M.; Porten, M.; Schmitt, T. Evaluation of four different methods for assessing bee diversity as ecological indicators of agro-ecosystems. Ecol. Indic. 2021, 125, 107573. [Google Scholar] [CrossRef]
- Kudrna, O. Butterflies of Europe; Aula-Verl.: Wiesbaden, Germany, 1986; ISBN 9783891040393. [Google Scholar]
- Rákosy, L.; Schmitt, T. Are butterflies and moths suitable ecological indicator systems for restoration measures of semi-natural calcareous grassland habitats? Ecol. Indic. 2011, 11, 1040–1045. [Google Scholar] [CrossRef]
- Thomas, J.A. Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2005, 360, 339–357. [Google Scholar] [CrossRef]
- Obermann, H.-W.; Gruschwitz, M. Ökologische Untersuchungen zur Fauna von Trockenmauern in Weinanbaugebieten, dargestellt am Beispiel einer Weinbergslage an der Mosel. Fauna Und Flora Rheinl.-Pfalz. 1992, 6, 1085–1139. [Google Scholar]
- Schmitt, T. Xerothermvegetation an der Unteren Mosel: Schutzwürdigkeit und Naturschutzplanung von Trockenbiotopen auf Landschaftsökologischer Grundlage; Selbstverlag des Geographischen Instituts der Justus Liebig-Universität Giessen: Giessen, Germany, 1989. [Google Scholar]
- Krahner, A.; Dathe, H.H.; Schmitt, T. Wildbienen (Hymenoptera, Aculeata: Apiformes) des Mittleren Moseltals: Die Weinbausteillagen im Klotten-Treiser Moseltal. Contrib. Entomol. 2018, 68, 107–131. [Google Scholar] [CrossRef]
- Pollard, E.; Yates, T.J. Monitoring Butterflies for Ecology and Conservation: The British Butterfly Monitoring Scheme, 1st ed.; Chapman & Hall: London, UK, 1993; ISBN 978-0-412-40220-3. [Google Scholar]
- Kühn, E.; Musche, M.; Harpke, A.; Feldmann, R.; Metzler, B.; Wiemers, M.; Hirneisen, N.; Settele, J. Tagfalter-Monitoring Deutschland. Oedippus 2014, 27, 1–47. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2010. [Google Scholar]
- Oskanen, J.; Simpson, G.L.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. Package ‘vegan’: Community Ecology Package. Available online: https://cran.r-project.org/web/packages/vegan/vegan.pdf (accessed on 20 January 2021).
- Dray, S.; Dufour, A.-B. The ade4 Package: Implementing the Duality Diagram for Ecologists. J. Stat. Soft. 2007, 22, 1–20. [Google Scholar] [CrossRef]
- QGIS Geographic Information System; QGIS Development Team: Beaverton, OR, USA, 2014.
- Jost, L. Entropy and diversity. Oikos 2006, 113, 363–375. [Google Scholar] [CrossRef]
- Hill, M.O. Diversity and Evenness: A Unifying Notation and Its Consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef]
- Kindt, R.; van Damme, P.; Simons, A.J. Tree Diversity in Western Kenya: Using Profiles to Characterise Richness and Evenness. Biodivers. Conserv. 2006, 15, 1253–1270. [Google Scholar] [CrossRef]
- Korner-Nievergelt, F.; Roth, T.; von Felten, S.; Guelat, J.; Almasi, B.; Korner-Nievergelt, P. Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN; Elsevier: Amsterdam, The Netherlands, 2015; ISBN 9780128013700. [Google Scholar]
- Brooks, M.; Kristensen, K.; Benthem, K.; Magnusson, A.; Berg, C.; Nielsen, A.; Skaug, H.; Mächler, M.; Bolker, B. glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef]
- Barton, K. MuMIn: Multi-Model Inference: R Package Version 1.43.17. Available online: https://cran.r-project.org/package=DHARMahttps://cran.r-project.org/package=DHARMa (accessed on 14 February 2022).
- Hartig, F.; Lohse, L. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models: R Package Version 0.4.1. Available online: https://cran.r-project.org/package=DHARMa (accessed on 14 February 2022).
- Lenth, R.V.; Bolker, B.; Burkner, P.; Giné-Vázquez, I.; Herve, M.; Jung, M.; Love, J.; Miguez, F.; Riebl, H.; Singmann, H. emmeans: Estimated Marginal Means, aka Least-Squares Means: R Package Version 1.6.0. Available online: https://cran.r-project.org/package=emmeans (accessed on 14 February 2022).
- Anderson, M.J.; Walsh, D.C.I. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? Ecol. Monogr. 2013, 83, 557–574. [Google Scholar] [CrossRef]
- Zuur, A.F.; Ieno, E.N.; Smith, G.M. (Eds.) Analysing Ecological Data; Springer: New York, NY, USA, 2007. [Google Scholar]
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001, 26, 32–46. [Google Scholar] [CrossRef]
- Anderson, M.J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 2006, 62, 245–253. [Google Scholar] [CrossRef]
- Cáceres, M.D.; Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 2009, 90, 3566–3574. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2009; ISBN 978-0-387-98141-3. [Google Scholar]
- Westrich, P. Rote Liste und Gesamtartenliste der Bienen (Hymenoptera, Apidae) Deutschlands. In Rote Liste Gefährdeter Tiere, Pflanzen und Pilze Deutschlands: Band 3: Wirbellose Tiere (Teil 1); Bundesamt für Naturschutz, Ed.; Bundesamt für Naturschutz: Bonn, Germany, 2011; pp. 373–417. [Google Scholar]
- Schmid-Egger, C.; Risch, S.; Niehuis, O. Die Wildbienen und Wespen in Rheinland-Pfalz (Hymenoptera, Aculeata): Verbreitung, Ökologie und Gefährdungssituation. Fauna Flora Rheinl.-Pfalz. Beih. 1995, 16, 1–296. [Google Scholar]
- Reinhardt, R.; Bolz, R. Rote Liste und Gesamtartenliste der Tagfalter (Rhopalocera) (Lepidoptera: Papilionoidea et Hesperioidea) Deutschlands. In Rote Liste Gefährdeter Tiere, Pflanzen und Pilze Deutschlands: Band 3: Wirbellose Tiere (Teil 1); Bundesamt für Naturschutz, Ed.; Bundesamt für Naturschutz: Bonn, Germany, 2011; pp. 167–194. [Google Scholar]
- Schmidt, A. Rote Liste der Großschmetterlinge in Rheinland-Pfalz; Ministerium für Umwelt, Landwirtschaft, Ernährung, Weinbau und Forsten Rheinland-Pfalz: Mainz, Germany, 2013. [Google Scholar]
- Carré, G.; Roche, P.; Chifflet, R.; Morison, N.; Bommarco, R.; Harrison-Cripps, J.; Krewenka, K.; Potts, S.G.; Roberts, S.P.; Rodet, G.; et al. Landscape context and habitat type as drivers of bee diversity in European annual crops. Agric. Ecosyst. Environ. 2009, 133, 40–47. [Google Scholar] [CrossRef]
- Lentini, P.E.; Martin, T.G.; Gibbons, P.; Fischer, J.; Cunningham, S.A. Supporting wild pollinators in a temperate agricultural landscape: Maintaining mosaics of natural features and production. Biol. Conserv. 2012, 149, 84–92. [Google Scholar] [CrossRef]
- Dover, J.; Sparks, T.; Clarke, S.; Gobbett, K.; Glossop, S. Linear features and butterflies: The importance of green lanes. Agric. Ecosyst. Environ. 2000, 80, 227–242. [Google Scholar] [CrossRef]
- Croxton, P.J.; Carvell, C.; Mountford, J.O.; Sparks, T.H. A comparison of green lanes and field margins as bumblebee habitat in an arable landscape. Biol. Conserv. 2002, 107, 365–374. [Google Scholar] [CrossRef]
- Croxton, P.J.; Hann, J.P.; Greatorex-Davies, J.N.; Sparks, T.H. Linear hotspots? The floral and butterfly diversity of green lanes. Biol. Conserv. 2005, 121, 579–584. [Google Scholar] [CrossRef]
- Wix, N.; Reich, M.; Schaarschmidt, F. Butterfly richness and abundance in flower strips and field margins: The role of local habitat quality and landscape context. Heliyon 2019, 5, e01636. [Google Scholar] [CrossRef]
- Blaauw, B.R.; Isaacs, R. Flower plantings increase wild bee abundance and the pollination services provided to a pollination-dependent crop. J. Appl. Ecol. 2014, 51, 890–898. [Google Scholar] [CrossRef]
- Wersebeckmann, V.; Warzecha, D.; Entling, M.H.; Leyer, I. Contrasting effects of vineyard type, soil and landscape factors on ground-versus above-ground-nesting bees. J. Appl. Ecol. 2023, 60, 601–613. [Google Scholar] [CrossRef]
- Portman, Z.M.; Bruninga-Socolar, B.; Cariveau, D.P. The State of Bee Monitoring in the United States: A Call to Refocus Away From Bowl Traps and Towards More Effective Methods. Ann. Entomol. Soc. Am. 2020, 113, 337–342. [Google Scholar] [CrossRef]
- Kehinde, T.; Samways, M.J. Management defines species turnover of bees and flowering plants in vineyards. Agric. For. Entomol. 2014, 16, 95–101. [Google Scholar] [CrossRef]
- Gathmann, A.; Tscharntke, T. Foraging ranges of solitary bees. J. Anim. Ecol. 2002, 71, 757–764. [Google Scholar] [CrossRef]
- Bink, F.A. Ecologische Atlas van de Dagvlinders van Noordwest-Europa; Schuyt: Haarlem, The Netherlands, 1992; ISBN 9789060973189. [Google Scholar]
- Garbuzov, M.; Balfour, N.J.; Shackleton, K.; Al Toufailia, H.; Scandian, L.; Ratnieks, F.L.W. Multiple methods of assessing nectar foraging conditions indicate peak foraging difficulty in late season. Insect Conserv. Divers. 2020, 13, 532–542. [Google Scholar] [CrossRef]
- Steffan-Dewenter, I.; Tscharntke, T. Early succession of butterfly and plant communities on set-aside fields. Oecologia 1997, 109, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Möth, S.; Walzer, A.; Redl, M.; Petrović, B.; Hoffmann, C.; Winter, S. Unexpected Effects of Local Management and Landscape Composition on Predatory Mites and Their Food Resources in Vineyards. Insects 2021, 12, 180. [Google Scholar] [CrossRef]
- Pardini, A.; Faiello, C.; Longhi, F.; Mancuso, S.; Snowball, R. Cover crop species and their management in vineyards and olive groves. Adv. Hortic. Sci. 2002, 16, 225–234. [Google Scholar]
- Corbet, S.A. Insects, plants and succession: Advantages of long-term set-aside. Agric. Ecosyst. Environ. 1995, 53, 201–217. [Google Scholar] [CrossRef]
- Shuler, R.E.; Roulston, T.H.; Farris, G.E. Farming practices influence wild pollinator populations on squash and pumpkin. J. Econ. Entomol. 2005, 98, 790–795. [Google Scholar] [CrossRef]
- Ullmann, K.S.; Meisner, M.H.; Williams, N.M. Impact of tillage on the crop pollinating, ground-nesting bee, Peponapis pruinosa in California. Agric. Ecosyst. Environ. 2016, 232, 240–246. [Google Scholar] [CrossRef]
- Kratschmer, S.; Pachinger, B.; Schwantzer, M.; Paredes, D.; Guzmán, G.; Goméz, J.A.; Entrenas, J.A.; Guernion, M.; Burel, F.; Nicolai, A.; et al. Response of wild bee diversity, abundance, and functional traits to vineyard inter-row management intensity and landscape diversity across Europe. Ecol. Evol. 2019, 9, 4103–4115. [Google Scholar] [CrossRef] [PubMed]
- Kohl, E.; Porten, M. Alternative für den Steillagenweinbau? Wildkräuterbegrünung im Versuch, Teil 1. Das Dtsch. Weinmagazin 2017, 18, 26–29. [Google Scholar]
- Westrich, P. Die Wildbienen Deutschlands; 2., aktualisierte Auflage; Ulmer: Stuttgart, Germany, 2019; ISBN 978-3-8186-0880-4. [Google Scholar]
- Feldmann, R.; Reinhardt, R.; Settele, J. Bestimmung und Kurzcharakterisierung der außeralpinen Tagfalter Deutschlands. In Die Tagfalter Deutschlands; Settele, J., Ed.; Ulmer: Stuttgart, Germany, 2000; pp. 247–369. [Google Scholar]
- Altieri, M.A.; Nicholls, C.I. The simplification of traditional vineyard based agroforests in northwestern Portugal: Some ecological implications. Agrofor. Syst. 2002, 56, 185–191. [Google Scholar] [CrossRef]
- Huber, E.C. Vergleich von Steillagen-Mechanisierungsformen im Weinbau. Master’s Thesis, Hochschule Mainz, Mainz, Germany, 2015. [Google Scholar]
- Statistisches Landesamt Rheinland-Pfalz. Statistische Berichte. Bestockte Rebflächen. 2020. Available online: https://www.statistik.rlp.de/fileadmin/dokumente/berichte/C/1073/C1073_202000_1j_Bereich.pdf (accessed on 12 December 2023).
- MWVLW Ministerium für Wirtschaft, Verkehr, Landwirtschaft und Weinbau Rheinland-Pfalz. WeinKulturLandschaftsProgramm Steillagen. 2005. Available online: https://www.edoweb-rlp.de/resource/edoweb:4369798/data (accessed on 6 June 2021).
- Viers, J.H.; Williams, J.N.; Nicholas, K.A.; Barbosa, O.; Kotzé, I.; Spence, L.; Webb, L.B.; Merenlender, A.; Reynolds, M. Vinecology: Pairing wine with nature. Conserv. Lett. 2013, 6, 287–299. [Google Scholar] [CrossRef]
- Šmid Hribar, M.; Geršič, M.; Pipan, P.; Repolusk, P.; Tiran, J.; Topole, M.; Ciglič, R. Cultivated terraces in Slovenian landscapes. Acta Geogr. Slov. 2017, 57, 83–97. [Google Scholar] [CrossRef]
Family | Species | Species (%) | Individuals | Individuals (%) |
---|---|---|---|---|
Wild bees | ||||
Andrenidae | 18 | 16.4 | 137 | 13.6 |
Anthophoridae | 13 | 11.8 | 97 | 9.6 |
Apidae | 12 | 10.9 | 209 | 20.6 |
Colletidae | 16 | 14.5 | 130 | 12.8 |
Halictidae | 31 | 28.2 | 369 | 36.4 |
Megachilidae | 20 | 18.2 | 71 | 7.0 |
Total | 110 | 100.0 | 1013 | 100.0 |
endangered (GER) | 34 | 31.0 | ||
categories 2–3 | 21 | 19.0 | ||
prewarning list | 11 | 10.0 | ||
endangered (RLP) | 24 | 22.0 | ||
categories 2–3 | 24 | 22.0 | ||
Butterflies | ||||
Hesperiidae | 3 | 9.7 | 14 | 3.1 |
Papilionidae | 2 | 6.5 | 10 | 2.2 |
Pieridae | 9 | 29.0 | 183 | 40.9 |
Lycaenidae | 5 | 16.1 | 9 | 2.0 |
Nymphalidae * | 7 | 22.6 | 132 | 29.5 |
Satyrinae | 5 | 16.1 | 100 | 22.3 |
total | 31 | 100.0 | 448 | 100.0 |
endangered (GER) | 6 | 19.0 | ||
categories 1–3 | 3 | 10.0 | ||
prewarning list | 3 | 10.0 | ||
endangered (RLP) | 13 | 38.0 | ||
categories 1–3 | 6 | 19.0 | ||
prewarning list | 7 | 23.0 |
Insect Group | Species | Individuals | ||
---|---|---|---|---|
GEV Mean ± SE | NEV Mean ± SE | GEV Mean ± SE | NEV Mean ± SE | |
Wild bees | ||||
all species | 13.7 ± 6.0 | 7.1 ± 3.1 *** | 23.4 ± 14.7 | 10.1 ± 6.3 ** |
endangered (GER) | 2.9 ± 1.2 | 0.9 ± 0.4 ** | 4.2 ± 2.4 | 1.0 ± 0.6 * |
endangered (RLP) | 1.6 ± 1.2 | 0.4 ± 0.3 *** | 2.2 ± 1.9 | 0.5 ± 0.5 ** |
oligolectic | 3.1 ± 1.5 | 0.7 ± 0.4 *** | 4.5 ± 2.7 | 0.8 ± 0.5 *** |
hypergeic | 3.2 ± 1.6 | 1.0 ± 0.5 *** | 4.8 ± 3.5 | 1.3 ± 0.9 *** |
endogeic | 10.5 ± 4.5 | 6.0 ± 2.6 ** | 18.8 ± 11.6 | 8.7 ± 5.4 ** |
fallow-associated | 6.6 ± 2.7 | 2.7 ± 1.1 *** | 12.4 ± 8.2 | 4.5 ± 3.0 ** |
xerothermophilic | 1.4 ± 0.9 | 0.4 ± 0.2 ** | 2.4 ± 2.1 | 0.3 ± 0.3 *** |
Butterflies | ||||
all species | 10.0 ± 1.2 | 4.4 ± 0.7 *** | 29.8 ± 3.0 | 7.5 ± 1.0 *** |
endangered (GER) | 1.7 ± 0.4 | 0.7 ± 0.2 * | 3.6 ± 1.0 | 1.0 ± 0.4 ** |
endangered (RLP) | 3.0 ± 0.6 | 1.0 ± 0.3 ** | 5.1 ± 1.3 | 1.3 ± 0.4 ** |
monophagous | 2.3 ± 0.4 | 0.9 ± 0.3 * | 6.1± 1.3 | 1.9 ± 0.5 ** |
xerothermophilic | 1.5 ± 0.4 | 0.5 ± 0.2 * | 3.2 ± 1.0 | 0.8 ± 0.3 * |
plants | ||||
all species | 24.4 ± 5.3 | 10.7 ± 2.4 *** | NA | NA |
Insect Group | Shannon Diversity H′ | Evenness J′ | ||
---|---|---|---|---|
GEV Mean ± SE | NEV Mean ± SE | GEV Mean ± SE | NEV Mean ± SE | |
Wild bees | ||||
all species | 11.4 ± 4.2 | 6.2 ± 2.3 *** | 0.93 ± 0.02 | 0.94 ± 0.02 |
endangered (GER) | 2.7 ± 1.1 | 1.2 ± 0.5 ** | NA | NA |
endangered (RLP) | 2.0 ± 0.8 | 0.9 ± 0.4 *** | NA | NA |
oligolectic | 1.8 ± 0.3 | 1.1 ± 0.2 * | NA | NA |
hypergeic | 3.0 ± 1.2 | 1.2 ± 0.5 *** | NA | NA |
endogeic | 8.8 ± 3.2 | 5.4 ± 2.0 *** | 0.93 ± 0.02 | 0.94 ± 0.02 |
Fallow-associated | 5.6 ± 1.9 | 2.4 ± 0.8 *** | NA | NA |
xerothermophilic | 1.6 ± 0.4 | 1.1 ± 0.3 * | NA | NA |
Butterflies | ||||
all species | 1.9 ± 0.1 | 1.1 ± 0.1 *** | 0.80 ± 0.02 | 0.66 ± 0.02 *** |
endangered (GER) | 0.6 ± 0.1 | 0.2 ± 0.1 ** | 0.53 ± 0.08 | 0.27 ± 0.08 * |
endangered (RLP) | 0.8 ± 0.8 | 0.3 ± 0.3 ** | 0.56 ± 0.07 | 0.30 ± 0.07 * |
monophagous | 1.2 ± 0.0 | 1.1 ± 0.0 | NA | NA |
xerothermophilic | NA | NA | NA | NA |
Indicator Value | Specificity | Sensitivity | p | |
---|---|---|---|---|
Wild bees | ||||
Colletes similis | 0.913 | 1.000 | 0.833 | 0.014 * |
Andrena flavipes | 0.902 | 0.814 | 1.000 | 0.013 * |
Lasioglossum morio | 0.894 | 0.800 | 1.000 | 0.039 * |
Butterflies | ||||
Lasiommata megera | 0.968 | 0.938 | 1.000 | 0.001 *** |
Melitaea didyma | 0.797 | 0.763 | 0.833 | 0.017 * |
Aglais io | 0.764 | 1.000 | 0.583 | 0.005 ** |
Melanargia galathea | 0.764 | 1.000 | 0.583 | 0.004 ** |
Pieris brassicae | 0.725 | 0.900 | 0.583 | 0.024 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Böhm, L.; Krahner, A.; Porten, M.; Maixner, M.; Schäffer, J.; Schmitt, T. Crossing Old Concepts: The Ecological Advantages of New Vineyard Types. Diversity 2024, 16, 44. https://doi.org/10.3390/d16010044
Böhm L, Krahner A, Porten M, Maixner M, Schäffer J, Schmitt T. Crossing Old Concepts: The Ecological Advantages of New Vineyard Types. Diversity. 2024; 16(1):44. https://doi.org/10.3390/d16010044
Chicago/Turabian StyleBöhm, Lea, André Krahner, Matthias Porten, Michael Maixner, Juliane Schäffer, and Thomas Schmitt. 2024. "Crossing Old Concepts: The Ecological Advantages of New Vineyard Types" Diversity 16, no. 1: 44. https://doi.org/10.3390/d16010044
APA StyleBöhm, L., Krahner, A., Porten, M., Maixner, M., Schäffer, J., & Schmitt, T. (2024). Crossing Old Concepts: The Ecological Advantages of New Vineyard Types. Diversity, 16(1), 44. https://doi.org/10.3390/d16010044